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Abstract

The critical strip of the Riemann ζ(z) is transformed into a crescent-
like lunula and the critical line into the unit circle by a conformal trans-
formation. In the new extended complex plane, the argument principle is
used to show that there are no zeroes outside of the unit circle, thus prov-
ing that there are no zeroes in the right half of the strip, 1/2 < Re(z) < 1.

1 Introduction

The Riemann hypothesis states that all non-trivial zeroes of the ζ(z) function lie
on the Re(z) = 1/2 critical line. This is an unsolved problem that has enormous
consequences in many different fields, from number theory to cryptography[1]. It
is already well-known that most zeroes lie on the critical line, but their presence
or absence from the region 0 < Re(z) < 1 is still under scrutiny. In this
paper it is shown that there are no zeroes in the right half of the strip, i.e. for
1/2 < Re(z) < 1. This fact, combined with the symmetry of the zeroes about
the critical line, insures that, if any nontrivial zero exists, it must lie on the
vertical critical line.

2 The lunula

The complex plane z = x+ iy is transformed into the w-plane, with w = u+ iv,
see Fig.1, by the following invertible conformal bilinear fractional transforma-
tion, that is also a Möbius transformation, T : z → w/

w =
z + 1

2− z
, z =

2w − 1

w + 1
(1)

that maps lines to circles. The Riemann ζ function, in the new plane, is mapped
onto a new function T (ζ(z)) → ϑ(w) such that:

ϑ(w) = ζ(z) = ζ

(
2w − 1

1 + w

)
. (2)
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Figure 1: Left: z-plane, z = x + iy with critical strip in gray, dashed black
critical line x = 1/2, simple pole at z = {1, 0} in red, trivial and critical zeroes
as black dots. Right: transformed w-plane, w = u+ iv with the critical lunula
in gray, dashed black critical line, simple pole at w = {2, 0} in red, trivial and
critical zeroes as black dots.

The simple pole at z = {1, 0} is transformed into w = {2, 0}, the critical strip
is bent into a lunula, a concave-convex crescent-like figure. The critical line
x = 1/2 is mapped into the circumference of the unit circle. The trivial zeroes,
that are found at z = {−2n, 0} are mapped into w = { 1−2n

2+2n , 0}, while the
critical zeroes on the critical line are squeezed onto the corresponding points on
the circumference, the first being located at an angle ±167◦.885 with respect
to the positive u-axis. As Hardy proved [2], there are infinitely many of them.
The black dots in the right panel of Fig. (1) are disconnected, but they are so
close to form a hammer-shaped black figure.

The point w = {−1, 0} is very remarkable as it is at the same time an
accumulation point for trivial zeroes and an essential singularity. A theorem
states [3] that, for an analytic function on a simply connected domain, when
we have a sequence of zeroes converging to a limiting (or accumulation) point,
then the function in that point is either vanishing identically or it is an essential
singularity. It is obviously an accumulation point for trivial zeroes, because the
formula above insures that these zeroes become denser and denser as n grows,
approaching the point. If we now consider the Riemann sphere, i.e. the {x, y}
complex plane augmented with complex infinity, we have that the Riemann ζ
has an essential singularity at∞C that is mapped onto the point {−1, 0}. On the
w-plane the limits limw→−1 θ(w) and limw→−1 1/θ(w) are both indeterminate,
therefore the point {−1, 0} is also an essential singularity. To see the behaviour
of the function at these points, we can plot the modulus of the ζ function in
the w-plane as in Fig. 2. It is cut at some finite height, and, on the left side,

2



Figure 2: Left: Modulus of the theta function, |ϑ(w)|, in the w-plane, showing
the pole in {2, 0} and the essential singularity in {−1, 0}. A circular path with
radius r = 3 is shown in blue. Right: close up of the complex plot of the
ϑ function near {−1, 0}. The trivial zeroes are visible as black dots on the
arc, surrounded by a 2πi change in argument (rainbow). The internal region
reaches all possible values and the argument winds more and more often as one
approaches the essential singularity.

one sees a hint of the fact that limw−>∞C θ(w) → π2

6 ≃ 1.645. One recovers
the same constant on all sides, also on the right side, after the pole. The other
part of the figure shows the complex plot, i.e. the plot of the argument of θ in
the corner close to {−1, 0}. The rainbow colors appear whenever the argument
winds by 2πi, around zeroes. According to the Great Picard’s theorem, any
punctured neighborhood of an essential singularity attains all possible complex
values infinitely often, with at most one exception. That’s why the complex
plot shows an intricate pattern close to the singularity.

