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This paper describes a new mathematical model for the estimation of the grade of a climbing
route. The calculation is based on the association of several route and boulder sections separated by
rests. Contrary to other similar methods, this model introduces a probabilistic approach describing
the uncertainty that one can have about the grade and the different feelings that climbers can have
on a route grade. Several aspects of the model are commented and studied. A short comparative
study of some of the hardest routes in the world is also presented.

I. INTRODUCTION

Climbing grades are important features of rock climbing since they aim to indicate the difficulty of each route [1].
They are also a piece of important information for climbers since they tell them how affordable a route is. Grades are
also an important for professional climbers searching for the most challenging climbs in the world. Different grade
systems exist [1], but they are widely known for being both subjective and representing a kind of underlying truth of
a route difficulty [2]. The grades of sport and boulder lines take into account in a complex way the size/shape of the
holds, their spacing, their orientation, the steepness, the length of the route, and sometimes the clipping positions.
All these aspects put constraints on the human ability to climb a rock. Based on their technical skills, their strength,
and their flexibility, climbers process these data to estimate the difficulty. This is a complex task for which there is no
real recipe (although machine learning techniques have been tried to predict the grade of boulder problems from the
data of hold positions [3]). A climber can propose a grade based on their own experience on a given difficulty range,
but the process is at the end, based on personal feeling. The ”official” grade of the route is obtained after multiple
repetitions of this latter until a consensus is obtained. Mathematically, this can be seen as an average over all the
personal grades. This observation leads to the idea that attributing a grade to a route can be modeled mathematically
using probability theory [4]. In such a picture, the grade is a random variable that takes its value for each person who
climbs the route. As a consequence, a route is attributed to a probability density of grade that tells us how likely a
given difficulty level can be felt by someone. The ”official” grade is then the expected value.

On another side, there has been an increasing interest in a systematic way of evaluating the grade of a route,
from the data of each sequence of this latter. Such an algorithm has existed informally more or less for many years,
but the development of a well-defined and effective computation method is very recent [5–7]. Up to date, the most
successful method is the one provided by the website darth-grader.net [7], called DGC in this paper, for Darth-
Grader Calculator. DGC calculates a route grade based on the association of several route and boulder sections
separated by rests. In many situations, it returns the correct grade (or at least a likely grade), but it has several
drawbacks [8]. (i) It does not take into account the uncertainty or the probabilistic aspects. (ii) It cannot take into
account an effect that can be called ”a sensitivity to initial conditions” for which a small change in one or several
sections can lead to a very different final result. (iii) In some specific situations, it leads to obvious false estimations.
For example, a 7B boulder followed without rest with a 6a route (in the French grade system) is rated 7c+ (hard) by
DGC, while the reverse route, i.e., a 6a followed without rest by a 7B, returns an 8a (soft) route. The 7B boulder
being extremely harder than the 6a route, it must not make any significant difference in the final grade if it comes
first or second.

This paper is devoted to the presentation of a mathematical model resolving the issues of DGC listed above. The
algorithm is then used for a short comparative study of some of the hardest routes in the world. The program used
for the numerical computation is not yet user-friendly nor available on the internet. But these further developments
could be of great interest to many practitioners, both amateur and professional.

The structure of the article is the following. First, the mathematical model is presented. The motivations behind
the model are explained in detail, and the parameter fitting procedure is discussed (the system depends on a few
parameters that must be determined first). Next, the comparative study of a few routes is presented. Finally, a short
conclusion is made.
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II. THE MATHEMATICAL MODEL

The model is based on the idea that the grade of a route can be evaluated by decomposing the route into small
sections and rests that can be graded individually. The association of all these building blocks must return the grade
of the entire line. As will be explained in detail below, the association rule must take into account a few mathematical
ingredients. But before going into these details, let us start the discussion with a quite widely believed fact [7], two
7a separated by a medium rest (i.e., a rest which is quite good, but not sufficient to recover completely from the
previous physical effort), should be 7b. In mathematical, terms, one would translate this into

