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Abstract

In this work, we propose a thermodynamic framework to analyze the creative
potential of scientific fields by examining statistical data on the usage frequen-
cies of scientific concepts within a corpus of publications from ArXiv. Using
statistical mechanics and thermodynamics, we model the system of physical con-
cepts that form the ontology of a scientific field. We explore the relationship
between Clausius entropy and Shannon entropy in this context, assuming the
interaction of concepts through their pairwise mutual information. Our approach
enables us to leverage methods from statistical physics to analyze information
systems during knowledge production and transfer. We demonstrate that the
coarse-grained frequencies of scientific concepts follow a generalized Boltzmann
distribution, allowing for a thermodynamic description. This study calculates
internal energy, Helmholtz free energy, temperature, and heat capacity for scien-
tific concepts as closed thermodynamic systems, and maps the state space of the
concepts-based knowledge network using data-driven thermodynamic diagrams.
This framework advances the methods of the computational theory of discovery
by providing insights into the dynamics of scientific knowledge and the emergence
of innovation.

Keywords: complex information network, statistical mechanics, thermodynamics,
statistical inference

1 Introduction

The concept of discovery and, more broadly, scientific progress, is intricately linked
with scientific collaboration and the successful application of models developed in
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other disciplines. Numerous studies have explored this connection [1, 2], often empha-
sizing that while we cannot predict future discoveries, an examination of the historical
trajectory within the field can provide us with essential insights [3]. These insights
may serve as the foundational ingredients, allowing us to craft a recipe for the art of
discovery.

While bridging the logical gaps between scientific concepts and facilitating infor-
mation diffusion are considered central elements of this recipe [4–8], investigating the
emergence of scientific innovation is not straightforward. In formulating a computa-
tional theory of discovery [9], the nature of scientific change has been studied from
many distinct perspectives, including the philosophy of science, sociology, the his-
tory of science, and various quantitative approaches such as scientometrics, citation
analysis, information science, and complex network analysis.

A promising direction to advance the computational theory of discovery and prin-
ciples of knowledge production lies in studying the properties of the natural knowledge
network encoded in scientific communication records. The key elements of this net-
work are scientific concepts that collectively define the scientific ontology. The general
availability of metadata about electronically published scientific literature makes it
one of the most essential and easily accessible sources of information for these studies
[10, 11]. Processing the texts of scientific publications and extracting statistics of sci-
entific concepts adds a new dimension to the analysis, enabling a deeper understanding
of the structure and dynamics of scientific knowledge [12–14].

Each published scientific document represents well-reasoned scientific research
aimed at answering specific questions and introducing new scientific knowledge. There-
fore, the occurrence of scientific concepts in the texts of these documents is not
completely arbitrary. The frequency (number of times) with which certain concepts
appear in a particular document serves the specific goal of elucidating the scientific
meaning of the research. We show that the statistical distribution of concept occur-
rences, commonly referred to as term frequencies (tf ), across a collection of documents
serves as a valuable source of information for studying the underlying dynamics of the
knowledge network via the properties of concepts, akin to thermodynamic systems.

Scientific ontology is dynamic both in terms of the meanings of existing concepts
and the emergence of new concepts, reflecting the current state of scientific progress. As
new knowledge is incorporated, the meanings of scientific concepts are updated when
related novelties are accepted by the scientific community. Each concept has multiple
connections to other concepts, with the strongest connections providing the most
relevant scientific context. The strength of these connections, which can be measured
using mutual information metrics, changes over time in response to the stochastic
input from newly published scientific documents.

Studying the properties of such complex information networks usually requires
intricate calculations of the topological properties of corresponding graphs. Such cal-
culations can become NP-hard as the size of the network increases. In this research, we
propose an approach to analyse network properties whose computational complexity
grows linearly with the size of the network. We demonstrate that the current state of
each node (scientific concept) in the network, when defined as a state of a thermody-
namic system, effectively reflects all past and current network communications. In this
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approach, nodes process information from the network and adjust their states accord-
ingly. Estimating the state parameters of a node, even from a historical perspective,
requires fewer computational resources. The computational costs grow linearly with
the number of nodes, rather than exponentially as in topological calculations.

The proposed approach allows us to apply the reasoning and methods developed
in statistical physics for over a century to analyze purely information systems during
information transfer and knowledge production. The key connection between thermo-
dynamics and information science lies in recognizing the fact that the entropy of any
system, physical or not, is not its intrinsic property but a function of the variables
we choose to define its states. Different choices of variables will correspond to varying
entropies for the same system [15]. This resolves the longstanding discussion about
whether Shannon and Boltzmann’s entropy are the same quantity. The only distribu-
tion of variables in which Gibbs-Shannon entropy equals thermodynamic entropy is
the generalized Boltzmann distribution [16]. If the above condition is satisfied, we can
use thermodynamics to study information systems.

In Section 2, we show that the coarse-grained frequencies of scientific concepts
extracted from multiple documents follow the generalized Boltzmann distribution,
thereby allowing for a thermodynamic description. Formally, the necessary probability
mass function was obtained in [12] using Jaynes’ ’MaxEnt’ method. The relevant
constraints applied in the process of entropy maximization represent the generalized
energy E of a system, which, as in physics, represents the cost needed to assemble a
system of particles. The cost for a joining particle (concept term frequency tf from a
new document) to enter the existing community can be expressed in terms of economies
of scale, where the cost depends on the current size of the community [17]. Initially, for
a small community, energy grows almost linearly with system size. When the system
size becomes large, due to the absence of a correlation length scale, the energy of
the system does not increase linearly with system size, giving rise to a non-extensive
energy function. This view is consistent with the appearance of power laws in critical
phenomena, where interactions are effectively long-ranged.

