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It has been known for over 100 years that there is a discrepancy between Maxwell’s electrody-
namics and the idea of a classical electron as the “atom” of electricity. This incompatibility is
known under the terms 4/3 problem and radiation reaction force and has been circumvented in
the currently most successful theories, the quantum field theories, by limit value considerations, by
the mutual subtraction of infinities, i.e. by purely mathematical methods that eliminate obvious
contradictions but are not really based on an intuitive understanding and can therefore never really
be understood by the physically interested public. The actual cause of the classical problem lies in
the instability of the classical electron. Stabilization cannot be achieved within the framework of
Maxwell’s electrodynamics. This raises the question of what a minimal change in the foundations
of electrodynamics should look like that contains Maxwell’s theory as a limiting case. A detailed
analysis of the 4/3 problem points to models that fulfill these requirements.
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I. INTRODUCTION

The discussion about the origin of the 4/3 problem is basically about the concept of particles. The question is
whether the idea of assuming atoms of electricity to describe electrodynamic phenomena, as Helmholtz had already
suggested, is expedient. Stoney suggested the name “electron” for these “atoms”. In formulating this description,
classical electrodynamics encountered two unsolvable problems, the 4/3 problem and the problem of radiation reac-
tion [1, 2]. This article focuses in particular on the cause of the 4/3 problem and examines what conclusions can be
drawn from the form of the discrepancy and what kind of models can solve both problems of classical electrodynamics.

Early on in the formulation of the dynamics of electrons, an idea emerged that is still generally accepted today:
a distinction is made between the dynamics of electromagnetic fields, the dynamics of electrons and the interaction
between particles and fields. According to the special theory of relativity, the mass of particles is expected to increase
with velocity according to the well-known equation (4) with the γ factor. It is a characteristic of moving particles
that are described in a “stationary” three-dimensional Euclidean reference system Σ, see section II, that the velocity
vector uµ = γ(c, v⃗) does not have to be orthogonal to the position vectors xµ := (0, x⃗)

uµx
µ := −γv⃗x⃗ ≤ 0. (1)

Orthogonality for all x⃗ only applies to particles at rest in Σ.
For electrons, which are described by electromagnetic fields, such a particle behavior was already expected by

Lorentz and Abraham [2, 3]. Rohrlich clearly demonstrated in [4, 5] that the formalism of special relativity only
guarantees that the four-momentum of a field distribution behaves Lorentz covariantly. However, the 4/3 problem
already established by Abraham [1] shows that it was not possible to consistently represent electrons moving in Σ by
fields. The reason lies in the instability of the classical electron. To discuss the 4/3 problem, it is sufficient to consider
electrons moving at constant speed. The result of such a field description of the classical electron is given in section II
in order to be able to discuss in detail which minimal changes lead to a stable model of classical electrons, so that the
energy-momentum relations also apply in reference systems that are not orthogonal to uµ. In such a model, which
allows a stable classical electron to be formulated, no divergences occur. Maxwell’s electrodynamics would thus no
longer contradict Millikan’s famous experiment, which proved a quantization of the electric charge before quantum
mechanics moved quantization to the center of scientific interest, as explained in section III.

II. PARTICLE AND FIELD DESCRIPTION OF THE CLASSICAL ELECTRON

Particles are lumps of matter that remain undestroyed when scattered with sufficiently low energies. Such particles
can be assigned an invariant mass m0 and the concepts of kinematics can be applied without contradiction. To
understand what this means, it is helpful to look at the definitions and relationships of relativistic kinematics and
their relationship to the non-relativistic terms, see Appendix A.
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From the assignment of the space-time coordinates xµ to time t and the position vector x⃗

x := (ct, x⃗) (2)

and the four-vector pµ of the momenta to the energy E and the spatial momentum p⃗

p := (
E

c
, p⃗) (3)

it follows that the mass m of the particles depends on the ratio of their velocity v to the speed of light c

m(β) = γm0 mit γ :=
1√

1− β2
und β :=

v

c
, (4)

so the four-momentum results in

p = γm0(c, v⃗). (5)

A closer look shows that the definition (3) follows from the definition (2) if a suitable action function for a free
particle is defined and the momentum is derived from it as the temporal component of the energy-momentum tensor

pµ
(A35)
=

∫
Σ

Θµ0(x) d3σ. (6)

The integration here takes place over the three-dimensional space Σ in which the velocities v⃗ are determined, i.e.
in principle over any three-dimensional spacelike plane Σ. Precisely this arbitrariness of Σ is obviously one of the
characteristics of a particle, see Fig. 1.
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FIG. 1: We describe an electron in the laboratory system Σ and in the co-moving system
◦
Σ. Due to the temporal translation

invariance, the electric and magnetic field values determined at different times
◦
t in

◦
Σ are the same in A and

◦
A, as well as in B

and
◦
B.