7a M 7a = 7b (1)

or more generally,

gn M gn = gn+2. (2)

where gn denotes the grade n of the grade system, and M denotes a medium rest. The equation (2) is a recurrence
relationship. If one knows the difficulty of the first grade levels it is then possible, in principle, to span the entire
grade system, to recover all the existing grades, and even the ones which have not been achieved yet. Equation (2) is
interesting and easily exploitable for a human, but it is not easily used in a numerical algorithm, and most importantly,
it fails to capture nuances. With this relation, it is not possible to model a situation like ”these two routes are both
7a, but this one seems quite a bit harder, but not enough for being 7a+”.

A. Energy Associated With a Climbing Grade

To incorporate thin nuances in the estimation of climbing difficulty levels, the mathematical grade system must
be defined over real numbers R and not over integers N. The real number associated with the difficulty of a route
is denoted E, and it can be interpreted as the energy that must be provided by the climber to send the route. The
analogy has, however, some limits since the difficulty does not depend on pure strength, but it also depends on
technical abilities, or other physical abilities that reduce the intensity of the effort, such as flexibility. Then, the
quantity E is not strictly a physical energy, and it is kept unitless. Another interpretation of the quantity E is one of
the ranking points (a little bit like the 8a.nu scores [9]). Achieving a given grade returns a specific number of points.
The harder the route, the higher the number of points.

To provide a correspondence between a grade system and the real numbers, it is necessary to fix (in a quite arbitrary
way) the energy of the first grades, and then, the reference energy of all the grades can be deduced using equation
(2), which becomes 2En = En+2. Assuming that the first grades are given by 2, 3, and 4a, the energy associated
with these grades are assumed to be respectively E = 1, 2, 3. Note that for this model, it is chosen to start the grades
system with these three grades since it is very difficult to make a distinction between subdivisions (given by letters)
in the degrees 2 and 3. The energy associated with each grade from 2 to 10a is given in figure 1. The correspondence
between energy and grade as given in this figure is called the energy of reference. We observe an exponential increase of
the energy [10] (it is not linear, notice the log scale in the graph). Note that a similar conclusion has been established
in Ref. [11], where the authors have performed a rigorous analysis using a Bayesian analysis. A simple curve fitting
enables us to determine an approximated formula to estimate the energy of reference of a climbing grade. It is given
by

E ≈ 1.212n (3)

with n the number corresponding to the grade gn, with g1 = 2, g2 = 3, g3 = 4a, g4 = 4b,... Of course, the precise
values of the energies depend on the initial ones, chosen arbitrarily, but it does not change the fact that the energy
increases exponentially with the grade. The exponential increase is a key feature, the precise value of the energy is not
as relevant. This observation can be understood by making an analogy with the intensity of sounds [12]. To quantify
the strength of a sound, we usually use the decibel unit (dB). This is a log scale and a small difference in dB implies
a large difference in energy carried by the sound. This unit system has been chosen because humans are not sensible
linearly with the energy received from an acoustic wave. They are only able to distinguish large differences in energy
(i.e. if a sound feels a little bit stronger than another one, it does not carry a little bit more energy, it carries a lot
more energy). A similar situation happens for the difficulty of climbing routes.
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FIG. 1. Energy of reference E associated with each climbing grade (French system), from the level 2 to the level 10a. The
curve fit as for equation E = 1.212n, with n the number associated with the grade gn. The correspondence with the first grades
is g1 = 2, g2 = 3, g3 = 4a, g4 = 4b,...