From a thermodynamic point of view, when E is a combination, as in our case, of
logarithmic and linear terms, the system interacts with two types of thermal baths.
The type of bath with which the system is currently interacting the most depends on
the size of the system. State dynamics then reflect the crossover of the corresponding
tf distribution from exponential to power law. The size of the system under study
can be understood in terms of the number of stable connections with other concepts
in the corresponding network, or in other words, the number of its active information
channels. This situation is similar to establishing neural links in a brain, where the
complexity of interactions increases with the number of connections, leading to changes
in the system’s overall behavior and properties [18–21]. In physics and social science,
this behavior indicates the presence of a phase transition in a diverse range of examples,
such as magnetic systems near the Curie point, polymer chains in solution, and the
spread of information in social networks [22, 23].

In the realm of thermodynamics and information theory, the statement that
’information is energy’ highlights the profound connection between informational and
physical systems. Just as energy drives physical processes, information drives the
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dynamics of complex information networks. This perspective not only bridges the gap
between thermodynamics and information theory but also provides a framework for
understanding the dynamics of knowledge production and dissemination in scientific
communities.

The aim of this research is as follows: (i) Based on the fact that Gibbs-Shannon
entropy, as introduced in [12], is the entropy of a thermodynamic system, calculate the
internal energy, Helmholtz free energy, temperature, and heat capacity of a scientific
concept as a closed thermodynamic system connected to two types of thermal baths;
(ii) using a data-driven approach based on frequencies tf of more than 12,000 physical
concepts in over 500,000 scientific papers published on the ArXiv preprint server from
2002 to 2018, map the state space of the concept’s knowledge network with analogs
of thermodynamic diagrams; (iii) examine the dynamics of the state space, focusing
on the regions where states are densely populated, which represent the most probable
values for the network’s thermodynamic parameters.

This paper is organized as follows. Section 2 elaborates on the various types of
states used to describe concepts as information systems, based on available data
concerning their term frequencies. It introduces definitions for concept information
entropy and thermodynamic entropy per scientific document, alongside temperature
and internal energy. Section 3 discusses the connection between Helmholtz free energy,
thermodynamic work, residual entropy, and the production of knowledge (entropy).
Section 4 presents knowledge network state maps in the form of thermodynamic
diagrams. Finally, Section 5 provides conclusions and a future outlook.

2 Information and thermodynamic entropy

The relationship between thermodynamic entropy and its information analog, intro-
duced by Shannon, has sparked numerous debates and misconceptions within the
scientific community [16, 24, 25]. Thermodynamic entropy, a concept deeply rooted in
classical physics, describes the measure of disorder or randomness within a physical
system. In contrast, Shannon entropy, originating from information theory, quantifies
the uncertainty or unpredictability inherent in a set of data or information [26]. The
potential solution to understanding how these concepts are related lies in recogniz-
ing that entropy should not be viewed as an inherent property of the system itself
but rather as a characteristic of how we describe it [27, 28]. As Caticha stated [29],
”entropy is fundamentally tied to our method of observation and description rather
than being an intrinsic property of the system under study.” More explicitly, entropy is
a function of the macroscopic variables chosen to define the macrostate. For instance,
different macrostates, based on varying choices of variables, will correspond to differ-
ent entropy values for the same system. However, entropy is not solely dependent on
the macrostate. As demonstrated below, entropy reflects a relationship between dif-
ferent descriptions of the same system. Besides the macrostate, we can also consider
the set of microstates and mesostates. The differences in entropy among these states
indicate the amount of additional information required to identify the other states.

Having a concept c, we will define the set of its microstates associated with proba-
bility 1/Nc(t) for a concept to be found in the document, where Nc(t) is the number of
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documents that contain concept c and was published until date t. The uniform prob-
ability distribution of the concept microstates and the corresponding maximal value
of the entropy per document Smicro = lnNc(t) corresponds to the absolute minimum
information we have about the system in this representation [30, 31].

The more detailed text analysis of the documents enables the collection of addi-
tional information about concept occurrences, or more commonly, concept frequencies
denoted as tf . Grouping documents based on extracted frequency values tf = k, k ∈
Z+ associates the probabilities for a concept to be cited exactly k times with a
set of mesostates. The probability of a particular frequency is given by the relation
Pc(k, t) = Nc(k, t)/Nc(t), where Nc(k, t) is the number of documents that mention a
concept k times up to time t. The corresponding Shannon entropy per document is
then given by 1.

Smeso(t) = −
max(tfc)∑

k=1

Pc(k, t) lnPc(k, t). (1)

The value of the mesostate entropy Smeso < Smicro reflects the collection of addi-
tional information about the state of the concept, thereby reducing state uncertainty.
The natural question arises: what is the minimum value of k that should be used to
define the corresponding entropy? Martini addressed this question in [12] and con-
cluded that entropy defined with k > 0 provides greater descriptive power for topic
classification in the concepts network. The choice kmin = 1 in our case is motivated
by the proposed thermodynamic framework, where it sets the minimum energy level
E = ln 1 = 0 for the logarithmic bath of a concept as a thermodynamic system.

The Jaynes MaxEnt principle [28] allows us to define a normalized macrostate
probability mass function Πc(k, t) of a concept as the one that maximizes the Smeso

entropy. Applied constraints in the form of the first moment ⟨k⟩ and log-moment ⟨ln k⟩
of Pc(k, t) give:

Πc(k, t;β, λ) =
1

Z

e−λk

kβ
, Z =

∞∑
k=1

e−λk

kβ
= Liβ(e

−λ) (2)

where Z is the polylogarithm Li of order β and argument e−λ for the Lagrangian
multipliers λ > 0 and β [12]. The corresponding macrostate entropy is then given by

Smacro = lnZ + β (⟨ln k⟩+ λ

β
⟨k⟩) (3)

with

⟨k⟩ = Liβ−1(e
−λ)

Liβ(e−λ)
, ⟨ln k⟩ = −∂βLiβ(e

−λ)

Liβ(e−λ)
. (4)

Similar results were obtained in [32], where it was shown that power-law and
exponential distributions independently maximize the ratio Q = Smacro/E with the
exponents β or λ approximated to it [33, 34].

