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ABSTRACT 
Pulse amplitude measurement for the analog signal is now widely used in applications like spectroscopy, IR / laser receiver, RF 
signal receiver, etc. Accurate Amplitude measurement requires a high-speed analog to digital converter which consumes high 
power. In this paper we are aiming to detect analog pulse amplitude with low sampling ADC and interpolation method. The 
comparative study of seven interpolating methods namely Near interpolation, Linear interpolation, Cubic interpolation, LaGrange’s 
interpolation, Newton Raphson interpolation, Whittaker Shannon interpolation and Neville’s algorithm were conducted for 
measurement of analog pulse peak height. The interpolation method is selected based on the relative error, mean square error and 
mean absolute deviation. The performance of each method and the overall system is discussed in this paper.   
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1 INTRODUCTION 
Many applications require measurements using an 

analog-to-digital converter (ADC) to convert the analog input 
information in to the digital form. Such applications will have 
resolution requirements based on the dynamic range of the 
signal, the minimum measurable change in a parameter, and the 
signal-to-noise ratio (SNR). Many systems use a better 
resolution off-chip ADC as a result. However, the cost of the 
ADC increases with the level of desired accuracy. By creating 
hardware to quantize the analog signal amplitude into the digital 
signal with a longer code-word length, better ADC accuracy 
can be attained. Word lengths in practical ADCs are limited. 
Higher conversion accuracy is attained by calculating 
additional samples in order to efficiently strike a balance 
between system cost and accuracy. Analyzing the input signal 
is necessary in order to improve the required ADC resolution. 
Digital interpolation methods can be used to increase the 
resolution of digital data. Through an FPGA, the digital signal 
can be processed. This technique, which processes samples and 
increases the 12-bit ADC conversion's accuracy by extra bits, is 
examined in this study. As the work's application, peak height 
detection is used. The function generator's gaussian pulse is 
delivered to the ADC for sampling before the data is sent to the 
FPGA for interpolation. The interpolation will be implemented 
by FPGA, which will use the interpolated data to determine the 
maximum sample value. To obtain data from the FPGA and 
display it on the computer screen with the necessary graphs and 
numbers, a national instrument brand called NI DAQ is 
employed. 

2 INTERPOLATION TECHNIQUES  
With the help of a few precise sample data points, 

interpolation can be used to estimate the unknown values of a 
nonlinear or linear function. Theoretically, more data points are 
needed for better fitting accuracy. However, it is not practical 
to evaluate ideas based on big data sets due to the constraints of 
the difficulties of hardware computing. The initial objective of 
the problem at hand is to sample the input pulse into uniformly 
spaced data points. Any of the following interpolation 
techniques can be used to determine the analog pulse's unknown 
peak value. 

2.1 Nearest neighbor Interpolation 

The simplest interpolation technique is nearest 
neighbor interpolation. The value of the interpolated function f 
at coordinate X for given the samples F(k) as follows: 

𝒇(𝒙) = 𝑭 '|𝒙 + 𝟏
𝟐
|*                         (1) 

The closest sample point to x is simply chosen. The greatest 
integer value that is less than or equal to x in this case is called 
the floor function [x]. This results in an interpolated function 
that looks like a staircase. The real axis as a whole is where the 
function f(x) is defined, although it is neither continuous (since 
it contains jumps) nor differentiable. Consider the function 
f(x)=sin(x) and its interpolated nearest neighbor version in 
Figure 1 as an illustration. 
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Figure 1. In green the continuous function f(x) = sin(x), in red the sampled 
function and in blue the nearest interpolated function. 

2.2 Linear Interpolation 
The simplest technique for determining the value of a 

function between any two known values is the linear 
interpolation formula. A technique for fitting curves with linear 
polynomials is the linear interpolation formula. In essence, the 
interpolation method uses the collection of values to find new 
values for any function. The linear interpolation formula is used 
to determine the unknown values in the table. In this section, 
let's study more about the linear interpolation formula. Data 
forecasting, data prediction, mathematical and scientific 
applications, market research, etc. all employ the linear 
interpolation algorithm. The unknown values in the table can be 
found using the linear interpolation formula. The linear 
interpolation formula is as follows: 

													𝒚 = 𝒚𝟏 + (𝒙 − 𝒙𝟏)
(𝒚𝟐%𝒚𝟏)
(𝒙𝟐%𝒙𝟏)

                 (2) 

where,  
• 𝑥# and 𝑦# are the first coordinates 
• 𝑥$ and 𝑦$	are the second coordinates 
• 𝑥 is the point to perform the interpolation 
• 𝑦 is the interpolated value 
 

 
Figure 2. In green the continuous function f(x)= sin (x), in red the sampled 
function and in blue the linear interpolated function. 

Despite being a straightforward interpolation 
technique, linear interpolation is frequently employed in 
practice. It is quick and easy to put into practice. 