B. Bouldery vs. Endurance Sections

When sections are short and bouldery, it is harder to attribute a grade similar to the one of an entire route. The
common practice is to provide a boulder grade on short hard sections (i.e., ≲ 10 moves) and to keep a route grade
for long endurance sections (i.e., ≳ 10 moves). Here again, the French grade (Fontainebleau) system is employed for
boulder grades. Despite its similar notation with the route grade system, the difficulty levels and the scale of the
boulder system do not correspond to the route system [13]. It was initially assumed a dissimilarity of one degree
between boulder grades and route grades. For example, doing a 6A or 6B in Fontainebleau would be as hard as doing
a 7a route. This correspondence remains valid for the easiest problems, but it has been modified over the years when
new climbing difficulties have been introduced. For example, a 7B boulder corresponds to 8a routes, and a 8B+
boulder corresponds to a 9a route. However, there still exists some discrepancies. The 8B+ ↔ 9a correspondence is
now widely assumed for the route Hubble [14], at Raven Tor, but some very long boulders are graded 8C, and they
are assumed equivalent to 9a or 9a+ routes (e.g. ”la force”, at Orsay’s roof, ”The wheel of life” in the Grampians,
”Unendliche Geshichte 1+2+3” in Magic Wood) [15].

To assign an energy value to boulder grades, whose scale is already fixed by the equation (2), a few assumptions
are required. In the following, it is assumed that 2 ↔ 2, 6a ↔ 4A, 7a ↔ 6B, 8a ↔ 7B, 9a ↔ 8B+, 9a + /9b ↔ 8C,
9b/9b+ ↔ 8C+, 9b+ /9c ↔ 9A. Here, the energy of a slashed grade corresponds to the midpoint energy between the
reference energy of the two nearby grades (note that the slash will also be used with another meaning, below in the
text). A linear interpolation is used for the grades in between. The last correspondences are based on Adam Ondra’s
opinion, as given in [13].

C. Different Association Rules

The next step of the mathematical model is to introduce different association rules of energy. The underlying
purpose is to incorporate in the computation the quality of a rest between two sections, and the intensity of the
sections (bouldery or endurance). Following the classification of DGC, rests are classified into good (G), medium
(M), bad (B), and non-existing (N). A good rest is a rest for which an (almost) complete recovery of the physical
abilities is possible. A non-existing rest is by definition the absence of rest, a bad rest is a very short break, where
it is possible to shake a bit, and chalk the hands, but it is not sufficient for a complete recovery. A medium rest is
something in between a good and a bad rest.

Using the same convention as equation (2), an arbitrary association rule is noted

gn R gk = gl (4)

with R = G,M,B,N .
The 4 types of rests provide an easy-to-use classification. However, it has some limitations, which are the same as

the climbing grades. For the mathematical model, it is preferable to describe a rest with a real number, taken in the
interval I = [0, 1]. For simplicity, such a number is also noted R in the following. A rest with R = 0 corresponds to
a nonexistent rest, and a rest with R = 1 corresponds to a good rest. Medium and bad rests are defined respectively
by R = 0.5 and R = 0.25.
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With these materials at hand, it is now possible to translate equation (4) into an operation on energies. It takes
the form of a function E3 = f(E1, R,E2), with f : R× I×R → R . Here, the following form of the function is chosen:

f(E1, R,E2) = E+ + β

(
1 + α1,2(R)e−

(lnE2−lnE1)4

σ

)
E− (5)

E+ = max(E2, E1) (6)

E− = min(E2, E1) (7)

α12(R) =


R αG12 + (1−R)αN12 if E1 < E2

R αG21 + (1−R)αN21 if E1 > E2

R

2
(αG12 + αG21) +

1−R

2
(αN12 + αN21) if E1 = E2

(8)

β = 1 + β0e
− (lnE2−lnE1)4

σ (9)

where β0 is a positive constant different from zero 0 if the second section is a boulder problem. For a long section
of endurance, β0 = 0. Moreover, σ > 0 is another parameter to determine. In total, the model has 6 parameters,
αG12, αG21, αN12, αN21, β0, σ. They must be determined from the data of well-established routes. The derivation
method of these coefficients is described in section II F.

