
 1

Arpit Patel, Bhumi Patel

Arpit Patel is with the Physical Research Laboratory, Ahmedabad 380009, Gujarat, India (corresponding author phone: 07926314927; e-mail: arpitp@prl.res.in).
Bhumi Patel is with the Electronics and Communication department, L J University, Ahmedabad 382210, Gujarat, India (e-mail:

bhumi.patel@ljinstitutes.edu.in).

ABSTRACT
Pulse amplitude measurement for the analog signal is now widely used in applications like spectroscopy, IR / laser receiver, RF
signal receiver, etc. Accurate Amplitude measurement requires a high-speed analog to digital converter which consumes high
power. In this paper we are aiming to detect analog pulse amplitude with low sampling ADC and interpolation method. The
comparative study of seven interpolating methods namely Near interpolation, Linear interpolation, Cubic interpolation, LaGrange’s
interpolation, Newton Raphson interpolation, Whittaker Shannon interpolation and Neville’s algorithm were conducted for
measurement of analog pulse peak height. The interpolation method is selected based on the relative error, mean square error and
mean absolute deviation. The performance of each method and the overall system is discussed in this paper.

Keywords:
Interpolation, Relative error, Mean-square error, ADC, Mean absolute deviation, FPGA

1 INTRODUCTION
Many applications require measurements using an

analog-to-digital converter (ADC) to convert the analog input
information in to the digital form. Such applications will have
resolution requirements based on the dynamic range of the
signal, the minimum measurable change in a parameter, and the
signal-to-noise ratio (SNR). Many systems use a better
resolution off-chip ADC as a result. However, the cost of the
ADC increases with the level of desired accuracy. By creating
hardware to quantize the analog signal amplitude into the digital
signal with a longer code-word length, better ADC accuracy
can be attained. Word lengths in practical ADCs are limited.
Higher conversion accuracy is attained by calculating
additional samples in order to efficiently strike a balance
between system cost and accuracy. Analyzing the input signal
is necessary in order to improve the required ADC resolution.
Digital interpolation methods can be used to increase the
resolution of digital data. Through an FPGA, the digital signal
can be processed. This technique, which processes samples and
increases the 12-bit ADC conversion's accuracy by extra bits, is
examined in this study. As the work's application, peak height
detection is used. The function generator's gaussian pulse is
delivered to the ADC for sampling before the data is sent to the
FPGA for interpolation. The interpolation will be implemented
by FPGA, which will use the interpolated data to determine the
maximum sample value. To obtain data from the FPGA and
display it on the computer screen with the necessary graphs and
numbers, a national instrument brand called NI DAQ is
employed.

2 INTERPOLATION TECHNIQUES
With the help of a few precise sample data points,

interpolation can be used to estimate the unknown values of a
nonlinear or linear function. Theoretically, more data points are
needed for better fitting accuracy. However, it is not practical
to evaluate ideas based on big data sets due to the constraints of
the difficulties of hardware computing. The initial objective of
the problem at hand is to sample the input pulse into uniformly
spaced data points. Any of the following interpolation
techniques can be used to determine the analog pulse's unknown
peak value.

2.1 Nearest neighbor Interpolation

The simplest interpolation technique is nearest
neighbor interpolation. The value of the interpolated function f
at coordinate X for given the samples F(k) as follows:

𝒇(𝒙) = 𝑭 '|𝒙 + 𝟏
𝟐
|* (1)

The closest sample point to x is simply chosen. The greatest
integer value that is less than or equal to x in this case is called
the floor function [x]. This results in an interpolated function
that looks like a staircase. The real axis as a whole is where the
function f(x) is defined, although it is neither continuous (since
it contains jumps) nor differentiable. Consider the function
f(x)=sin(x) and its interpolated nearest neighbor version in
Figure 1 as an illustration.

Pulse amplitude measurement using low
sampling ADC and interpolation technique

https://doi.org/10.32388/UFBEFX

 2

Figure 1. In green the continuous function f(x) = sin(x), in red the sampled
function and in blue the nearest interpolated function.