1The units of entropy in this study are denoted as nats, corresponding to base ’e’ (Euler’s number) loga-
rithms, which are used throughout. While it is more common in the literature to use the base-2 logarithm,
in that case, the units of entropy are expressed in bits, aligning with the binary digit terminology commonly
associated with information theory.
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Following the formalism developed in [16], the Eq.(2) can be understood as a
generalized Boltzmann distribution of a concept as a system of logical particles each
representing a scientific document. The entropy of the macrostate Smacro is then
related to the thermodynamic entropy Stherm as:

Stherm = kBSmacro = kB(βE + lnZ), (5)

where kB is the Boltzmann constant, β corresponds to the inverse temperature 1/kBT
and E is the average internal energy per document:

E = ⟨ln k⟩+ λ

β
⟨k⟩. (6)

In physics, the concept of internal energy E defines heat, and there is no distinction
between a system’s total and internal energy if a reference frame is attached to a con-
cept. Therefore, the second term β−1 lnZ in Eq.(5), which is commonly related to the
motion of the system boundaries (volume change), is associated with work exclusively.
Since concepts as information entities do not have traditional spatial boundaries, it is
nontrivial to calculate work from the change in a system’s volume. We would have to
define a space with a common reference frame where all concepts interact as separate
entities. We will consider that concepts define the surroundings for each other, and
each interaction of target concepts with another will add a new dimension; we will end
up in a multidimensional space, the dimensions of which will vary for different tar-
get concepts. A concept’s corresponding volume can then be calculated as a simplex
if the distance measure between concepts is taken in the form of normalized mutual
information [35].

We can avoid this complication by estimating work from the corresponding sys-
tem’s free energy change. In this case, we will effectively consider all informational
interactions between concepts. In the next section, we will use Helmholtz’s free energy
and Jarzynski’s equality to quantify thermodynamic work and relate it to the system’s
entropy/information production.

3 Residual entropy and free energy

As evident from the previous section, the scientific concept can be represented as
a closed thermodynamic system, with its energy defined by Eq.(6). The scientific
concept as a thermodynamic system appears in a state of equilibrium when Shannon-
Gibbs entropy Smeso equals Boltzmann entropy Smacro. Such concepts were named in
[12] as basic or generic and considered as not useful for fine-grained topic detection.
Presumably, they can be found in almost every document of a studied collection and
represent very broad topics that can be identified with whole scientific fields. The
latter is correct if equilibrium is permanent and the entropy of a concept is relatively
large in comparison to other concepts. But if equilibrium is instantaneous and entropy
is relatively small, it indicates special conditions for a concept when it is related
to a hot topic [36]. In general, for the rest of the concepts, the following inequality
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holds Smacro > Smeso, implying the fact that these concepts can be considered as
non-equilibrium thermodynamic systems.

The ”age” of a concept, determined by the date of the earliest article in which it
appeared within the studied document collection, influences the amount of historical
data available regarding its term frequencies. This age generally affects the concept’s
proximity to thermodynamic equilibrium. While relatively new concepts can achieve a
macrostate with maximal entropy, they seldom attain a true steady equilibrium. The
macrostate parameters λ and β are time-dependent, with their most probable values
indicating the equilibrium state of a concept. In Section 4, we will demonstrate how a
concept’s age correlates with the values of λ and β and its proximity to equilibrium.

The amount of additional information required to specify the mesostate with
respect to a macrostate is defined via residual entropy R = Smacro − Smeso that can
be expressed as the Kullback-Leibler divergence (see proof in [12]) between mesostate
and macrostate as a state of instantaneous thermodynamic equilibrium:

R(t) = DKL(Pc||Πc) =
∑
k

Pc(k, t) ln
Pc(k, t)

Π(k, t)
≥ 0. (7)

The net change of the residual entropy ∆R = Rf − Ro in a process, when the
system changes from some initial to end states (o and f), defines the entropy pro-
duction in the system [37, 38] and in terms of the entropy change, it is the difference
∆R = ∆Smacro − ∆Smeso. According to the second law of thermodynamics, ∆R
must decrease, indicating that the total entropy production is always positive or zero,
ensuring the irreversibility of natural processes.

In cases where work is performed on the system, the entropy of the system itself
may decrease, implying that ∆R gets larger. However, the total entropy of the com-
bined isolated system (system + surroundings) remains constant or increases, as stated
by the second law of thermodynamics. Drawing an analogy to a system in thermody-
namic equilibrium, a decrease in entropy production becomes particularly intriguing,
as it potentially allows us to quantify the work required to move the system out of
equilibrium. In the context of an information system, this ’work’ is defined as the
additional useful information R transmitted into the system, which decreases its meso
entropy.