In the field description, we assume, like Abraham [1], that the mass of the electron is purely electromagnetic in
nature, see Appendix B, and calculate energy and momentum according to Eq. (6) for the field of a charge e = −e0
from the symmetric energy-momentum tensor [6]

Θµν := − 1

µ0
ηµκFκλF

νλ +
1

4µ0
ηµνFκλF

κλ. (7)

In a reference frame Σ, in which the electron moves at a speed v⃗ = cβ⃗, see Fig. 1, the field strengths transform
according to the Lorentz transformation of the field strength tensor Fµν to

E⃗(β⃗) = E⃗∥(0) + γE⃗⊥(0) mit E⃗∥ :=
β⃗(β⃗E⃗)

β2
, E⃗⊥ = E⃗ − E⃗∥,

cB⃗(β⃗) = γβ⃗ × E⃗(0).

(8)
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For a charge at rest, each of the three electric field components contributes to the energy density (B3) with one third
of the rest energy density E0(r⃗). This leads to an energy of the moving charge

Ee(β)
(B16)
= Ee(0)

4γ2 − 1

3γ
, (9)

that does not have the form expected for particles (5), Ee(β) = γEe(0). The momentum

P⃗e(β⃗)
(B18)
=

ε0
c

∫
◦
Σ

d3
◦
σ
[
−E⃗⊥(0)

(
E⃗∥(0)β⃗

)
+ γβ⃗E⃗2

⊥(0)
]

(B19)
= β⃗γ

4

3

Ee(0)

c
(10)

shows momentum densities normal to the velocity and thus internal stresses in the classical electron, which cancel

each other out and therefore do not contribute to the total momentum. The factor 4/3 in P⃗e(β⃗) means a discrepancy
between inertial and gravitational mass of the classical electron. However, if the momentum of an electron at rest in
◦
Σ is described in the reference frame Σ, in which the electron moves with a velocity v⃗ = cβ⃗, by integration over

◦
Σ,

the expected expression is obtained, see Appendix B,

Pµ(β⃗)
(B20)
=

Ee(0)

c
(γ, β⃗γ), (11)

which only shows the consistency of the relativistic description, as Rohrlich [5] has clearly shown.

III. CONCLUSIONS

An interpretation of the frustrating result (9) for the energy of the moving electron is facilitated by a comparison
with the Sine-Gordon model, which is illustrated very clearly in Ref. [7]. The rest energy ESG(0) of a Sine-Gordon
soliton increases for a moving soliton to

ESG(β) =
ESG(0)

2γ
(γ2 + 1 + γ2β2︸ ︷︷ ︸

γ2

) = γESG(0). (12)

Here, the stress energy ∝ γ, the potential energy ∝ 1/γ and the kinetic energy ∝ γβ2 are listed in order. The energy
of the Sine-Gordon soliton meets the expectations of a particle subject to the laws of relativistic kinematics. A soliton
at rest is stable because the broadening stress term and the compressing potential energy balance each other. These
two energy contributions must be equal in order for stability to occur according to the Hobart-Derrick theorem [8, 9].
This results from the one-dimensional integration over the real axis and the number of derivatives – the stress term
contains two derivatives and the potential term contains no derivative.

When comparing the energy expressions (9) and (12), it is noticeable that adding an energy contribution with a
1/γ behaviour to the energy Ee(β) in Eq. (9) leads to the behaviour expected for a stabilized classical electron

Ee(β) → Estab(β) =
4

3
γEe(0), (13)

i.e. the energy value required by the momentum calculation (10) of the moving classical electron. The added energy

Estab(β)−Ee(β) =
Ee(β)
3γ is obviously the energy contribution required for stabilization. After taking it into account,

the energy of the electric field Ee(0) is only 3/4th of the rest energy of a stable classical electron. The size of the
added contribution, one third of the electromagnetic field energy for a particle at rest, shows that this contribution
must not have any Lorentz indices, i.e. it must be a potential energy. This is because only such a contribution

Epot(0) :=

∫
d3r Epot(r⃗) (14)

to the energy of a particle at rest scales under the substitution r → λr as one third of the electric field energy of a
particle at rest

d

dλ

[∫
d3(λr) E0(λr)

]
λ=1

+
d

dλ

[∫
d3(λr) Epot(λr)