The association function may look a little bit complicated, but it possesses the following interesting properties:

• It returns a real number that can be assimilated to the energy of a route.

• It is not commutative, e.g., 8a N 7c is not equal to 7c N 8a.

• It cannot be smaller than the largest energy associated with the two sections (e.g.the energy of 8a G 7a cannot
be smaller than the energy of 8a).

• The easiest section contributes significantly to the total grade only if its difficulty level is not too far from the
highest one (e.g., the 5b in 8a N 5b is negligible in front of the 8a, and the result must be 8a, but in the case of
8a N 7c, the 7c is not negligible and the final result must be higher than 8a.)

• The quality of the rest influences the total grade by weighting the contribution of the easiest section. The
hardest one remains unaffected by a rest.

• A boulder section coming in second position is usually harder to achieve. Consequently, its energy acquires an
added value, but only if the boulder problem resides in the same range of difficulty as the other section.

D. Introducing probability distributions

In the previous sections, a mathematical model of routes and boulder climbing grades has been developed. An
energy quantity has been assigned to any kind of climbing sequence, and association rules have been proposed to
compute the energy of a full route. Real numbers have been used to open the possibility that routes or boulders with
the same grade can feel more or less hard, but this aspect has not been fully exploited yet. Moreover, the model, as it
is presented so far, is not fully satisfactory since it does not well describe the various opinions on the difficulty level of
a line. A possible origin for the disparate viewpoints comes from the personal limitations of climbers. For example,
a reachy route is harder for small people. This leads to the idea that a grade is not always fully determined, and we
have a probability to obtain a given difficulty level. The probability distribution can be spread over different levels
(for example 50% 8a+ and 50% 8b), but it can also be extremely located on a single one(e.g., 3% 7c+, 92% 8a, and
5% 8a+).
In the mathematical model, the probability distribution is defined by a normalized function p(E) : R → [0, 1]. This

distribution can be mapped back to the climbing grades using the energy grade correspondence given in figure 1. The
switching between two grades gn and gn+1 is defined by the midpoint energy Eswitching = 1

2 (E(gn) + E(gn+1)).
With the introduction of probabilities, the energy of a route becomes a random variable. As a consequence, during

the computation we have to specify a probability distribution of energy for each climbing section and rest. Many
choices of input probability distribution can be decided. For the climbing sections, they are all chosen uniform on
the interval [ln(E1), ln(E2)], where E1 and E2 are respectively the minimum and the maximum energy allowed on the
uncertainty interval. A uniform probability distribution on an interval A is noted by uA. The input probability for the
energy E is therefore noted u[ln(E1),ln(E2)](E). Logarithms are utilized to return approximately a uniform distribution
on climbing grades rather than on energy. The values of E1 and E2 are by default the switching energies between
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the nearest grades, but, is can also be any energy. The interval of uncertainty can be chosen arbitrarily large. This
is useful for sections very difficult to estimate (i.e., the interval can cover more than a single difficulty level).

In addition to the probability distribution on energies, a probability distribution p(R) : I → [0, 1] is assigned to the
rests. They are also assumed uniforms on a subinterval [R1, R2] ∈ I, i.e., p(R) = u[R1,R2](R).

Now that input probability distributions are specified, the question is how the probability distribution of a full route
can be computed. For each section and rest, random values of energies and rests are generated numerically. With
these values, the energy of the full route is computed recursively using the equation (5). The process is repeated many
times (typically several thousand repetitions). The final energy of the route is stored in memory for each repetition.
Each value of the final energy is different, and they are realizations of a random variable corresponding to the energy
of the full route. Then, the probability distribution of the line is reconstructed with the histogram of the computed
energies. Note that contrary to the initial probability distributions, the final one is not necessarily uniform.

E. Summary of the algorithm and illustration through an example

Now that all the ingredients of the mathematical model have been introduced, it is possible to summarize more
clearly the calculation steps.