In thermodynamics, the amount of energy that can be converted to work and is
not tied up in the entropy of the system is given by Helmholtz free energy:

A = E − kBTSmacro = −kBT lnZ. (8)

The change in Helmholtz free energy ∆A tells us about the maximum obtainable work
from a process when the system passes from o to f state. Helmholtz’s free energy
change ∆A reaches its minimum value at equilibrium, and no work is possible as
∆A → 0 and ∆R → 0. Non-equilibrium systems can do work, and the change in
Helmholtz free energy (∆A) reflects the maximum theoretical work obtainable under
constant temperature and system volume. This ∆A value can be positive or negative
depending on whether the system does work on the surroundings (∆A > 0) or the
surroundings do work on the system (∆A < 0).
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The relation of useful information R to Helmholtz free energy is then followed from
Eq.(8):

R =
E −A

kBT
− Smeso (T, V = const). (9)

The useful expression to quantify work, that is valid for the systems in- and far-
from-equilibrium regime, is given by the recently discovered Jarzynski equality [39,
40], representing the relationship between the difference in free energy ∆A of two
equilibrium ensembles and the amount of work W needed to switch between them in
a finite amount of time:

⟨e−βW ⟩ = e−β∆A. (10)

Here, ⟨...⟩ indicates an average over multiple repetitions of the process, and β =
1/kBT .

Noting that Helmholtz free energy is a function of state from Eq.10, we can measure
the work needed to drive the system between o and f states separated by the time
interval ∆t as proportional to ∆A. In the case of an isothermal process, the analytical
expression for the free energy change is simple and given by:

∆A = Af −Ao = ∆E − kBT (∆R−∆Smeso). (11)

In this case, we can also write a simple analytical expression for the efficiency of
information flow ηinf represented by the dimensionless ratio of information transfer
∆R over total irreversible entropy production ∆Smeso [41]. Using Eq.(11), we get:

ηinf =
∆R

∆Smeso
=

1

kBT

∆E −∆A

∆Smeso
− 1. (12)

We can see that for the reversible near-equilibrium processes ∆Smacro ≂ ∆Smeso,
∆Smacro/∆E = 1/T and ∆A = 0 the efficiency of information flow is minimal ηinf = 0
unlike thermodynamic efficiency, which is maximized under these conditions [41].

Although the thermodynamic evolution of a concept as a thermodynamic system
may seem like a simplification, and the actual dependence of ∆A on other thermody-
namic parameters is more complex, it can be a valid model for concepts in a state of
thermodynamic equilibrium. As we will show below, concepts that are used in a suffi-
ciently large number of documents all reach equilibrium at a specific temperature and
consequently all have low values of ηinf . In contrast, new concepts have larger values
of information flow efficiency as their residual and Smeso entropy vary significantly
during their state evolution.

The thermodynamic analogy suggests a profound connection between the effective
use of information by the information system and efficient thermodynamic operation.
The system dynamics performs a computation by changing its state as a function of
the driving signal, in our case, the concepts tf in each new document. The system’s
state retains information about past environmental fluctuations, and a fraction of
this information is predictive of future ones [42]. The closer the state of a concept is
to thermodynamic or ’infodynamic’ equilibrium, the more predictive information is
available. The system’s efficiency is then related to the amount of useful information
(or persistent knowledge) it can keep about its environment.
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4 Thermodynamic diagrams

In this section, we will calculate the macrostate parameters β and λ from Eq.(2)
based on historical data about concepts tf and analyze the concept’s state space using
thermodynamic diagrams. For each of the 13,945 concepts recorded in our database, we
try to find these parameters by numerically fitting the empirical mesostate distribution
formed for a specific time interval using the maximum likelihood estimation method.
We cross-check the results by requiring that for the obtained β and λ the Eq.(4)
must hold with a tolerance of < 10−5 when ⟨ln k⟩ and ⟨k⟩ are obtained directly from
empirical data.

Figure 1 presents a heat map illustrating the distribution of concepts across dif-
ferent values of the state parameters β and λ. We can see that the largest number of
concepts have λ in the interval from 0 to 0.15 and β from 1 to 2. The maximum con-
cept density in macrostate parameters space shifts from β = 2 when λ = 0 to β = 1.6
when λ = 0.15. Similar results were previously obtained in [12] where the mean value
for the inverse temperature distribution was reported to be β ∼ 3/2. We find that this
value remains almost constant for the studied period, with β = 1.51 until the end of
2010 to β = 1.61 in 2018.

The difference between states with different β and λ is better understood in terms
of probabilities of information channels K = {k} that form the mesostate distribution.
The number of microstates (documents) that contribute to a particular channel k
quantifies the history of a system along the specific microscopic phase-space path. The
probability for the system to follow this path is then given by Pc(k, t), which changes
over time as the system receives new information about new relevant microstates.
For the concepts with a large number of microstates, we have an almost sequential
filling of information channels starting from k = 1, which has the largest probability
Pc(k = 1, t) and which is decreasing for k > 1 mostly in a power law manner with
non-zero probabilities for k >> 1.

Our analysis shows that the larger the values of β, the narrower the channel band
with small k indexes and consequently lower entropy Smeso, Smacro, energy E, and
temperature. For most concepts, λ, in this case, is small, and consequently, the linear
contribution to E in Eq.(6) is small compared to the logarithmic term. From Fig.1, we
can see that the number of concepts with the pure logarithmic spectrum, i.e., when
λ → 0, is increasing towards β = 2 and then decreasing when β > 2. The role of
a linear term in E becomes more important with the temperature of a system. Our
results show that the number of concepts with a combined spectrum rises towards
λ = 0.1 until β → 1. For higher temperatures, the linear spectrum becomes dominant.

Our results complement and extend previous research in social collaborations [32]
where it was shown that for the pure power-law distributions, if β > 2, the main
contribution to E is made by the low energy (low k) information channels. If β < 2,
more contribution is obtained from high energy (high k) channels, and when β = 2, all
channels contribute evenly. Those conclusions were made assuming an infinite number
of information channels k but their number in real-world datasets is not infinite. The
exponential cut-off in the macrostate probability mass function Πc(k, t) accounts for
this fact by setting it to zero for some k > kmax. The smaller β, the larger λ is required
to keep ⟨k⟩ from becoming infinite. When λ is large and β is small, the entropy of the
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Fig. 1 A heat map illustrating the distribution of macrostate parameters for 11737 scientific con-
cepts. The sub-figure demonstrates the distribution of inverse temperature β (where β > 0.001) and
the evolution of the distribution over three time periods, beginning in 2002 and concluding in 2010,
2015, and 2018. The mean value of β, which is specified, is calculated at the end of each period.

concept is influenced by both the logarithmic and linear contributions, leading to a
complex interplay of information channels with varying probabilities.