]
λ=1

= −Ee(0) + 3Epot(0) = 0, (15)
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if the total energy Estab(β) = Ee(β) + Epot(β) has a minimum at λ = 1. Such an energy contribution Epot(β) also

does not contribute to the momentum P⃗e(β⃗) of a moving electron.
The solution to the 4/3 problem requires a formulation of the degrees of freedom of an electron that allows to

attribute a high potential energy density for the field values occurring in the center of the electron and thus prevent
an unlimited increase in the core region. This is only possible with a formulation of electrodynamics in which the
vector fields Aµ are not the fundamental fields, but rather with vector fields based on a scalar (Higgs) field Q(x), with
which a suitable potential energy density Epot(0) can be formulated, which disappears sufficiently fast at infinity. It
is necessary to find a formulation in which the dynamics of the scalar field is formulated by the vector field Aµ in the
usual form with four Lorentz indices.

The potential energy density just demanded has the dimension of Einstein’s cosmological constant Λ, but would
be a cosmological function that, when integrated over space, would amount to a quarter of the electron mass. If one
assumes such a relationship also for the proton and neutron, then one can derive an average matter density in the
universe from the measured value of the cosmological constant. In its measurement results from 2017, the Planck
Collaboration [10] states a cosmological energy density of 0.69ρcrit, whereby the critical energy density is 4.9GeV/m3.
This would correspond to a density of around 15 nucleons/m3.

In connection with the value of the momentum in Eq. (10), we pointed out the internal stresses in the electron
reflect the instability of the classical electron, but are canceled out in the total momentum. These stresses, revealed

by the first term in the second expression in Eq. (10) only disappear if the field strength components E⃗∥(0) and E⃗⊥(0)
are orthogonal to each other, which is only possible in non-Abelian formulations of the field strength tensor, as they
occur in quantum chromodynamics or in the su(2) algebra, in which such field components can belong to orthogonal
directions in the algebra.

This simplest solution of the 4/3 problem addressed here implies that there is no separation of the field degrees
of freedom between degrees of freedom for electrons and degrees of freedom for electromagnetic fields, no division of
the Lagrangian function into a dynamics of free fields, a dynamics of free particles and an interaction term between
these free fields, as exemplified by the Sine-Gordon model. The Lagrangian function of the scalar field should consist
of a dynamic term with four Lorentz indices and a potential term and generate the interactions through its non-
linearity. In such a description, electrons are a concentrated electromagnetic field. One cannot separate these classical
electrons from the electric and magnetic fields they generate. Moreover, this inseparability is a clear conclusion from
the experiments in which electrons never appear without their electromagnetic fields. The field itself is uncharged,
so that the problem of the instability of the classical electron, which has remained unsolved for 100 years, cannot be
attributed to the repulsion of charged regions inside the electron, as has often been assumed [11]. It is the structure
of the field and the Hamiltonian function that lead to stability and to attractive or repulsive forces between different
charges. For the formulation of electrodynamics proposed here, the second problem of classical electrodynamics, the
radiation reaction problem, is irrelevant. A single fundamental non-Abelian field with a suitable Lagrangian function
as proposed above cannot have a reaction on itself, but can only follow its dynamics as formulated in the Lorentz
invariant Lagrangian. As far as the Lagrangian is a Lorentz scalar, no contradiction with special relativity can occur
due to the consistency of the theory.

This paper shows what minimal modifications could be made to Maxwell’s electrodynamics in order to eliminate
these more than hundred-year-old inconsistencies in Maxwell’s formulation of electrodynamics. Maxwellian electro-
dynamics should then turn out to be a clever linear approximation to the nonlinear theory. It should be interesting
to study models with such properties [12].

Appendix A: Kinematics of point particles

A relativistic description of the motion of point particles requires that from the knowledge of the kinematic quantities
in one inertial system, their values can be calculated in other inertial systems. It is therefore useful to formulate
kinematic quantities as scalars, vectors, and tensors. This allows for a simple transformation of these quantities
between the reference systems and an easy check of whether the principle of relativity is fulfilled, i.e., whether the
same physical laws apply in all reference systems.