2.2 Linear Interpolation
The simplest technique for determining the value of a

function between any two known values is the linear
interpolation formula. A technique for fitting curves with linear
polynomials is the linear interpolation formula. In essence, the
interpolation method uses the collection of values to find new
values for any function. The linear interpolation formula is used
to determine the unknown values in the table. In this section,
let's study more about the linear interpolation formula. Data
forecasting, data prediction, mathematical and scientific
applications, market research, etc. all employ the linear
interpolation algorithm. The unknown values in the table can be
found using the linear interpolation formula. The linear
interpolation formula is as follows:

													𝒚 = 𝒚𝟏 + (𝒙 − 𝒙𝟏)
(𝒚𝟐%𝒚𝟏)
(𝒙𝟐%𝒙𝟏)

 (2)

where,
• 𝑥# and 𝑦# are the first coordinates
• 𝑥$ and 𝑦$	are the second coordinates
• 𝑥 is the point to perform the interpolation
• 𝑦 is the interpolated value

Figure 2. In green the continuous function f(x)= sin (x), in red the sampled
function and in blue the linear interpolated function.

Despite being a straightforward interpolation
technique, linear interpolation is frequently employed in
practice. It is quick and easy to put into practice.

2.3 Lagrange’s interpolation
The Lagrange interpolation formula can be used to

locate a polynomial known as a Lagrange polynomial that
assumes certain values at every location. Lagrange's
interpolation is an approximation to f(x) using a Nth degree
polynomial. There is a single polynomial P with real
coefficients that, given n different real values X1, X2,..., Xn and
n real values Y1, Y2,..., Yn (not necessarily distinct), fulfils
P(Xi)=Yi for I ∈ 1, 2,..., n and has deg(P) < n. The following is
the Lagrange interpolation formula for various orders of
polynomials:

𝒚 = 𝒇(𝒙) = (𝒙%𝒙𝟏)(𝒙%𝒙𝟐)…(𝒙%𝒙𝒏)
(𝒙𝟎%𝒙𝟏)(𝒙𝟎%𝒙𝟐)…(𝒙𝟎%𝒙𝒏)

𝒚𝟎 +

																							 (𝒙%𝒙𝟎)(𝒙%𝒙𝟐)…(𝒙%𝒙𝒏)
(𝒙𝟏%𝒙𝟎)(𝒙𝟏%𝒙𝟐)…(𝒙𝟏%𝒙𝒏)

𝒚𝟏 +⋯+

																								 (𝒙%𝒙𝟎)(𝒙%𝒙𝟏)…(𝒙%𝒙𝒏(𝟏)
(𝒙𝒏%𝒙𝟎)(𝒙𝒏%𝒙𝟏)…(𝒙𝒏%𝒙𝒏(𝟏)

𝒚𝒏 (3)

2.4 Newton Raphson Interpolation

The Newton-Raphson approach, commonly referred
to as Newton's method, is a rapid way to approximate the real-
valued root function f(x)=0. It makes use of the idea that a
straight line parallel to a continuous, differentiable function can
serve as a rough approximation. A continuous, differentiable
function f(x) needs to have a root, and you know the root you're
seeking for is close to the point x = x0. Then, according to
Newton's approach, a more accurate approximation for the root
is

 𝒙𝟏 = 𝒙𝟎 −
𝒇(𝒙𝟎)
𝒇,(𝒙𝟎)

 (4)

This process may be repeated as many times as necessary to get
the desired accuracy. In general, for any x-value xn, the next
value is given by

 𝒙(𝒏-𝟏) = 𝒙𝒏 −
𝒇(𝒙𝒏)
𝒇,(𝒙𝒏)

 (5)

2.5 Cubic interpolation
Only one sample (the closest) is used in nearest

neighbor interpolation to determine the interpolated value [1].
The two nearest sample locations are examined in linear
interpolation (one on the left and one on the right). We examine
two datapoints on the left and two on the right for cubic
interpolation. We fit a cubic polynomial over the range between
x=k and x=k+1 to interpolate [2].

 k ≤ x ≤ k+1:
 	
𝑓(𝑥) = 	𝑎(𝑥)) + 𝑏(𝑥)$ + 𝑐(𝑥) + 𝑑 to the 4-sample
points k−1, k, k+1 and k+2.