In each studied period, there is a group of new concepts whose states are so far from
equilibrium that no macrostate parameters can be estimated based on the available
term frequency (tf) distribution. These concepts represent novelties in the document
collection that may later gain a wider range of frequencies and develop into sepa-
rate topics or become part of existing ones. However, during the studied publication
period, these concepts are found in a very small number of documents. As a result,
their microstates are mostly characterized by a single k = 1 frequency, leading to
a mesostate entropy of Smeso = 0. We exclude such concepts from the macrostate
parameter estimation process and will include them back in future analyses when their
distributions are sufficient to allow accurate model fitting. We can study different time
periods by shifting the initial and final dates, but we prefer to fix the initial date
and change the final date, including more and more data. The concepts excluded in
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shorter time periods due to insufficient data may appear in the extended period anal-
ysis since we may now have enough data and consequently the possibility to estimate
their thermodynamic parameters. However, we currently have data only up to 2018,
so we are unable to shift the final date further. Therefore, in the given example, 2,208
concepts with insufficient data are not analyzed and can only be analyzed if we gain
access to data from later years. As illustrated in Fig. 2, the concept ’Anomalous Hall
effect’ demonstrates this issue: it took four years of data collection, from 2000 (cyan
line) to 2004 (orange line), to calculate the system’s thermodynamic parameters with
the required level of accuracy.

Figure 2 indicates values of the concept’s state parameters in 2018 concerning
the time of their origin in the texts of the studied collection of documents. We can
conclude that states with minimal residual entropy R → 0, associated with the state
of thermodynamic equilibrium, are more common for concepts first introduced in the
oldest documents, although instantaneous equilibrium can be reached by relatively
new concepts also. From Fig. 2(c), we can see that not all ’old’ concepts have maximal
entropy (minimal R) but many have power-law tf distribution (i.e. λ → 0). Concepts
that appeared in a state of stationary thermodynamic equilibrium, when R is constant
and small for an extended period (marked green in Fig. 2), appeared to have both
of these properties – near power-law distribution (λ → 0.02) and maximal possible
entropy (R → 0). We can assume that this limit is a future of all old concepts with well-
established contextual meaning, which is what we can expect in the case of physical
systems according to the second law of thermodynamics.

Figures 2(a),(d) show that the free energy A and temperature of concepts in a
state of stationary equilibrium tend to certain non-zero values, indicating a stable bal-
ance between the entropic forces and the energy landscape governing the frequency
distribution of these concepts. Other concepts, appearing in the state of instantaneous
equilibrium, have similar values of the (inverse) temperature, close to the most prob-
able β = 3/2 evident from Fig. 1, but for many of them, free energy A has smaller
values than for the stationary state concepts.

As we can see from Figs. 2 and 3, the state of a concept is related to the number of
documents where it can be found. The ’age’ of a concept and the number of such doc-
uments are correlated quantities such that older concepts tend to appear in a larger
number of documents. We can draw the conclusion that if the number of such docu-
ments exceeds 1000, the state of a concept is mostly in equilibrium (having maximum
entropy for the particular term frequency distribution, meaning that Shannon-Gibbs
and Boltzmann state descriptions yield the same entropy). Its further evolution is more
like that of reversible physical systems. Concepts’ term frequency distributions tend
to become more power-law-like as the number of relevant documents increases. The
most frequent concepts are in a stationary state, tend to be the oldest, and have, on
average, larger values for entropy and internal energy compared to other equilibrium
state concepts. The amount of free energy is generally lower for such concepts than
for any others, indicating that they have done more work on their surroundings. Their
current free energy change has to be the lowest among other equilibrium concepts.
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4.1 Energy-entropy diagram.

To explore the state space of the concepts information network as a collection of
interacting thermodynamic systems, we map the states of concepts onto a series of
state diagrams. One of the common diagrams is an energy-entropy (E-E) diagram,
shown in Fig. 4 and Fig. 5. Dashed blue lines on these diagrams represent the largest
Smacro entropy for different constant cut-off parameter values λ > 0 calculated from
Eqs.(3),(4), and (6). The solid blue line shows the maximal entropy of a macrostate
obtained if the distribution is very close to a power-law (i.e. λ = 0.001). From the Fig. 4
diagram, we can conclude that the state of instantaneous thermodynamic equilibrium
can be approached almost for any value of λ parameter representing the equilibrium
metastable states, but most of the concepts reach true stable equilibrium when λ <
0.05.

In Fig.5, we can see examples of such stable equilibrium concepts as ”Diquark”
and ”Mass,” which have almost constant energy and entropy for a period of 15 years.
The concept ”Diquark” shows a trend common to many equilibrium concepts: a
slow temperature drift towards lower temperature and energy at constant λ. Another
example of the concept state dynamics is given by the ”Anomalous Hall effect” con-
cept. In Fig.5, we observe the combined mesostate (orange line) and macrostate (red
line) dynamics for this concept in energy-entropy coordinates. It shows a continuous
decrease in residual entropy R and internal energy E during the concept’s state evo-
lution. This concept reached equilibrium at a temperature β = 1.5 in 2018. In 2004,
at the beginning of the studied period, the state parameters of the concept exhibited
much larger fluctuations, which diminished as the concept approached equilibrium
closer to 2018, similar to the trend observed in Fig. 2.