We already know the transformation behavior for the four-vector

xµ :
(2)
= (ct, r⃗), (A1)

which contains the time t and the position x⃗ as components. Its transformation

xµ′ := Λµ′
νx

ν ⇔ x′ := Λx, (A2)
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is defined by the condition

ΛT ηΛ
!
= η mit η = diag(1,−1,−1,−1). (A3)

The gradients transform “contragrediently” with the matrix Λ̄

∂µ′
(A2)
= Λ̄ ν

µ′ ∂ν ⇔ ∂′ = Λ̄∂ mit Λ̄
(A2)
= ηΛη

(A3)
= ΛT−1

(A4)

The Lorentz transformation (A3) guarantees the invariant length

xµxµ

(A2)

=
(A3)

xµ′xµ′ (A5)

and the invariance of the proper time τ with the differential

dτ :=
1

c

√
dxµdxµ

(A1)
= dt

√
1−

(dx⃗
dt

)2

(A6)

Using the non-relativistic definitions of velocity and acceleration

v⃗ :=
dx⃗

dt
, a⃗ :=

dv⃗

dt
, (A7)

and the abbreviations

β⃗ :=
v⃗

c
, γ :=

1√
1− β2

, dt
(A6)

=
(A7)

γ dτ, (A8)

we obtain the four-velocity

u = (u0, u⃗) :=
dx

dτ
=

dx

dt

dt

dτ

(A1)

=
(A8)

γ(c, v⃗)
(A8)
= cγ(1, β⃗), (A9)

and the four-acceleration,1

b = (b0, b⃗) :=
du

dτ

(A8)
=

du

dvi

dvi
dt

γ
(A9)

=
(A7)

d

dvi
[γ(c, v⃗)] aiγ =

(A10)
=

(
γ4a⃗β⃗, γ2a⃗+ γ4(⃗aβ⃗)β⃗

)
,

(A11)

which for rectilinear motion is simplified to the space-like four-vector

b
(A11)
= γ4a (β, 1) . (A12)

Including the invariant rest mass m0, we define the four-vectors for the momentum pµ and the force vector Kµ

p = (
E

c
, p⃗) := m0u, K = (K0, K⃗) :=

dp

dτ

(A11)
= m0b. (A13)

The following applies to the four-momentum

p
(A13)
= m0u

(A9)
= γm0(c, v⃗) (A14)

and the four-force

K
(A13)
= m0b

(A11)
= m0

(
γ4a⃗β⃗, γ2a⃗+ γ4(⃗aβ⃗)β⃗

)
(A15)

1

dγ

dvi
:=

1

c

dγ

dβi
,

dγ

dβi

(A8)
=

βi

(1− β2)3/2
= βiγ

3, (A10)
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It is noteworthy that for the derivation of the relationships of the relativistic to the non-relativistic quantities of
particle kinematics, in addition to the four-vector (A1) of the coordinates xµ in Eq. (A13), we also directly identified
the four-momentum pµ with the non-relativistic quantities, energy E and momentum p⃗. We will elaborate on this
after Eq. (A28).

From the expression (A14) for the four-momentum p it follows that the mass contributing to energy and momentum
increases proportionally to γ,

E
(A13)

=
(A14)

γm0c
2
0, p⃗

(A13)

=
(A14)

γm0v⃗. (A16)

Since we retain the definitions for the power P and the force F⃗

P :=
dE

dt
, F⃗ :=

dp⃗

dt
, (A17)

known from non-relativistic mechanics, it follows

K
(A13)
= m0b

(A11)
= m0

(
γ4a⃗β⃗, γ2a⃗+ γ4(⃗aβ⃗)β⃗

) (A13)

=
(A8)

γ

(
1

c0
P, F⃗

)
, (A18)

i.e.

F⃗
(A18)
= m0[γa⃗+ γ3(⃗aβ⃗)β⃗] and P = v⃗F⃗ . (A19)

If velocity and acceleration are parallel, it follows that the inertial mass increases with γ3

F⃗
(A19)
= γ3m0a⃗. (A20)

We will now calculate invariants and draw conclusions from them. Vectors xµ are denoted by

xµxµ =


ρ2 > 0 timelike vectors,

0 lightlike vectors,

−ρ2 < 0 spacelike vectors.

(A21)

xµxµ is a Lorentz invariant but not an invariant of motion. In contrast, however,

uµu
µ (A9)

= c2γ2(1− β⃗2)
(A8)
= c2, (A22)

pµp
µ

(A13)

=
(A22)

m2
0c

2, (A23)

are also invariants of motion. From the vanishing of the differential of these invariants follows the relativistic energy
conservation law 2

dE
(A16)
= dγm0c

2 (A24)
= dx⃗

d(γm0v⃗)

dt

(A14)
= dx⃗

dp⃗

dt

(A17)
= F⃗dx⃗, (A25)

which expresses that mechanical work
∫
F⃗dx⃗ contributes to the energy. If Eq. (A25) is divided by dt, it turns out

that energy conservation was already included in Eq. (A19)