For the 4 points we have:

𝐹(𝑘 − 1) = 𝑎(−1)) + 𝑏(−1)$ + 𝑐(−1) + 𝑑

𝐹(𝑘) = 𝑑

 3

𝐹(𝑘 + 1) = 	𝑎(1)) + 𝑏(1)$ + 𝑐(1) + 𝑑

𝑭(𝒌 + 𝟐) = 	𝒂(𝟐)𝟑 + 𝒃(𝟐)𝟐 + 𝒄(𝟐) + 𝒅 (6)

Solving these equations for a, b, c and d we get:

𝑎 = 	
1
6	(−𝐹

(𝑘 − 1) + 3	𝐹(𝑘) − 3𝐹(𝑘 + 1) + 𝐹(𝑘 + 1))

𝑏 =
1
2	(𝐹

(𝑘 − 1) − 2𝐹(𝑘) + 𝐹(𝑘 + 1))

𝑐 =
1
6	<−2𝐹

(𝑘 − 1) − 3𝐹(𝑘)	+ 	6𝐹(𝑘 + 1) − 𝐹(𝑘 + 2)=

𝑑 = 𝐹(𝑘) (7)

2.6 Whittaker–Shannon interpolation
The Whittaker–Shannon interpolation formula or sinc

interpolation is a method to construct a continuous-time
bandlimited function from a sequence of real numbers. The
process is similar to that of the Lagrange polynomial
interpolation. The key to polynomial interpolation is to identify
a set of component polynomials, each of which traverses a
certain set of provided points. The component polynomials
must also equal zero whenever there is a different point in order
to be able to combine them all into a single polynomial that
traverses the entire set of points. This makes sure that adding
the polynomials together will not cause an interference between
them at the given set of points. In Whittaker-Shannon
interpolation, the components are the sinc function instead of
polynomials. Sinc functions are periodic functions that are as
follows:

𝒔𝒊𝒏𝒄(𝒙) = 	3			
𝟏, 𝒙 = 	𝟎

𝐬𝐢𝐧	(𝒙)
𝒙

, 𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 (8)

2.7 Neville's Algorithm for interpolation
Neville's algorithm is an interpolation algorithm which

proceeds by first fitting a polynomial of degree 0 through the
point (xk, yk) for k=1, ..., n, i.e., Pk(x)=yk. Then, in a subsequent
iteration, Pi and P(i+1) are merged to fit between pairs of points,
resulting in P12, P23, and so forth. Up until the desired outcome
is attained, the method is repeated, creating a "pyramid" of
approximations.

 x1: y1 = P1
P12

x2: y2 = P2 P123
 P23 P1234

x3: y3 = P3 P234
 P34

x4: y4 = P4

The final result is

𝑷𝒊(𝒊-𝟏)….(𝒊-𝒎) =
(𝒙%𝒙𝒊,𝒎)𝑷𝒊(𝒊,𝟏)….(𝒊,𝒎(𝟏)

(𝒙𝒊%𝒙𝒊,𝒎)
+

																																							
(𝒙𝒊%𝒙)𝑷(𝒊,𝟏)(𝒊,𝟐)….(𝒊,𝒎)

(𝒙𝒊%𝒙𝒊,𝒎)
	 (9)

3 IMPLEMENTATION OF INTERPOLATION
METHODS

In the present work, all the above-mentioned methods of
interpolation in simulation as well as in experimentation were
implemented in FPGA and LabVIEW environment. The initial
finding of this research was that as the number of interpolation
points increased, fitting accuracy likewise increased, reducing
the error [3]. The 3-point interpolation is employed for
comparison.

3.1 FPGA Implementation
Due to its adaptability and programmability, FPGAs

have many uses in electronics engineering. FPGA can do
addition, subtraction, multiplication, and division operations in
real-time mode [4]. Fixed point operations are used by the
FPGA in the current task, so it is necessary to determine the best
bit size to use for each operation in order to prevent overflows
that could result in inaccurate measurement. Fixed point
operations, which allow for customized bit sizes of data for
various mathematical operations, speed up execution, but the
output may become saturated if the bit size is not chosen
properly or the high and low values are not taken into account.
Furthermore, if the resolution is less than required, the output
accuracy may suffer and may give erratic values.