2.3 Lagrange’s interpolation 
The Lagrange interpolation formula can be used to 

locate a polynomial known as a Lagrange polynomial that 
assumes certain values at every location. Lagrange's 
interpolation is an approximation to f(x) using a Nth degree 
polynomial. There is a single polynomial P with real 
coefficients that, given n different real values X1, X2,..., Xn and 
n real values Y1, Y2,..., Yn (not necessarily distinct), fulfils 
P(Xi)=Yi for I ∈ 1, 2,..., n and has deg(P) < n. The following is 
the Lagrange interpolation formula for various orders of 
polynomials: 

𝒚 = 𝒇(𝒙) = (𝒙%𝒙𝟏)(𝒙%𝒙𝟐)…(𝒙%𝒙𝒏)
(𝒙𝟎%𝒙𝟏)(𝒙𝟎%𝒙𝟐)…(𝒙𝟎%𝒙𝒏)

𝒚𝟎 +

																							 (𝒙%𝒙𝟎)(𝒙%𝒙𝟐)…(𝒙%𝒙𝒏)
(𝒙𝟏%𝒙𝟎)(𝒙𝟏%𝒙𝟐)…(𝒙𝟏%𝒙𝒏)

𝒚𝟏 +⋯+

																								 (𝒙%𝒙𝟎)(𝒙%𝒙𝟏)…(𝒙%𝒙𝒏(𝟏)
(𝒙𝒏%𝒙𝟎)(𝒙𝒏%𝒙𝟏)…(𝒙𝒏%𝒙𝒏(𝟏)

𝒚𝒏                  (3) 

2.4 Newton Raphson Interpolation 

The Newton-Raphson approach, commonly referred 
to as Newton's method, is a rapid way to approximate the real-
valued root function f(x)=0. It makes use of the idea that a 
straight line parallel to a continuous, differentiable function can 
serve as a rough approximation. A continuous, differentiable 
function f(x) needs to have a root, and you know the root you're 
seeking for is close to the point x = x0. Then, according to 
Newton's approach, a more accurate approximation for the root 
is 

                       𝒙𝟏 = 𝒙𝟎 −
𝒇(𝒙𝟎)
𝒇,(𝒙𝟎)

                      (4) 

This process may be repeated as many times as necessary to get 
the desired accuracy. In general, for any x-value xn, the next 
value is given by  

                   𝒙(𝒏-𝟏) = 𝒙𝒏 −
𝒇(𝒙𝒏)
𝒇,(𝒙𝒏)

            (5) 

2.5 Cubic interpolation 
Only one sample (the closest) is used in nearest 

neighbor interpolation to determine the interpolated value [1]. 
The two nearest sample locations are examined in linear 
interpolation (one on the left and one on the right). We examine 
two datapoints on the left and two on the right for cubic 
interpolation. We fit a cubic polynomial over the range between 
x=k and x=k+1 to interpolate [2]. 

 
                                 k ≤ x ≤ k+1:   
 	
𝑓(𝑥) = 	𝑎(𝑥)) + 𝑏(𝑥)$ + 𝑐(𝑥) + 𝑑  to the 4-sample 
points k−1, k, k+1 and k+2.  
 
For the 4 points we have: 
 
𝐹(𝑘 − 1) = 𝑎(−1)) + 𝑏(−1)$ + 𝑐(−1) + 𝑑 

𝐹(𝑘) = 𝑑 
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𝐹(𝑘 + 1) = 	𝑎(1)) + 𝑏(1)$ + 𝑐(1) + 𝑑 

𝑭(𝒌 + 𝟐) = 	𝒂(𝟐)𝟑 + 𝒃(𝟐)𝟐 + 𝒄(𝟐) + 𝒅                         (6) 

Solving these equations for a, b, c and d we get: 

𝑎 = 	
1
6	(	−𝐹

(𝑘 − 1) + 3	𝐹(𝑘) − 3𝐹(𝑘 + 1) + 𝐹(𝑘 + 1)) 

𝑏 =
1
2	(𝐹

(𝑘 − 1) − 2𝐹(𝑘) + 𝐹(𝑘 + 1)) 

𝑐 =
1
6	<−2𝐹

(𝑘 − 1) − 3𝐹(𝑘)	+ 	6𝐹(𝑘 + 1) − 𝐹(𝑘 + 2)= 

𝑑 = 𝐹(𝑘)                         (7) 

2.6 Whittaker–Shannon interpolation 
The Whittaker–Shannon interpolation formula or sinc 

interpolation is a method to construct a continuous-time 
bandlimited function from a sequence of real numbers. The 
process is similar to that of the Lagrange polynomial 
interpolation. The key to polynomial interpolation is to identify 
a set of component polynomials, each of which traverses a 
certain set of provided points. The component polynomials 
must also equal zero whenever there is a different point in order 
to be able to combine them all into a single polynomial that 
traverses the entire set of points. This makes sure that adding 
the polynomials together will not cause an interference between 
them at the given set of points. In Whittaker-Shannon 
interpolation, the components are the sinc function instead of 
polynomials. Sinc functions are periodic functions that are as 
follows:  