P
(A17)
=

dE

dt

(A25)

=
(A7)

v⃗F⃗ . (A26)

2

u0du0 (A22)
= u⃗ du⃗

(A9)⇔ c2dγ = v⃗ d(γv⃗)
(A7)
=

dx⃗

dt
d(γv⃗) = dx⃗

d(γv⃗)

dt
(A24)
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The two equations (A23) and (A13) show that the energy of a moving mass, in addition to the kinetic energy and
its relativistic corrections, also contains an additional contribution, the rest energy m0c

2

(p0)2 − p⃗ 2 (A23)
= m2

0c
2 ⇔ E2 (A13)

= m2
0c

4 + p⃗ 2c2,

E
(A16)
= γm0c

2 (A8)
=

1√
1− β2

m0c
2 ≈ m0c

2 +
m0v⃗

2

2
+O(β4).

(A27)

Interestingly, by transferring the law of conservation of energy from classical mechanics to relativity theory, it has
emerged unforced that for the two canonically conjugated quantities x and p, the spatial components coincide with the
three-quantities. However, for their derivatives u, b, and K, we had to introduce separate letters to prevent confusion

between their spatial components and the non-relativistic quantities v⃗, a⃗, and F⃗ .
We will now show that it is sufficient to define the relationship (A1) between three- and four-quantities. The

relationship (A13) between the momenta follows from a suitably chosen Lagrange density and the energy-momentum
tensor derived from it.

Free particles move on geodesics, on extremal paths between events. It is therefore obvious that paths with extreme
(minimal) proper time ∫ 1

0

dτ(λ)

dλ
dλ =

∫ τ2

τ1

dτ (A28)

are proportional to a suitable action function for free particles. The proper time decreases as the speed of the particles
increases. The proportionality factor between extreme time and extreme action has the dimension of energy, obviously
the rest energy of the free particle

S := −m0c
2

∫ τ2

τ1

dτ
(A28)
= −m0c

2

∫ t2

t1

dτ(t)

dt
dt (A29)

The sign was chosen negative so that the Lagrange function

L := −m0c
2 dτ(t)

dt

(A8)
= −m0c

2

γ

(A8)
= −m0c

2
√

1− β2 = m0γc
2(1− β2) (A30)

increases with increasing momentum of the particle. The components of the canonically conjugated momentum follow
in the Lagrange description to

pi :=
∂L

∂vi

(A30)
= m0γ vi. (A31)

The Hamiltonian results in

H := p⃗ v⃗ − L
(A31)

=
(A30)

m0γc
2. (A32)

For point-like electrons with the world line x⃗e(t), the Lagrange density L, energy density E , and momentum density
π⃗ are

L(x) (A30)
=

m0c
2

γ
δ3(x⃗− x⃗e(t)),

E(x) (A32)
= m0γ c

2δ3(x⃗− x⃗e(t)),

π⃗(x)
(A31)
= m0γ v⃗ δ

3(x⃗− x⃗e(t))

(A33)

The energy-momentum tensor, which contains the energy density E and momentum density π⃗, is

Θµν(x)
(A33)

=
(A9)

m0

γ
uµ(x)uν(x) δ3(x⃗− x⃗e(t)). (A34)

The momentum of the particle consequently results as a spatial integral over the space-time components of Θµ0(x) =
Θ0µ(x)

pµ
(A34)

=
(A33)

∫
Σ

Θµ0(x) d3σ. (A35)

As can be seen from the transition from the integrated quantities in Eqs. (A30-A32) to the densities (A33), the
integration takes place over the three-dimensional space Σ in which the velocities v⃗ are determined, i.e., in principle,
over any three-dimensional spatial world surface Σ. Precisely this arbitrariness is obviously one of the characteristics
of a particle.



8

Appendix B: Electrons in Maxwell’s field model

We calculate energy and momentum for an extended classical electron of charge e = −e0 and describe it from

different reference systems, in a reference system
◦
Σ in which the electron is at rest and in a reference system Σ in

which the electron moves with a velocity v⃗ = cβ⃗, see Fig. 1.
Like Abraham [1], we start from the idea that the mass of the electron is purely electromagnetic in nature. We

therefore use the usual Lagrangian density of electrodynamics

L := − 1

4µ0
FµνF

µν (B1)

and the metric tensor ηµν = diag(1,−1,−1,−1). Due to the translation symmetry and after adding a four-divergence
term, this leads to the symmetric energy-momentum tensor [6]