In the present work, National Instruments (NI)
USB6343 and A3PE1500 FPGA with 1.5 Million gates are
used. The code for FPGA implementation should be designed
to use minimum resources as resources are limited. Also, the
timing constraints need to be considered. The base clock is
designed to work at 40MHz. Any mathematical operation that
cannot be performed within the time frame of this clock speed
has to be treated under a special case of single cycle timed loops
with a reduced clock speed. In the above-mentioned algorithms,
a reduced clock rate was used wherever necessary. The resource
utilization summary for various algorithms on FPGA is given
in upcoming sections.

3.2 Experimental Setup & Validation
The experimental setting that was utilized to evaluate

the effectiveness of the piecewise interpolation algorithms that
were implemented is described in depth in this section. Figure
3 displays the block schematic for the experimental setup. The
same number of samples and interpolation order were taken into
consideration to give a consistent platform for comparison
when assessing the effectiveness of different interpolating
methods based on fitting accuracy.

Figure 3. Experimental scheme for RE and MSE measurement

The gaussian pulse shown in Figure 4 is generated
using the arbitrary waveform generator facility in the function
generator. The Gaussian pulse form the function generator is
sampled using 12-bit analog to digital converter AD7492 with

 4

2.5V reference and 1 MHz sampling rate. The digital data is
given to FPGA for interpolation. The required logic to generate
control signal, acquire data from ADC and interpolation
technique is implemented in FPGA. Three-point interpolation
is carried out for each technique. Interpolated data from the
FPGA is given to computer using National instrument (NI)
make data acquisition module. In computer the LabVIEW code
is written to find the peak (maximum) value from the sample
data and the errors are estimated from the sample data. Each
interpolation technique discussed in earlier section is
implemented in FPGA separately. The errors are estimated
using LabVIEW code and data is stored in computer for post
analysis.

Figure 4. Waveform obtained using an oscilloscope showing gaussian pulse
from function generator output (dark blue) and convert start pulse for
ADC from FPGA (light blue).

 The equation for relative error is listed below (11) where the
peak-actual is ideal 12-bit data corresponds to 1V and peak-
measured is peak value measured after interpolation which is
taken from LabVIEW code. The fitting accuracy is accessed by
MSE (12) and Mean Absolute Deviation MAD (13) (Sonowal
& Bhuyan, 2013). The relative error is calculated for thousand
pulse data.

𝑷𝒆𝒂𝒌𝒂𝒄𝒕𝒖𝒂𝒍	𝒇𝒐𝒓	𝟏𝑽	𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆	𝒑𝒖𝒍𝒔𝒆

=
𝟒𝟎𝟗𝟔		(𝟏𝟐 − 𝒃𝒊𝒕)
𝟐𝟓𝟎𝟎		(𝟐. 𝟓𝑽	𝒓𝒆𝒇) 	𝒙	𝟏𝟎𝟎𝟎

																																																																									= 𝟏𝟔𝟑𝟖. 𝟒
 (1)

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆	𝒆𝒓𝒓𝒐𝒓 = 𝑷𝒆𝒂𝒌	𝒂𝒄𝒕𝒖𝒂𝒍%𝑷𝒆𝒂𝒌	𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒅
𝑷𝒆𝒂𝒌	𝒂𝒄𝒕𝒖𝒂𝒍

 (2)

𝑴𝑺𝑬 =	∑ (𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆	𝑬𝒓𝒓𝒐𝒓)𝟐𝒏
𝟏

𝒏
 (3)

𝑴𝑨𝑫 =	∑ |𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆	𝑬𝒓𝒓𝒐𝒓|𝒏
𝟏

𝒏
 (4)

The mean square error and mean absolute deviation are
calculated using relative error as shown in equation (12) and
(13) [3]. where, the value of n is 1000. The relative error (RE)
is calculated for thousand samples for various interpolation
techniques and shown in Figure 5.

(a)

(b)

(c)

(d)

(e)

 5

(f)
Figure 5. Relative error (MSE) values for different interpolation method
for 1000 sample data.

