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Abstract

The critical strip of the Riemann ζ(z) is transformed into a crescent-
like lunula and the critical line into the unit circle by a conformal trans-
formation. In the new extended complex plane, the argument principle is
used to show that there are no zeroes outside of the unit circle, thus prov-
ing that there are no zeroes in the right half of the strip, 1/2 < Re(z) < 1.
This constitutes a truly elementary proof of the Riemann Hypothesis.

1 Introduction

The Riemann hypothesis states that all non-trivial zeroes of the ζ(z) function
lie on the Re(z) = 1/2 critical line. This conjecture is an unsolved problem
that has enormous consequences in many different fields, from number theory
to cryptography[1, 2]. In particular, it is of great significance for the distribution
of prime numbers and the prime number theorem. It is already well-known that
most zeroes lie on the critical line, but their presence or absence from the region
0 < Re(z) < 1 is still under scrutiny. In this paper it is shown that there are
no zeroes in the right half of the strip, i.e. for 1/2 < Re(z) < 1. This fact,
combined with the symmetry of the zeroes about the critical line, insures that,
if any nontrivial zero exists, it must lie on the vertical critical line.

2 The lunula

The complex plane z = x+ iy is transformed into the w-plane, with w = u+ iv,
see Fig.1, by the following invertible conformal bilinear fractional transforma-
tion, that is also a Möbius transformation, T : z → w/

w =
z + 1

2− z
, z =

2w − 1

w + 1
(1)
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Figure 1: Left: z-plane, z = x + iy with critical strip in gray, dashed black
critical line x = 1/2, simple pole at z = {1, 0} in red, trivial and critical zeroes
as black dots. Right: transformed w-plane, w = u+ iv with the critical lunula
in gray, dashed black critical line, simple pole at w = {2, 0} in red, trivial and
critical zeroes as black dots.

that maps lines to circles. The Riemann ζ function, in the new plane, is mapped
onto a new function T (ζ(z)) → ϑ(w) such that:

ϑ(w) = ζ(z) = ζ

(
2w − 1

1 + w

)
. (2)

The simple pole at z = {1, 0} is transformed into w = {2, 0}, the critical strip
is bent into a lunula, a concave-convex crescent-like figure. The critical line
x = 1/2 is mapped into the circumference of the unit circle. The trivial zeroes,
that are found at z = {−2n, 0} are mapped into w = { 1−2n

2+2n , 0}, while the
critical zeroes on the critical line are squeezed onto the corresponding points on
the circumference, the first being located at an angle ±167◦.885 with respect
to the positive u-axis. As Hardy proved [3], there are infinitely many of them.
The black dots in the right panel of Fig. (1) are disconnected, but they are so
close to form a hammer-shaped black figure.

The point w = {−1, 0} is very remarkable as it is at the same time an
accumulation point for trivial zeroes and an essential singularity. A theorem
states [4] that, for an analytic function on a simply connected domain, when
we have a sequence of zeroes converging to a limiting (or accumulation) point,
then the function in that point is either vanishing identically or it is an essential
singularity. It is obviously an accumulation point for trivial zeroes, because the
formula above insures that these zeroes become denser and denser as n grows,
approaching the point. If we now consider the Riemann sphere, i.e. the {x, y}
complex plane augmented with complex infinity, we have that the Riemann ζ
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Figure 2: Left: Modulus of the theta function, |ϑ(w)|, in the w-plane, showing
the pole in {2, 0} and the essential singularity in {−1, 0}. A circular path with
radius r = 3 is shown in blue. Right: close up of the complex plot of the
ϑ function near {−1, 0}. The trivial zeroes are visible as black dots on the
arc, surrounded by a 2πi change in argument (rainbow). The internal region
reaches all possible values and the argument winds more and more often as one
approaches the essential singularity.