Θµν := − 1

µ0
ηµκFκλF

νλ +
1

4µ0
ηµνFκλF

κλ. (B2)

Its elements are in detail

Θ00 =: E (B2)
=

ε0
2
(E⃗2 + c2B⃗2), (B3)

Θ0i = Θi0 (B2)
= cε0 E⃗ × B⃗, (B4)

Θij (B2)
= −ε0 (EiEj + c2BiBj) + δij

ε0
2
(E⃗2 + c2B⃗2). (B5)

The four-momentum of a field distribution generally depends on the reference system Σ in which the field strengths
are determined. A reference system can be defined in a Lorentz covariant manner as the three-dimensional Euclidean
space that is orthogonal to a velocity vector uµ and is usually written as

dσµ :=
uµ

c
d3σ. (B6)

A Lorentz covariant definition of the four-momentum is obtained by

Pµ :=
1

c

∫
Σ

Θµν dσν . (B7)

In his 1903 paper, Abraham describes electrons on a purely electromagnetic basis with a homogeneous spherically
symmetrical charge distribution ρ(r) for electrons at rest. He poses the question: Can the inertia of the electron be
completely described by the dynamic effect of its electromagnetic field? It turns out through the 4/3 problem that
this question must ultimately be answered in the negative. We will draw conclusions from this failure.

The electric field of a point charge e at rest at the origin results in the SI according to Gauss’ law to

E⃗∞ =
e

4πε0

e⃗r
r2

. (B8)

To obtain a finite field energy of a classical electron with β⃗ = v⃗/c = 0 in these considerations, we must regularize the
field. Instead of a surface charge or a homogeneous charge distribution, it is more realistic to use a regularized field
strength of the form

E⃗(0) :=
e

4πε0

e⃗r
r2 + r20

. (B9)

In Eq. (B9) it may be irritating that the field strength at the origin has no defined direction. However, this only shows
that the electric field strength is defined as the electric flux density on space-time surfaces, which can have different
directions starting from the origin. As required, the expression (B9) results in a finite energy density everywhere in
the system at rest

E0(r⃗)
(B3)
=

ε0
2
E⃗2(0)

(B9)
=

αfℏc
8πr40

1

(1 + ρ2)2
mit αf :=

e20
4πε0ℏc

, ρ :=
r

r0
. (B10)
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with a total energy, the so-called self-energy

Ee(0) =
(B7)
= 4π

∫ ∞

0

r2E0(r⃗)dr
(B10)
=

αfℏc
r0

∫ ∞

0

ρ2

2(1 + ρ2)2
dρ =

αfℏc
r0

π

8
= msc

2, (B11)

which leads to a radius parameter r0 = 1.1066 fm.
From Eq. (B11), the known instability of the classical electron can be seen. Its mass decreases with 1/r0, it

dissolves. The reason for this expansion of the core region is easy to determine. The energy density is proportional to
r−4
0 because of the four Lorentz indices in FµνF

µν , the spatial integral only grows with r30, so overall an r−1
0 behavior

results.

To describe an electron moving in Σ, we start from the transformation of the coordinates
◦
x= (c

◦
t,

◦
r⃗) and fields E⃗(0)

and B⃗(0) in the comoving frame
◦
Σ and transform to Σ in which the electron moves with β⃗

c
◦
t = γct− γβ⃗r⃗,
◦
r⃗ = γr⃗∥ + r⃗⊥ − γβ⃗ct.

(B12)

The Lorentz transformation of the field strength tensor Fµν is

E⃗(β⃗) = E⃗∥(0) + γE⃗⊥(0) mit E⃗∥ :=
β⃗(β⃗E⃗)

β2
, E⃗⊥ = E⃗ − E⃗∥,

cB⃗(β⃗) = γβ⃗ × E⃗(0).

(B13)

We can interpret the evaluation of the energy in Eq. (B11) in such a way that the energy of the electron at rest

regularized according to Eq. (B9) takes place in the 3D space
◦
Σ, which is orthogonal to the velocity vector u = γ(c, β⃗),

see Fig. 1. We note for further calculations that in
◦
Σ, each of the three electric field components contributes to the

energy density (B3) with one-third of E0(r⃗), which is due to the spherical symmetry of the field. Now, however, we

consider the energy densities Eβ⃗(r⃗) in the 3D space Σ, which lies orthogonal to (1, 0⃗) and contains other space-time

points than
◦
Σ, see Fig. 1. We list the contributions of the field components E⃗∥, E⃗⊥, B⃗∥, B⃗⊥ according to Eq. (B13)

in order 3.