From Figure 5 it is observed that the relative error is highest
for near and linear interpolation and it is less for Lagrange’s and
Newton raphson interpolation. The relative error for near and
linear interpolation is same because in these technieues the
derived intermidiate points are always less than the actual
points in case of peak measurement. Because RE is same, the
value of MSE and MAD are also same for Near and Linear
interpolation. The RE value for cubic interpolation is more than
the Neville’s and Whittaker shannon interpolation technique.

Figure 6. Mean square error (MSE) values for different interpolation
method for 1000 sample data

Figure 7. Mean absolute deviation (MAD) values for different interpolation
method for 1000 sample data

From the Figure 6 and Figure 7 data, it is observed that
the MSE and MAD is lowest for the Lagrange’s and Newton
Raphson methods. MSE is 2.34 x 10-6 and MAD is 13 x 10-4 for
Lagrange’s interpolation method. MSE is 2.16 x 10-6 and MAD
is 12 x 10-4 for Newton Raphson interpolation method which
are very close to Lagrange’s interpolation method.

Figure 8: Combinational cell utilization of A3PE1500 FPGA for different
interpolation algorithm

Figure 9: Sequential cell utilization of A3PE1500 FPGA for different
interpolation algorithm

In terms of FPGA utilization as shown in Figure 8 and
Figure 9, Neville's Algorithm and newton Raphson
interpolation requires highest number of logic cells and the
nearest interpolation method require lowest number of logic
cells because the function is less complex. The hardware
utilization is more for newton Raphson method compared to
Lagrange’s method.

4 CONCLUSION
This paper compares seven interpolation techniques for
measuring the peak height of analogue pulses: Near, Linear,
Cubic, LaGrange's, Newton Raphson, Whittaker Shannon, and
Neville's. Performance compression has been done based on
hardware resource usage, Mean Square Error (MSE), and Mean
Absolute Deviation (MAD). MSE on FPGA for Near, Linear,
Cubic, LaGrange's, Newton Raphson, Whittaker Shannon, and
Neville's interpolation methods were determined to be 34.3 x
10-6, 34.3 x 10-6, 11.59 x 10-6, 2.34 x 10-6, 2.16 x 10-6, 5.95 x 10-

6, and 6.47 x 10-6 per thousand equal amplitude gaussian
samples investigated. It was observed that the nearest
interpolation uses minimum hardware, Neville's Algorithm and
newton Raphson interpolation uses maximum resources and
Lagrange’s method uses moderate hardware resources.

ACKNOWLEDGMENT
We acknowledge the financial support by the Indian Space
Research Organization, Department of Space, Government of
India. We also thank Dr. Y B acharya for discussions on the
interpolation techniques. This work is a part of the Ph.D. work

 6

of Arpit Patel. Director PRL, Head of Planetary Science
Division, PRL, and Dean DDU, Nadiad are gratefully
acknowledged for constant encouragement during the work.

REFERENCES
[1]		 Bartels,	R.,	Beatty,	J.,	&	et	al.	(1998).	Hermite	and	Cubic	

Spline	 Interpolation.	 An	 Introduction	 to	 Splines	 for	
Use	 in	Computer	Graphics	and	Geometric	Modelling,	
9-17.		

[2]		 H.	 Press,	 W.,	 P.	 Flannery,	 B.,	 A.	 Teukolsky,	 S.,	 &	 T.	
Vetterling,	 W.	 (1992).	 Cubic	 Spline	 Interpolation.	

Numerical	Recipes	in	FORTRAN:	The	Art	of	Scientific	
Computing,	107-110.	

[3]	 Sonowal,	 D.,	 &	 Bhuyan,	 M.	 (2013).	 Linearizing	
Thermistor	 Characteristics	 by	 Piecewise	 Linear	
Interpolation	 in	 Real	 Time	 FPGA.	 Inter-national	
Conference	 on	 Advances	 in	 Computing	
Communications	 and	 Informatics	 (ICACCI)	 IEEE,	
1976-1980.	

[4]		 Nenova,	Z.,	&	Nenov,	T.	(2009).	Linearization	circuit	of	
the	 thermistor	 connection.	 IEEE	 Transactions	 on	
Instrumentation	and	Measurement,	58(2),	441-449.		