𝒔𝒊𝒏𝒄(𝒙) = 	3			
𝟏, 𝒙 = 	𝟎

𝐬𝐢𝐧	(𝒙)
𝒙

, 𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆    (8) 

2.7 Neville's Algorithm for interpolation 
Neville's algorithm is an interpolation algorithm which 

proceeds by first fitting a polynomial of degree 0 through the 
point (xk, yk) for k=1, ..., n, i.e., Pk(x)=yk. Then, in a subsequent 
iteration, Pi and P(i+1) are merged to fit between pairs of points, 
resulting in P12, P23, and so forth. Up until the desired outcome 
is attained, the method is repeated, creating a "pyramid" of 
approximations. 
 

     x1: y1 = P1 
P12 

x2: y2 = P2   P123 
          P23   P1234 

x3: y3 = P3   P234 
          P34   

x4: y4 = P4 
   
The final result is  

𝑷𝒊(𝒊-𝟏)….(𝒊-𝒎) =
(𝒙%𝒙𝒊,𝒎)𝑷𝒊(𝒊,𝟏)….(𝒊,𝒎(𝟏)

(𝒙𝒊%𝒙𝒊,𝒎)
+

																																							
(𝒙𝒊%𝒙)𝑷(𝒊,𝟏)(𝒊,𝟐)….(𝒊,𝒎)

(𝒙𝒊%𝒙𝒊,𝒎)
	            (9) 

3 IMPLEMENTATION OF INTERPOLATION 
METHODS 

In the present work, all the above-mentioned methods of 
interpolation in simulation as well as in experimentation were 
implemented in FPGA and LabVIEW environment. The initial 
finding of this research was that as the number of interpolation 
points increased, fitting accuracy likewise increased, reducing 
the error [3]. The 3-point interpolation is employed for 
comparison.  

3.1 FPGA Implementation 
Due to its adaptability and programmability, FPGAs 

have many uses in electronics engineering. FPGA can do 
addition, subtraction, multiplication, and division operations in 
real-time mode [4]. Fixed point operations are used by the 
FPGA in the current task, so it is necessary to determine the best 
bit size to use for each operation in order to prevent overflows 
that could result in inaccurate measurement. Fixed point 
operations, which allow for customized bit sizes of data for 
various mathematical operations, speed up execution, but the 
output may become saturated if the bit size is not chosen 
properly or the high and low values are not taken into account. 
Furthermore, if the resolution is less than required, the output 
accuracy may suffer and may give erratic values. 

In the present work, National Instruments (NI) 
USB6343 and A3PE1500 FPGA with 1.5 Million gates are 
used. The code for FPGA implementation should be designed 
to use minimum resources as resources are limited. Also, the 
timing constraints need to be considered. The base clock is 
designed to work at 40MHz. Any mathematical operation that 
cannot be performed within the time frame of this clock speed 
has to be treated under a special case of single cycle timed loops 
with a reduced clock speed. In the above-mentioned algorithms, 
a reduced clock rate was used wherever necessary. The resource 
utilization summary for various algorithms on FPGA is given 
in upcoming sections. 

3.2 Experimental Setup & Validation 
The experimental setting that was utilized to evaluate 

the effectiveness of the piecewise interpolation algorithms that 
were implemented is described in depth in this section. Figure 
3 displays the block schematic for the experimental setup. The 
same number of samples and interpolation order were taken into 
consideration to give a consistent platform for comparison 
when assessing the effectiveness of different interpolating 
methods based on fitting accuracy.  

 

 
 

Figure 3. Experimental scheme for RE and MSE measurement 

The gaussian pulse shown in Figure 4 is generated 
using the arbitrary waveform generator facility in the function 
generator. The Gaussian pulse form the function generator is 
sampled using 12-bit analog to digital converter AD7492 with 
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2.5V reference and 1 MHz sampling rate. The digital data is 
given to FPGA for interpolation. The required logic to generate 
control signal, acquire data from ADC and interpolation 
technique is implemented in FPGA. Three-point interpolation 
is carried out for each technique. Interpolated data from the 
FPGA is given to computer using National instrument (NI) 
make data acquisition module. In computer the LabVIEW code 
is written to find the peak (maximum) value from the sample 
data and the errors are estimated from the sample data. Each 
interpolation technique discussed in earlier section is 
implemented in FPGA separately. The errors are estimated 
using LabVIEW code and data is stored in computer for post 
analysis.  