1. Define the probability distribution u
[ln(E

(n)
1 ),ln(E

(n)
2 )]

for each climbing section of the routes, as well as the

probability distribution u
[R

(n)
1 ,R

(n)
2 ]

for each rest of the route. The indices (n) refer to their order of appearance

in the full route. The definition of these probabilities consists on specifying E
(n)
1 , E

(n)
2 , R

(n)
1 , and R

(n)
2 .

2. For i = 1 to i = N , with N chosen sufficiently large (quite good values are N = 2000 or N = 5000), do the
following steps:

• Generate random energies E
(n)
i , and random rest R

(n)
i , using the probability laws u

[ln(E
(n)
1 ),ln(E

(n)
2 )]

and
u
[R

(n)
1 ,R

(n)
2 ]

.

• Compute recursively the energy of the route using E
(n)
i , R

(n)
i , and equation (5). The recursion is performed

as follows. First compute f(E
(1)
i , R

(2)
i , E

(3)
i ), then compute, f(f(E

(1)
i , R

(2)
i , E

(3)
i ), R

(4)
i , E

(5)
i ),... until all

the sections and rests of the route have been used. The result of this computation corresponds to the final
energy of the route, and it is noted Ei,final.

3. Compute a histogram from the data of the N values Ei,final. Normalize the histogram to get a probability
distribution.

To illustrate the algorithm, the example of an hypothetical route is considered. The line is defined by:

g = 7a M 7a M/G 6B/6B + . (10)

The use of slashes differs from the usual convention and its first appearance in this paper. It means that the probability
distribution is not centered on a single grade, but the interval used for the probability distribution is determined by
the reference energy of the two grades.

The distributions associated with each section of the route are the following:

• For a 7a section, p7a(E) = u[ln 733.5,ln 1075](E), with 733.5 = 1
2 (E6c+ + E7a) and 733.5 = 1

2 (E7a+ + E7a)

• For a medium rest, pM (R) = δ(R− 0.5), with δ the Dirac distribution.

• For a medium/good rest, pM/G(R) = u[0.5,1](R).

• For a 6B/6B+ section, p6B/6B+(E) = u[ln 872,ln 2166](E), with 872 = E6B and 2166 = E6B+.

The probability distribution of the full route is computed in two steps, each step being given by the computation
of the map f . The first application of f returns us a distribution pintermediate = f(p7a, pM , p7a), which corresponds
to the distribution associated with 7a M 7a. The second use of f provide us the final probability distribution
pfinal = f(pintermediate, pM/G, p6B/6B+). Of course, this last distribution corresponds to equation (10).
The probability distributions p7a(E), pintermediate(E), and pfinal(E) are plotted in figure 2. Several observations

can be made. First, the shape of the distribution is not conserved. The initial distribution is (almost) flat, the small
variations are numerical artifacts induced by the finite sampling of the distribution. The second distribution is closer
to a normal law, and the third one has two distinct peaks. The accumulation of uncertainties at each section of the
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FIG. 2. (Left) smooth probability distribution p7a(E), pintermediate(E), and pfinal(E). To simplify the reading, the abscissa is
in a log scale, and reference energy values are replaced by their corresponding grade. (Right) probability p(gn) to find a given
grade for the three cases of the left panel (see equation (11) for its definition).

route is responsible for a large uncertainty in the final difficulty level. For most people, it is likely a 7c route, but 7b+
and 7c+ are also possible. In fact, almost fifty percent of the climbers may disagree on the final grade. In the end, the
7c may remain the ”official” grade, but no clear consensus may be achieved. Interestingly, we recover the property
illustrated in equation (2). This is a key observation for the consistency of the model. Indeed, equation (2) was
used to define the reference energies, but it is not used anymore in the definition of f (equation (5)). It is therefore
non-trivial that f conserves the relation (2).