has an essential singularity at∞C that is mapped onto the point {−1, 0}. On the
w-plane the limits limw→−1 θ(w) and limw→−1 1/θ(w) are both indeterminate,
therefore the point {−1, 0} is also an essential singularity. To see the behaviour
of the function at these points, we can plot the modulus of the ζ function in
the w-plane as in Fig. 2. It is cut at some finite height, and, on the left side,

one sees a hint of the fact that limw−>∞C θ(w) → π2

6 ≃ 1.645. One recovers
the same constant on all sides, also on the right side, after the pole. The other
part of the figure shows the complex plot, i.e. the plot of the argument of θ in
the corner close to {−1, 0}. The rainbow colors appear whenever the argument
winds by 2πi, around zeroes. According to the Great Picard’s theorem, any
punctured neighborhood of an essential singularity attains all possible complex
values infinitely often, with at most one exception. That’s why the complex
plot shows an intricate pattern close to the singularity.
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3 Choudury’s formula and the argument princi-
ple

B.K. Choudury gave a formula (to be found in Ref. [5], unnumbered, just before
Eq. 8) for the logarithmic derivative of the Riemann zeta-function :

ζ ′(z)

ζ(z)
=

1

1− z
+ γ −

∞∑
n=1

Ān(z − 1)n (3)

where γ is the Euler-Mascheroni constant and the coefficients An and Ān are
connected to the Stieltjes’ constants γn by:

Ān = −(n+ 1)An −
n−1∑
k=0

AkĀn−k−1 ; Ā0 = −γ; An = (−1)nγn/n! (4)

This is exact, but slowly converging. Since the formula is given in [5] without
proof, we give one in the Appendix. The corresponding formula in the w-plane
reads

f(w) = γ +
1 + w

2− w
−

∞∑
n=1

Ān

(
w − 2

1 + w

)n

(5)

In order to apply Cauchy’s argument principle (See Ref. [6], Ch. 11 or Ref.
[7], Ch.5), we will need to evaluate the logarithmic derivative:

ϑ′(w)

ϑ(w)
=

ζ ′( 2w−1
w+1 )

ζ( 2w−1
w+1 )

3

(w + 1)2
(6)

where the last term is the derivative of the argument, or dz/dw. This approach
works, and indeed this can be shown either numerically or by using the argument
principle on small circular paths around the isolated zeroes or the pole.

Now we want to apply the argument principle in the w-plane to the ϑ
function, anticlockwise along circles C of radius R centered around the origin,
i.e. along Reiω:

1

2πi

∮
C

ϑ′(w)

ϑ(w)
dw =

1

2πi

∮
C

f(w)
3

(1 + w)2
dw = N − P (7)

that is connected to the number of zeroes (N) and the number of poles (P )
inside the path in a anticlockwise manner, or, that is the same because ϑ is
analytic on circles far away from the origin, on the number of zeroes and poles
outside of it, if run across clockwisely. This is illustrated in Fig. 3. On the
surface of the Riemann sphere, inside and outside loose their meaning and the
argument principle is valid on the simply connected portion of the sphere, where
circles are contractible to a point. Our function is analytic on the “outside” of
the path C, with the exception of a finite number of points, actually only the
pole at w = 2 in this case.
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Figure 3: Integration path C (circumference with R > 1) in the w-plane in
orange.

Now, by plugging in the definition of f from Eq.(5) into Eq.(7), it is easy to
see that the first term (γ) evaluates to zero by the residue theorem,

1

2πi

∮
C

γ
3

(1 + w)2︸ ︷︷ ︸
fγ

dw = Res(fγ ,−1) = 0 (8)

The second term gives a residue of 1 if the circle does not encompass the simple
pole at w = 2 and goes to zero when the circle is larger, because it takes in the
residue at w = 2:

1

2πi

∮
C

(1 + w)

(2− w)

3

(1 + w)2︸ ︷︷ ︸
ff

dw =

{
Res(ff ,−1) = 1 if 1 < R < 2
Res(ff ,−1) +Res(ff , 2) = 0 if R > 2

(9)
The third term gives a null residue, ∀n > 0, because the Laurent series

expansion around w = −1 of each term of the type

3
(2− w)n

(1 + w)n+2
(10)

always starts from the term (1+w)−2, therefore the residue, i.e. the coefficient
of the term (1 + w)−1 is always 0. Thus, since the sum