The example of the ’Anomalous Hall effect’ concept is representative of most new
concepts until they reach equilibrium at maximum possible entropy S and minimal
energy E. This behavior aligns with what we would expect from physically closed
thermodynamic systems according to the second law of thermodynamics. As suggested
by Peng et al. [32], the ratio termed entropy efficiency, Q = Smacro/E, which is
maximized for equilibrium states, represents another interpretation of the second law:
’a system would use the minimum energy to produce the same amount of entropy.’ In
Fig. 6, we show the diagram of states for entropy efficiency Q plotted against inverse
temperature.

As we can see from Fig.6, there is an almost linear correlation between the largest
possible entropy efficiency Q for a concept and its inverse temperature. Concepts with
the smallest R and λ appear to have the highest entropy efficiency, and the concept
”Anomalous Hall effect” state dynamics shows an example of how general concepts
reach this limit. In Fig.6, if we change Smeso/E to Smacro/E on the y-axis, the observed
linear correlation between Q and β will not change; only the concepts with small λ will
become concentrated near the upper dashed line. We can see that entropy efficiency is
increasing towards lower temperatures, which may explain the observed state dynamics
of non-equilibrium and equilibrium concepts in Fig. 6. The evolution of equilibrium
concepts towards higher efficiency is much slower than for non-equilibrium systems,
which suggests the existence of different mechanisms of information (energy) exchange
for these systems.
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4.2 Free energy diagrams.

In this section, we analyze diagrams showing the dependence of Helmholtz free energy
on other thermodynamic functions and state parameters. From Fig.7, we can see that
non-equilibrium concepts with a close to power-law tf distribution (λ → 0) identify
macrostates with the largest value of E −A = TSmacro > 0 with A < 0, representing
the energy tied up in entropy at a given temperature. As the temperature increases
(β → 0), this energy grows and becomes divergent below β = 1. The energy E−A is in
general smaller for the equilibrium concepts, especially in cases when A is positive. The
stationary equilibrium concepts, which have the smallest average λ observed among
other equilibrium concepts, maintain the largest value of TSmacro. The difference in
TSmacro energy for equilibrium and non-equilibrium concepts becomes less pronounced
for lower temperatures, after which β = 2.8 almost all concepts appear in equilibrium.

Both E and A functions have a minimum at specific values of temperature and the
λ parameter. The minimum possible value for the internal energy E increases with
the system’s temperature and λ, and is mostly represented by equilibrium concepts.
Across a wide range of temperatures, the energy minimum corresponds to λ values
between 0.2 and 0.4 (see Fig.8), indicating that both terms in Eq. 6 contribute to
the system’s internal energy. In contrast, the minimum of free energy A is mainly
represented by non-equilibrium concepts with a close to power-law tf distribution.

The residual energy TR = TSmacro − TSmeso is what distinguishes different non-
equilibrium concepts with a near power-law distribution from equilibrium concepts at
the same temperature. This residual energy can be regarded as a form of potential
energy that complements the free energy A and is necessary to adjust the probabilities
of the information channels k of a given concept’s mesostate to achieve maximum
entropy. As previously mentioned, the residual entropy R represents the information
needed to specify the mesostate based on the system’s macrostate description. When
a concept reaches an equilibrium state, R → 0, and any net change in residual entropy
∆R signifies information transferred from the system to its surroundings.

We can assume that the system utilizes the potential energy TR for information
transfer, which can be viewed as a form of creative potential realized through increasing
mutual information with other concepts. This residual energy is used to perform work
by creating or strengthening mutual information with other concepts. In this way, the
knowledge network increases its dynamic complexity by adopting new knowledge. If
mutual information cannot be decreased, then this process is irreversible. However,
from the analysis of the dynamics of mutual information between concepts, we know
that mutual information can decrease [35]. This process appears to be less probable
and reduces the information interaction between concepts. In such cases, a concept
gains additional information from the surroundings, which increases its free energy
and residual entropy.

As we can see from the example given in Fig. 8 for the observed energy-temperature
state evolution of the ”Anomalous Hall effect” concept, the observed thermodynamic
process initially is not isothermal and non-equilibrium later, as the temperature
oscillations subsided, becomes closer to equilibrium.

Figure 7 shows that the limit of the smallest λ < 0.05 is represented mostly by the
non-equilibrium concepts at the early stage of their evolution. In Fig.9, it is shown
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that these group concepts have another interesting property – the dimensionless ratio
A/E, obtained from Eq.9, remains almost constant for the wide range of dimensionless
quantity known from [32] as the entropy reduction ratio 1− TSmeso/E, i.e., the part
of the system’s energy that is effectively available for performing useful work (or
processing information) after accounting for the ”cost” of entropy.

A constant A/E suggests that the efficiency of energy conversion (from total energy
to useful work) does not drastically change for the near power-law concepts despite
variations in entropy and temperature. This might imply a robust mechanism of energy
allocation and utilization within the network of concepts. Moreover, this group of
concepts has the largest heat capacity (see Fig.10) C = ∂E/∂T compared to others,
indicating a higher capacity to absorb and retain heat energy.

The heat capacity C of the concepts is maximized around the most probable tem-
perature and eventually becomes zero at very high (β → 0) or very low (β → 3.5)
temperatures. For the equilibrium concepts, it shows a variety of different values across
the available range of temperatures. Concepts in a state of stable equilibrium (green
color on Fig.10) have larger heat capacity and temperature among other equilibrium
concepts with small residual entropy R.