The continuous probability distribution p(E) provides precise information on the difficulty of the line, but it does
not directly answer the following question: what is the probability of getting a given grade? In other words, we would
like to pass from a continuous description with the variable E to a discrete description with the variable gn, expressed
in a usual grade system. The mapping is performed with the integral:

p(gn) =

∫ (En+1+En)/2

(En−1+En)/2

p(E) dE. (11)

These discrete probabilities are given in the right panel of figure 2.

F. Computation of the Model Parameters

The computation of the free parameters of the model is a nontrivial task. They can be determined by fitting the
model with experimental data, i.e., data of well-established routes.

A collection of 33 well-characterized routes is used as a training dataset for the model (see appendix). The number
of elements in the dataset is small compared to typical machine learning problems [16, 17], but here, the number
of parameters of the model is small and it does not seem necessary to use datasets with thousands or millions of
elements. The dataset entries are chosen to represent as much as possible all the possible kinds of associations. The
parameter fitting of αG12, αG21, αN12, αN21, and β0 is performed by minimizing the cost function:

C =
1

Nroute

Nroute∑
r=1

| ln(Er,target)− ln(⟨Er,final⟩)| (12)

with, Nroute = 33 the number of routes in the training dataset, Er,target is the target energy associated with the grade
of the route r of the dataset. This energy is assumed known without uncertainty, and the grade/energy correspondence
is the one given in figure 1. ⟨Er,final⟩ denotes the estimated mean value of the final energy of the route r, as computed
by the algorithm. This energy depends directly on the series of climbing sequences and rests of the line (which are
specified in the dataset), and it also depends on the parameters to fit. Note that C can be evaluated with good
accuracy using only a few random realizations of ⟨Er,final⟩ (order of 50 compared to an order of 5000 to evaluate the
probability distribution correctly). The cost function F is then minimized with the algorithm JAYA [18]. The result
of the optimization is: αG12 = 0.0016, αG21 = 0.2873, αN12 = 0.8485, αN21 = 0.3828, and β0 = 0.3754.
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FIG. 3. Probabilities p(gn) predicted by the algorithm. The target (official) grades of the routes are given after their names in
brackets. As we can observe, the probabilities are always highly concentrated around the target grade.

The parameter σ is not determined like the other parameters. It is fixed by hand to σ = 20. The dataset does not
allow us to determine it very accurately, but having an accurate value does not seem strictly necessary. It is chosen
large enough so that only nearby grades can influence each other, but not too much, to limit the influence of a small
grade on a large one.

With this kind of a mathematical model, which is aimed at predicting new data from the basis of known ones (i.e.,
like in machine-learning techniques), another dataset called the validation set is used to verify the model predictive
power. In typical machine learning systems, the training dataset is around 80% of all the data, and the validation
dataset is the remaining 20% [16, 17]. Here the validation set is composed of 8 routes with different grades (see
appendix for details). The probabilities p(gn) of these routes, as predicted by the algorithm are given in figure 3.
We observe a very good correspondence between the target grades and the highest-grade probability predicted by the
algorithm, hence validating the relevance of the model.

III. APPLICATION: COMPARISON OF SOME OF THE WORLD’S HARDEST ROUTES

To finish this paper, the algorithm is applied in a short comparative analysis of some of the hardest routes in the
world (at the moment of writing this paper).

The routes are Silence (9c) [15], DNA (9c) [19], B.I.G. (9c) [20], Sleeping Lion (9b+) [21], and Excalibur (9b+) [22].
The lines have been visited by several climbers, but since their first ascent, none has been repeated yet [23]. The first
ascents were made respectively by Adam Ondra (2017), Seb Bouin (2022), Jackob Schubert (2023), Chris Sharma
(2023), and Stefano Ghisolfi (2023). For each of these climbers, these routes may be considered as their hardest
achievement so far.