N − P =

{
1 if 1 < R < 2
0 if R > 2

(11)
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the difference is a constant on all circles of radius R larger then 1. Here the value
N−P = 1 is not counting the essential singularity and the infinity of trivial and
nontrivial zeroes of the hammer shape, but rather is counting only the single
pole outside of the circle, changed in sign because of the equivalence between the
inside counted anticlockwise and the outside counted clockwise. There cannot
be other zeroes in this region or the argument principle would count them when
R → 1. We have just proven that there are no zeroes in the annular region that
goes from the black dashed circle in Fig. 1 to the circle touching w = 2, see Fig.
3. But that region comprises the whole outer part of the lunula that maps back
to the right half of the critical strip, therefore we have just proven that there
are no zeroes of the Riemann ζ function for 1/2 < Re(z) < 1. This is a big step
forward with respect to any estimate found so far (See [8, 9]).

Now, if a zero cannot exist in this region, because of the symmetry estab-
lished by the functional relation between ζ(z) and ζ(1 − z), this implies that
there cannot be zeroes also on the left part of the strip, i.e. for 0 < Re(z) < 1/2.
The only place left is the critical line itself, as Riemann conjectured back in 1859.
The present approach constitutes a truly elementary proof of the Riemann Hy-
pothesis.
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A Appendix: Derivation of Choudury’s formula

Since the original reference [5] does not give a proof for the Choudury formula,
and since there was a typo in the Eq.(4) of the previous version of this paper,
we give a simple derivation here, starting from the Laurent series expansion of
the Riemann ζ:

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)n
γn
n!︸ ︷︷ ︸

An

(s− 1)n (12)

where γn are the Steltjes constants, the first γ0 = γ being the Euler-Mascheroni
constant. We have also indicated the An costants, cfr. eq. (4).

The first derivative of the ζ is thus:

ζ ′(s) =
−1

(s− 1)2
+

∞∑
n=0

An n(s− 1)n−1 (13)

The inverse of Eq.(12) can be written as

1

ζ(s)
=

(s− 1)

1 +
∑∞

n=0 An(s− 1)n+1
= (14)

= (s− 1)
(
1−

∞∑
n=0

An(s− 1)n+1 +
( ∞∑
n=0

An(s− 1)n+1
)2

− · · ·
)

(15)

where the formal expansion (1+x)α =
∑∞

k=0

(
α
k

)
xk with α = −1 has been used.

Now, the logarithmic derivative is the product of Eqs. (13) and Eqs. (15)
above:

ζ ′(s)

ζ(s)
=

(
1

(1− s)
+

∞∑
n=0

Ann(s−1)n

)(
1−

∞∑
n=0

An(s−1)n+1+
( ∞∑
n=0

An(s−1)n+1
)2

−· · ·

)
(16)

Note that the first sum, might start from 1. It is quite complicated to account
for all powers of the infinite sums appearing in the second parenthesis, but the
first few powers of the expansion are:

ζ ′(s)

ζ(s)
=

1

(1− s)
+A0 + (2A1 −A2

0)(s− 1) + (A3
0 − 3A0A1 + 3A2)(s− 1)2

+(−A4
0 + 4A2

0A1 − 2A2
1 − 4A0A2 + 4A3)(s− 1)3 + · · · (17)

that coincide with coefficients given in the text, mind the signs.
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Differences with respect to Ver.1

• a line appended to abstract and conclusions.

• sentence mentioning the prime number theorem added in intro

• a couple of references added in the intro

• typo in Eq.(4) corrected: in the sum AkĀn−k−1 as in Ref. 4

• the sentence “from Eq.(5) into Eq.(7)” has been added just before Eq.(8)

• Appendix with derivation of Choudury’s formula added

• reference to standard textbooks added (Arfken, Ahlfors)

• figure 3 added, with caption and description in Sect. 3

• this list of changes added
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