3 Choudury’s formula and the argument princi-
ple

B.K. Choudury gave a formula (in Ref. [4], unnumbered, just before Eq. 8) for
the logarithmic derivative of the Riemann zeta-function :

ζ ′(z)

ζ(z)
=

1

1− z
+ γ −

∞∑
n=1

Ān(z − 1)n (3)
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where γ is the Euler-Mascheroni constant and the coefficients An and Ān are
connected to the Stieltjes’ constants γn by:

Ān = −(n+ 1)An −
n−1∑
k=0

Ān; Ā0 = −γ; An = (−1)nγn/n! (4)

This is exact, but slowly converging. The corresponding formula in the w-plane
reads

f(w) = γ +
1 + w

2− w
−

∞∑
n=1

Ān

(
w − 2

1 + w

)n

(5)

In order to apply Cauchy’s argument principle, we will need to evaluate the
logarithmic derivative:

ϑ′(w)

ϑ(w)
=

ζ ′( 2w−1
w+1 )

ζ( 2w−1
w+1 )

3

(w + 1)2
(6)

where the last term is the derivative of the argument, or dz/dw. This approach
works, and indeed this can be shown either numerically or by using the argument
principle on small circular paths around the isolated zeroes or the pole.

Now we want to apply the argument principle in the w-plane to the ϑ
function, anticlockwise along circles C of radius R centered around the origin,
i.e. along Reiω:

1

2πi

∮
C

ϑ′(w)

ϑ(w)
dw =

1

2πi

∮
C

f(w)
3

(1 + w)2
dw = N − P (7)

that is connected to the number of zeroes (N) and the number of poles (P )
inside the path in a anticlockwise manner, or, that is the same because ϑ is
analytic on circles far away from the origin, on the number of zeroes and poles
outside of it, if run across clockwisely. On the surface of the Riemann sphere,
inside and outside loose their meaning and the argument principle is valid on the
simply connected portion of the sphere, where circles are contractible to a point.
Our function is analytic on the “outside” of the path C, with the exception of
a finite number of points, actually only the pole at w = 2 in this case.

Now, by plugging in the definition of f , it is easy to see that the first term
(γ) evaluates to zero by the residue theorem,

1

2πi

∮
C

γ
3

(1 + w)2︸ ︷︷ ︸
fγ

dw = Res(fγ ,−1) = 0 (8)

The second term gives a residue of 1 if the circle does not encompass the simple
pole at w = 2 and goes to zero when the circle is larger, because it takes in the
residue at w = 2:

1

2πi

∮
C

(1 + w)

(2− w)

3

(1 + w)2︸ ︷︷ ︸
ff

dw =

{
Res(ff ,−1) = 1 if 1 < R < 2
Res(ff ,−1) +Res(ff , 2) = 0 if R > 2

(9)
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The third term gives a null residue, ∀n > 0, because the Laurent series
expansion around w = −1 of each term of the type

3
(2− w)n

(1 + w)n+2
(10)

always starts from the term (1 + w)−2, therefore the residue is 0. Thus, since
the sum

N − P =

{
1 if 1 < R < 2
0 if R > 2

(11)

the difference is a constant on all circles of radius R larger then 1. Here the
value N − P = 1 is not counting the essential singularity and the infinity of
trivial and nontrivial zeroes of the hammer shape, but rather is counting only
the single pole outside of the circle, changed in sign because of the equivalence
between the inside counted anticlockwise and the outside counted clockwise.
There cannot be other zeroes in this region or the argument principle would
count them when R → 1. We have just proven that there are no zeroes in the
annular region that goes from the black dashed circle in Fig. 1 to the circle
touching w = 2. But that region comprises the whole outer part of the lunula
that maps back to the right half of the critical strip, therefore we have just
proven that there are no zeroes of the Riemann ζ function for 1/2 < Re(z) < 1.
This is a big step forward with respect to any estimate found so far (See [5, 6]).

Now, if a zero cannot exist in this region, because of the symmetry estab-
lished by the functional relation between ζ(z) and ζ(1 − z), this implies that
there cannot be zeroes also on the left part of the strip, i.e. for 0 < Re(z) < 1/2.
The only place left is the critical line itself, as Riemann conjectured back in 1859.
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