The grade density probabilities are computed with the following sequences:

• Silence: 8b G 8C/8C + B/M 8A/8B B 7C + G 7B,

• DNA: 8c/8c+ M/G 8A/8B B 8A+ /8B N/B 8c+,

• B.I.G: 9b N/B 8A/8B N 8a/8a+,

• Sleeping Lion: 7B/7B + G 8A M/G 8A B/M 8A/8A+ N/B 8A

• Excalibur: 8B B/M 8C.
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It should be noted that some sequences of Silence and DNA are slightly different from the ones initially given after
the first ascent, due to additional opinions given by other climbers. For Silence, the first crux may be slightly harder
than 8C since it has been tried by at least 3 other climbers, but only A. Ondra has done it yet. Concerning the second
crux of the route, it may be easier than initially expected. For DNA, after the comments on J. Schubert, the boulder
problems can be harder than the grades given by S. Bouin, especially the first one which has a reachy move.

The probability density p(E) of each route is given in figure III. The grade probabilities p(gn) are given in table III.
We observe that all the routes are predicted in the range 9b+ / 9c, but only Silence can be considered as a pure 9c
since it has a 100% probability on this grade. The second hardest route is DNA but with a 9c probability around
55%. All the other routes are more likely to be 9b+. However, several comments on these results can be made.

First of all, Sleeping Lion is very close to DNA, the difficulty seems also clearly above B.I.G. Then, Chris Sharma
could have announced 9c for this route. The frontier is very close. If we consider that the two middle rests are
respectivelly M and B, the 9c probability goes to 69%. If the 8A boulder problems are all replaced by 7C + /8A
boulders and the 8A/8A+ boulder is replaced by a 8A boulder, the grade falls to 9b+ with a probability of 99%.

As a second comment, the density probabilities of B.I.G and Excalibur are quite similar. They are also very large,
and this complicates the choice of a grade. For B.I.G, the arguments were clearly asserted by Ondra and Schubert:
the route is very long, and the crux feels very hard coming from the ground. Moreover, the route remains more or less
humid all the time, and this is a source of additional difficulty. The 9c possibility is small, but for these two climbers,
the route feels harder than all the other 9b+ they have made. For Excalibur, this is quite the opposite. The route is
short, and so is the duration of the effort. The key to success relies on the middle rest. For a medium rest, the grade
is 9b+ at 72% (still, it remains a hard one), but for a very bad or nonexistent rest (let us say, there is no rest at all),
the route is 9c at only 60%.

To conclude this small application of the algorithm, it enables us to render quite accurately the true difficulty of
a route. A clear consensus on the grade of Silence may be easily achieved, but this may not be the case for DNA,
B.I.G., and Sleeping Lion. Their grade could be adjusted by the next repeaters. With these lines very difficult to
grade, the maths do not always return the final conclusion. One also has to answer the question, ”Which grade do
you want for this route”. As A. Ondra said about B.I.G [24]: ”I think this amazing route deserves a nice grade, too”.
This is not the first time that such a thing has happened! Maybe almost all the climbing crags have amazing routes
with nice grades?

DNA

Silence

B.I.G.

Sleeping Lion

Excalibur

9b+ 9c 9c+
0

2

4

6

8

Grade

p

FIG. 4. Probability p(E) to obtain a given grade for DNA, Silence, B.IG., Sleeping Lion, and Excalibur. To simplify the
reading, the abscissa is in a log scale, and reference energy values are replaced by their corresponding grade.

9b+ 9c

DNA 45% 55%
Silence 0% 100%
B.I.G. 84% 16%

Sleeping Lion 77% 23%
Excalibur 65% 35%

TABLE I. Probability p(gn) to obtain a given grade for DNA, Silence, B.IG., Sleeping Lion, and Excalibur.
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IV. CONCLUSION