Ee(β)
(B7)
=

∫
Σ

d3σΘ00(β)
(B3)
=

∫
Σ

d3σEβ⃗(r⃗)
(B3)

=
(B13)

∫
Σ

d3σ
E0(

◦
r⃗)

3
(1 + 2γ2 + 0 + 2γ2β2). (B14)

From approximation expressions in the non-relativistic limit in an expansion up to the order β2, i.e., γ2 ≈ 1 + β2,
Abraham read off in Eq. (15e) of Ref. [1] that the “kinetic” magnetic energy contributions Wm ∝ 2γ2β2 ≈ 2β2

proportional to β2 are related to the ”static” electric energy contributions We ∝ 1+2γ2 ≈ 3+2β2, to the self-energy,
in the relationship

Wm
(B14)
= =

4

3

β2

2
We. (B15)

Due to the time independence of the electric field strength in the comoving system, it was possible in Eq. (B14)

to read off the field values in the comoving reference system
◦
Σ instead of in Σ, see Fig. 1. It now makes sense to

also perform the integration over
◦
Σ, whereby we take into account the Lorentz contraction of the moving electron

according to Eq. (B12). The total energy of the moving classical electron thus results in

Ee(β)
(B14)

=
(B12)

1

γ

∫
◦
Σ

d3
◦
σ

E0(
◦
r⃗)

3
(1 + 2γ2 + 0 + 2 γ2β2︸ ︷︷ ︸

γ2−1

)
(B11)
=

Ee(0)

3γ
(4γ2 − 1), (B16)

3 We point out that this calculation, which was carried out in analogy to Abraham [1], is an exact calculation according to the defini-
tion (B7) of the four-momentum and not, as Rohrlich [5] writes before his Eq. (16): ”We can summarize this discussion by saying that
the definition (5) is incorrect.” With the definition (5), Rohrlich refers to the Abraham-Lorentz definition of the energy of a moving
electron, which corresponds to Eq. (B14)
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which does not have the form (A14) expected for particles.
According to the particle interpretation, the momentum of the uniformly moving classical electron results from the

Σ integration via the stress tensor or the Poynting vector

P⃗e(β⃗) :=
1

c

∫
Σ

d3σΘ0i(β⃗)
(B4)
= ε0

∫
Σ

d3σE⃗(β⃗)× B⃗(β⃗)
(B13)
=

ε0
c
γ

∫
Σ

d3σ
[
E⃗∥(0) + γE⃗⊥(0)

]
×
[
β⃗ × E⃗⊥(0)

]
. (B17)

In the transformation to
◦
Σ, we again take into account the Lorentz contraction

P⃗e(β⃗)
(B17)

=
(B12)

ε0
c

∫
◦
Σ

d3
◦
σ
[
E⃗∥(0) + γE⃗⊥(0)

]
×

[
β⃗ × E⃗⊥(0)

]
=

ε0
c

∫
◦
Σ

d3
◦
σ
[
−E⃗⊥(0)

(
E⃗∥(0)β⃗

)
+ γβ⃗E⃗2

⊥(0)
]
. (B18)

The first summand in the integrand of the last expression shows momentum densities normal to the velocity and thus

internal stresses in the classical electron. At points that are mirror-symmetrical to the velocity vector β⃗, E⊥(0) points
in the opposite directions, so their contributions cancel each other out and do not contribute to the total momentum

P⃗e(β⃗). Since the two orthogonal field components E⃗⊥(0) in the resting electron each contribute one-third of the field
energy, the second contribution provides the 4/3 factor already known from Eq. (B15)

P⃗e(β⃗)
(B18)
= β⃗γ

4

3

ε0
c

∫
◦
Σ

d3
◦
σ

E⃗2(0)

2

(B11)
= β⃗γ

4

3

Ee(0)

c
. (B19)

Both calculations, (B15) and (B19), thus show that the mass of the electron contributing to the momentum and the
kinetic energy is greater by a factor of 4/3 than results from the electrical field energy Ee(0) for the electron at rest in
Eq. (B16). This would mean a discrepancy between inertial and gravitational mass. To eliminate this contradiction,
Poincaré introduced a negative pressure [13], which has to balance the exploding tendency of the electron.