The value of a concept’s free energy changes along its state path trajectory, reflect-
ing the role of the concept in its interaction with its surroundings. A concept can
either give energy to or obtain it from the thermostat it interacts with. In this way,
we can say that a concept does work on other concepts, or that a group of concepts
does work on this particular concept, changing the direction of information transfer.
We find that there is a correspondence between the change in free energy ∆A and the
concept’s entropy dynamics, which vary the value of its residual entropy ∆R. From
Fig. 11, we can see a connection between information transfer and free energy change
in our dataset for the period 2017-2018. It shows that if A is increasing, the resid-
ual entropy is also increasing, and if free energy is decreasing, the residual entropy is
decreasing.

Concepts in a state of stationary equilibrium show the minimal variations of free
energy and residual entropy in correspondence to other concepts. Concepts that have
a tf distribution close to power-law but have not yet reached an equilibrium state have
the largest variations of both A and R. The example of the ”Anomalous Hall effect”
concept shows the typical stochastic trajectory for the concept state in these variables.

5 Conclusions

In this research, we analyze more than 11,000 scientific concepts, which represent
units of scientific ontology in the domains of Astronomy and High Energy Physics,
as thermodynamic systems. We demonstrate that the thermodynamic states of these
concepts can be estimated from the accumulated historical information about their
term frequency distributions. We used as a source a ScienceWISE database of scien-
tific concepts’ term frequencies extracted from multiple documents published in the
ArXiv:HEP section over the 1992-2018 period. The features of the obtained distri-
butions allow us to associate them with a generalized Boltzmann distribution and
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represent each concept as a closed statistical ensemble system. We show how to for-
mulate and calculate several types of Shannon entropy S to describe the state of a
concept, with the entropy of a macrostate given by the distribution from Eq. (??) cor-
responding to thermodynamic entropy. The proposed approach allows us to formulate
known thermodynamic quantities, such as internal energy E, Helmholtz free energy
A, and temperature T , to describe the state of a scientific concept.

The use of scientific concepts in document texts is intended to encode and transfer
scientific information. Each concept is not an independent unit; it interacts with other
concepts, storing complex scientific knowledge. Connections between concepts form a
network that stores, processes, and distributes this information. Each node in this net-
work can be represented as a system interacting with multiple other systems, similar to
how a thermodynamic system interacts with its surroundings in physics. Consequently,
the state of each node reflects the information from all its past interactions.

At each moment, the surroundings for some specific node are a complex thermostat,
represented by a subset of concepts it is currently interacting with. The states of
concepts in a thermostat can be steady or time-dependent. We assume that steady-
state equilibrium concepts (see green dots on Fig.10) are an essential part of the global
thermostat that sets the most probable temperature for the whole network irrespective
of the stochastic update from external sources.

By analogy with physical systems, such a thermostat increases or decreases the
temperature of concepts, eventually bringing their states closer to the global equi-
librium temperature. The energy and temperature of each concept are defined by
its frequency distribution, which can be inferred from mutual information with its
surrounding concepts. The more mutual information we have between a pair of con-
cepts, the closer their frequency distributions and, consequently, other thermodynamic
parameters like temperature are.

The structure of the metadata collected about concepts’ term frequencies allows us
to estimate their current state and trace the dynamics of all thermodynamic variables,
revealing the universal properties of their state evolution. We find that the evolution of
a concept, as a thermodynamic system, starts from a highly non-equilibrium state with
high residual entropy (R). After a period of quasi-equilibrium, where residual entropy
is already low, the concept may reach a state of stationary thermodynamic equilibrium
where parameters like temperature (T ) and internal energy (E) remain constant. The
time needed to reach equilibrium varies for different concepts. Our analysis indicates
that 1,000 documents is a threshold after which concepts have residual entropy low
enough to reach an equilibrium state, though instantaneous equilibrium is possible
with fewer relevant documents. We also find that the number of concepts in a state of
stationary equilibrium slowly increases after this threshold.

Within the first 1,000 documents of a concept’s evolution, as the number of
microstates increases, we observe a phase transition from a state described by a lin-
ear energy spectrum and exponential term frequency tf distribution to a logarithmic
spectrum corresponding to a power-law tf distribution. We show that at this phase
transition, the heat capacity of non-equilibrium concepts with close to power-law tf
distribution is maximized around the most probable concept temperature T ∼ 3/2.
Another interesting discovered property is that the ratio of the free-to-internal energy
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for all these concepts is distributed around the most probable value A/E ∼ −0.5 for
a large variation of the residual entropy R.

It is worth noting that for rare concepts, the observed phase transition does not
fully align with the process of concepts’ thermalization, as they can reach equilibrium
before the exponential contribution to the tf distribution can be neglected. However,
as the number of relevant documents grows, the energy spectrum for these concepts
will also become logarithmic.

We argue that the state space path a concept takes, from complete uncertainty to
stationary state thermodynamic equilibrium, reflects the evolution of concept-related
scientific knowledge from its absence to a well-defined and stable understanding within
the scientific community reflected in the context each concept finally obtains. The
exact state space trajectory of a concept is reflected in the amount of useful information
∆R transferred to or from it to other concepts in each period. This representation
supports and allows us to quantify Ariel Caticha’s definition of information as what
changes our beliefs [15]. In our case, useful information changes our current scientific
knowledge by updating the context for the concept in a network and identifying the
next state of a concept as an information entity.

We can measure useful information in terms of the amount of work needed to drive
the concept along its state path. This work is justified by the amount of information
or combined energy spent by many researchers on explaining a term’s context and
providing all necessary connections with other scientific concepts. Following the ther-
modynamic framework, we can relate work to a change in the system’s free energy
∆A. Jarzynski’s equality provides the necessary relation between these quantities and
allows us to measure the amount of useful information associated with scientific con-
cepts as the total difference between the free energy between some initial and final
states. From Fig. 11, we can see that the sign of ∆A changes along the concept’s state
path trajectory, reflecting similar changes in residual entropy ∆R. When a concept
does work (∆A > 0), its residual entropy change ∆R is positive; when surrounding
concepts do work on the concept (∆A < 0), ∆R is negative.