 

 
Figure 4. Waveform obtained using an oscilloscope showing gaussian pulse 
from function generator output (dark blue) and convert start pulse for 
ADC from FPGA (light blue).  

 The equation for relative error is listed below (11) where the 
peak-actual is ideal 12-bit data corresponds to 1V and peak-
measured is peak value measured after interpolation which is 
taken from LabVIEW code. The fitting accuracy is accessed by 
MSE (12) and Mean Absolute Deviation MAD (13) (Sonowal 
& Bhuyan, 2013). The relative error is calculated for thousand 
pulse data. 

𝑷𝒆𝒂𝒌𝒂𝒄𝒕𝒖𝒂𝒍	𝒇𝒐𝒓	𝟏𝑽	𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆	𝒑𝒖𝒍𝒔𝒆

=
𝟒𝟎𝟗𝟔		(𝟏𝟐 − 𝒃𝒊𝒕)
𝟐𝟓𝟎𝟎		(𝟐. 𝟓𝑽	𝒓𝒆𝒇) 	𝒙	𝟏𝟎𝟎𝟎 

																																																																									= 𝟏𝟔𝟑𝟖. 𝟒                 
 (1) 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆	𝒆𝒓𝒓𝒐𝒓 = 𝑷𝒆𝒂𝒌	𝒂𝒄𝒕𝒖𝒂𝒍%𝑷𝒆𝒂𝒌	𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒅
𝑷𝒆𝒂𝒌	𝒂𝒄𝒕𝒖𝒂𝒍

   

 (2) 

𝑴𝑺𝑬 =	∑ (𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆	𝑬𝒓𝒓𝒐𝒓)𝟐𝒏
𝟏

𝒏
           (3)  

𝑴𝑨𝑫 =	∑ |𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆	𝑬𝒓𝒓𝒐𝒓|𝒏
𝟏

𝒏
           (4) 

The mean square error and mean absolute deviation are 
calculated using relative error as shown in equation (12) and 
(13) [3]. where, the value of n is 1000. The relative error (RE) 
is calculated for thousand samples for various interpolation 
techniques and shown in Figure 5. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
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(f) 
Figure 5. Relative error (MSE) values for different interpolation method 
for 1000 sample data. 

From Figure 5 it is observed that the relative error is highest 
for near and linear interpolation and it is less for Lagrange’s and 
Newton raphson interpolation.  The relative error for near and 
linear interpolation is same because in these technieues the 
derived intermidiate points are always less than the actual 
points in case of peak measurement. Because RE is same, the 
value of  MSE and MAD are also same for Near and Linear 
interpolation. The RE value for cubic interpolation is more than 
the Neville’s and Whittaker shannon interpolation technique.  

 

 
Figure 6. Mean square error (MSE) values for different interpolation 
method for 1000 sample data 

 
Figure 7. Mean absolute deviation (MAD) values for different interpolation 
method for 1000 sample data 

From the Figure 6 and Figure 7 data, it is observed that 
the MSE and MAD is lowest for the Lagrange’s and Newton 
Raphson methods. MSE is 2.34 x 10-6 and MAD is 13 x 10-4 for 
Lagrange’s interpolation method. MSE is 2.16 x 10-6 and MAD 
is 12 x 10-4 for Newton Raphson interpolation method which 
are very close to Lagrange’s interpolation method.  
 

 
 

Figure 8: Combinational cell utilization of A3PE1500 FPGA for different 
interpolation algorithm 

 

 
 
Figure 9: Sequential cell utilization of A3PE1500 FPGA for different 
interpolation algorithm 

In terms of FPGA utilization as shown in Figure 8 and 
Figure 9, Neville's Algorithm and newton Raphson 
interpolation requires highest number of logic cells and the 
nearest interpolation method require lowest number of logic 
cells because the function is less complex. The hardware 
utilization is more for newton Raphson method compared to 
Lagrange’s method.  
 

4 CONCLUSION 
This paper compares seven interpolation techniques for 
measuring the peak height of analogue pulses: Near, Linear, 
Cubic, LaGrange's, Newton Raphson, Whittaker Shannon, and 
Neville's. Performance compression has been done based on 
hardware resource usage, Mean Square Error (MSE), and Mean 
Absolute Deviation (MAD). MSE on FPGA for Near, Linear, 
Cubic, LaGrange's, Newton Raphson, Whittaker Shannon, and 
Neville's interpolation methods were determined to be 34.3 x 
10-6, 34.3 x 10-6, 11.59 x 10-6, 2.34 x 10-6, 2.16 x 10-6, 5.95 x 10-

6, and 6.47 x 10-6 per thousand equal amplitude gaussian 
samples investigated. It was observed that the nearest 
interpolation uses minimum hardware, Neville's Algorithm and 
newton Raphson interpolation uses maximum resources and 
Lagrange’s method uses moderate hardware resources. 
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