The situation is different for the four-momentum of the electron at rest in
◦
Σ when its four-momentum Pµ(β⃗) is

expressed in coordinates of Σ. As Rohrlich [4] has clearly shown, the correct expression results due to the consistency
of special relativity

Pµ(β⃗)
(B7)
=

1

c

∫
◦
Σ

d3
◦
σ Θµν

Σ βν

(B21)

=
(B23)

Ee(0)

c
(γ, β⃗γ). (B20)

In detail, this results in

P 0(β⃗)
(B20)
=

1

c

∫
◦
Σ

d3
◦
σ γ(Θ00

Σ −βiΘ
0i
Σ )

(B14)

=
(B17)

γ2

c
Ee(β)−γ2β⃗P⃗e(β⃗)

(B16)

=
(B19)

Ee(0)

3c
γ(4γ2−1)− Ee(0)

3c
4β2γ3 = γEe(0) (B21)

P i(β⃗)
(B20)
=

1

c

∫
◦
Σ

d3
◦
σ γ(Θi0

Σ − βjΘ
ij
Σ ) =

(B17)

=
(B5)

γ2P i
e(β⃗)−

γ

c
βj

∫
◦
Σ

d3
◦
σ {−ε0 [Ei(0)Ej(0) + c2Bi(0)Bj(0)] + δij

ε0
2
[E⃗2(0) + c2B⃗2(0)]}

(B13)
= γ2P i

e(β⃗) +
γ

c
βε0

∫
◦
Σ

d3
◦
σ [Ei(0)E∥(0) + c2Bi(0)B∥(0)︸ ︷︷ ︸

0

]− γ

c
βi

ε0
2

∫
◦
Σ

d3
◦
σ [E⃗2(0) + c2B⃗2(0)],

(B22)

i.e.

P∥(β⃗)
(B22)
= γ2P ∥

e (β⃗) +
γ

c
β
ε0
2

∫
◦
Σ

d3
◦
σ [E2

∥(0)− 2E2
⊥(0)− 2c2B⃗2

⊥(0)] =

(B19)

=
(B13)

βγ3 4

3

Ee(0)

c
+

γ

c
β
Ee(0)

3
[1− 2γ2 − 2β2γ2] = βγ

Ee(0)

c
.

(B23)

and

P⊥(β⃗)
(B22)
=

γ

c
βε0

∫
◦
Σ

d3
◦
σ E∥(0)E⊥(0) = 0. (B24)
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The result (B20) has nothing to do with the 4/3 problem. It only shows that the four-vector (1, 0⃗)Ee(0)/c in
◦
Σ can

be transformed by a Lorentz transformation to (γ, β⃗γ)Ee(0)/c in Σ.

[1] M. Abraham, Ann. Phys. 10, 105 (1903).
[2] H. A. Lorentz, The theory of electrons, vol. 29 of B.G. Teubners Sammlung von Lehrbüchern auf dem Gebiete der mathe-

matischen Wissenschaften mit Einschluss ihrer Anwendungen (B.G. Teubner, Leipzig, 1909).
[3] M. Abraham, Elektromagnetischs Theorie der Strahlung, vol. 2 of Theorie der Elektrizität / von Dr. M. Abraham (Druck

und Verlag von B.G. Teubner, Leipzig, 1905), erste auflage ed.
[4] F. Rohrlich, American Journal of Physics 28, 639 (1960), ISSN 0002-9505, https://pubs.aip.org/aapt/ajp/article-

pdf/28/7/639/11640840/639 1 online.pdf, URL https://doi.org/10.1119/1.1935924.
[5] F. Rohrlich, Classical Charged Particles (WORLD SCIENTIFIC, 2007), 3rd ed.,

https://worldscientific.com/doi/pdf/10.1142/6220, URL https://worldscientific.com/doi/abs/10.1142/6220.
[6] J. D. Jackson, Classical electrodynamics (Wiley, New York, NY, 1999), 3rd ed., ISBN 9780471309321, URL http://

cdsweb.cern.ch/record/490457.
[7] M. Remoissenet, Waves called solitons: concepts and experiments (Springer, 1996), ISBN 9783540605027, URL https:

//link.springer.com/book/10.1007/978-3-662-03790-4.
[8] R. Hobart, Proc. Phys. Soc. London 82, 201 (1963), URL http://stacks.iop.org/0370-1328/82/i=2/a=306.
[9] G. Derrick, J. Math. Phys. 5, 1252 (1964).

[10] N. Aghanim, Y. Akrami, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro,
and et al., Astronomy and Astrophysics 641, A1 (2020), ISSN 1432-0746, URL http://dx.doi.org/10.1051/0004-6361/

201833880.
[11] J. Schwinger, Foundations of Physics 13, 373 (1983), URL https://doi.org/10.1007/BF01906185.
[12] M. Faber, Universe 8, 73 (2022), 2201.13262.
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