These results demonstrate the universal nature of context evolution for scientific
concepts, applicable across different collections of concepts and scientific domains. This
thermodynamic approach provides a powerful tool for understanding and quantifying
the dynamics of scientific knowledge production and dissemination.
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Fig. 2 The thermodynamic state parameters β, λ, along with residual entropy R, free energy A,
internal energy E and mesostate entropy Smeso for 11,737 physical concepts estimated from tf data
for the period from 1991 to 2018 and ordered by the time the concepts were first mentioned in the
particular document in the studied collection (ArXiv document repository started accepting docu-
ments from August 14, 1991). Blue dots indicate concepts that appeared in a state of instantaneous
thermodynamic equilibrium in 2018, defined as having minimal residual entropy R < 0.04 (maximal
entropy). Green dots denote concepts in a stationary thermodynamic equilibrium state, where resid-
ual entropy R < 0.04 remains constant for the period from 2000 to 2018. Red dots highlight concepts
with near power-law term frequency distribution (λ < 0.04), while black represents all other concepts
that do not fit into the mentioned parameter range. The state evolution calculated with one year
time step for the concept ’Anomalous Hall effect’ illustrates a four-year gap between the cyan (date
of first occurrence) and orange line, during which the macrostate parameters β and λ could not be
calculated with the required precision due to insufficient data on the concept’s term frequency. The
figures demonstrate a general trend in the state dynamics of concepts towards equilibrium (small R)
and a finite temperature (β ∼ 3

2
). Power-law distributions for term frequencies appear more probable

for ’old’ concepts with sufficient historical data collected.
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Fig. 3 The values of state parameters and thermodynamic quantities such as residual entropy R,
free energy A, internal energy E and mesostate entropy Smeso shown as a function of the number of
relevant documents from which concepts were extracted. Non-equilibrium concepts are mostly present
in less than 1000 documents with a very wide diapason of values for the λ parameter. Concepts found
in a larger number of documents reach the state of equilibrium, and the most frequently used concepts
reach the stationary state (green dots). The mesoentropy Smeso of concepts, as well as internal energy
E, is increasing with the number of documents, while temperature is maintained near its mean value
β ∼ 3/2.

22



0 1 2 3 4
0

1

2

3

4

5

E

S
/N

Fig. 4 States of 11737 physical concepts as of the end of 2018 are depicted on the entropy-energy
diagram. The blue lines (solid and dashed) correspond to the S(E(λ = c, β)) function for specific
values of c = {0.001, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2} from top
to bottom. The green lines represent isotherms for β = {0.5, 1, 1.5, 2} from right to left, with the
solid green line for β = 1.5. Concepts for which R > 0.04 are depicted with black dots, the ones with
R < 0.04 and R < 0.005 are depicted as orange and blue dots, respectively.
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Fig. 5 Examples of equilibrium (”Mass” and ”Diquark”) and non-equilibrium (”Anoma-
lous Hall effect”) concepts state dynamics for the period from 2004 until 2018. Orange
and red lines stand for mesostate and macrostate evolution respectively. The blue lines
(solid and dashed) correspond to the S(E(λ = c, β)) function for specific values of c =
{0.001, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2} from top to bottom.
The green lines represent isotherms for β = {0.5, 1, 1.5, 2} from right to left, with the solid green line
for β = 1.5.
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Fig. 6 Temperature diagram for entropy efficiency Q = Smeso/E, where concepts in instantaneous
thermodynamic equilibrium are represented by the blue dots, and concepts with near power law
tf distribution are red. Historical values for equilibrium concepts ”Mass”, ”Diquark”, ”Energy” are
orange, and for non-equilibrium ”Anomalous Hall effect” are cyan. Dashed lines are linear functions
for Q = β (bottom dashed line) and Q = 0.69 + 1.1β (upper dashed line).
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Fig. 7 Free energy A and average internal energy per document E temperature diagram for concepts
with λ < 0.05 (red dots), with R < 0.04 (blue dots), and all other concepts (black dots). Green color
identifies concepts in a state of stable equilibrium whose residual entropy R < 0.04 does not change
in the period from 2002–2018.
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Fig. 8 Energy-temperature (inverse) diagram. The red and blue dashed lines represent the E(β)
dependence for fixed λ = 0.001 and λ = 0.8, respectively. Gray lines correspond to λ = 0.2 and
λ = 0.3 (dashed) and highlight the minimum E(β) function over a wide range of temperatures. The
orange line shows the state dynamics of the ”Anomalous Hall effect” concept.
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Fig. 9 Correlation between the free energy to internal energy ratio and entropy reduction ratio for
four states of concepts: concepts with λ < 0.05 (red dots), with R < 0.04 (blue dots), concepts in a
stable equilibrium (green dots), and all other concepts (black dots).
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Fig. 10 Heat capacity of concepts from temperature is shown for the several types of concepts:
concepts with λ < 0.05 (red dots), with R < 0.04 (blue dots), concepts in a stable equilibrium (green
dots), and all other concepts (black dots). The heat capacity dynamics is calculated for the equilibrium
concepts (orange color) and non-equilibrium concept ”Anomalous hall effect” (cyan color line). The
derivative ∂E/∂T is calculated using Eqs.(6 and (4)) for the constant λ = 0.001 (red dashed line)
and λ = 0.0042 (blue dashed line)
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Fig. 11 Free energy change from entropy production for the period 2017-2018 for concepts in a
spatial and steady equilibrium (blue and green dots respectively), concepts whose distribution is close
to power law with λ < 0.05 (red dots). Stochastic dynamics of the concept ”Anomalous Hall effect”
for the period 2002-2018 with a monthly time step is shown by the orange line.
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