In this paper, a mathematical model for the estimation of climbing route grades was presented. The calculation
is based on the association of several route and boulder sections separated by rests. The model incorporates several
key ingredients. First, the level of difficulty and the quality of a rest in quantified using real numbers. They are
interpreted respectively by the amount of energy that must be provided to achieve the route (or in some sense the
number of rewarding points for sending a given difficulty), and a percentage of the quality of the rest. Based on
real-life observations, a correspondence grade/energy and ”type of rest”/”percentage of rest” is made. Interestingly,
the energy scales exponentially with the grade. A second important feature is the association rule that allows us to
combine the energy of sections separated by rests into the energy associated with the full line. Using the grade/energy
correspondence, the grade of the full section can be deduced. The association rule depends on a few parameters derived
by a fitting procedure. This latter is performed utilizing an optimization algorithm that computes the best set of
parameters reproducing the difficulty level of a dataset of well-characterized routes. The fitted model is then checked
using a second dataset. The last important point is the incorporation of probability densities in the model. The use
of probabilities is motivated by the various difficulty level that climbers may witness on the same line. In this setting,
the grade attributed by each climber is a random variable, and the ”official” grade, the grade given in a guidebook
for instance, is the expected value.

As an illustrative example, the algorithm was applied to compare a few of the most difficult routes of the world:
Silence, DNA, B.I.G., Sleeping Lion, and Excalibur. This short comparative study emphasizes very different situations:
cases where there is no possible uncertainty of the grade (everybody will agree on it), and cases where a consensus is
far more difficult. Several motivations used to choose a grade rather than another have also been reviewed.

This mathematical model can be further improved to take into account additional features. For example, the
addition of very physical sections may not have the same impact as the addition of more technical sections. Moreover,
the fitting parameters may also be improved with a bigger dataset. Another possibility is to replace the equation (5)
with a neural network. A neural network usually has a very large number of free parameters that must be fixed
with the training procedure. This large number of degrees of freedom in the model can enable us to reduce many
assumptions (such as the form of eq. (5)). Basically, it would learn the association rule from nothing else than the
dataset. This may be very interesting, but it would require a very huge dataset and heavy numerical computations
for the training.

As a final remark, the algorithm can also be used to predict the grade of boulder problems if the moves or the
sections are graded individually. This kind of computation is straightforward, it is only sufficient to replace the route
energies of reference by the boulder energies of references in the computation of the histogram. As an example, the
algorithm predict a 100% probability on 9A for Burden of Dreams, which is the correct grade according to community
(for this computation, the following sequence is used: 8B + N 7C N 7C + N 7A/B 8A).

Appendix A: Datasets

The dataset used for the parameter fitting is given in the table II. The dataset used to validate the fitted parameters
is given in the table III.
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Route Name Location Target Grade Sequences

Silence Flatenger 9c 8b G 8C/C+ B/M 8A+/8B B 7C+ G 7B
Change Flatenger 9b+ 7C M/G 8B/+ G 7C N 7a/b G 9a

Bibliographie Céüse 9b+ 8b+ G 8A+/B B 9a
La Dura Dura Oliana 9b+ 7C N 7C N 8B+ M 8c/c+ M 8a

Zvěřniec Hoľstejn 9b+ 9a+ G 8B+ N/B 7A
Vasil Vasil Sloup 9b+ 8b N 8B+ N 7A
Taurus Byci Skala 9b 8C+ N 8b

Chaxi Raxi Oliana 9b 8B+ G 9a/a+
Move Flatenger 9b+ 9a B/G 8B+

Beyond Integral Pic St. loup 9b 9a+ G 8A+
Biographie Céüse 9a+ 8c+ M 7C+/8A M 7c
Papichulo Oliana 9a+ 8b/b+ G 8c/c+ B 8b+/c

Les Yeux Plus Gros que l’Antre Russan 9a+ 8c G 9a
Pornographie (with kneepad) Céüse 8c+ 8c B 8b

Mange ta Soupe St. Pancrasse 8c 8a+ N 7B+
Le minimum Buoux 8c 7c N 7C M 7c
Eliot Le Pilote St. Ange 8b+ 8a+ G 7B
Check Up Gros Parmelan 8b+ 7B+ B 8a+

La Rage de Vivre buoux 8b+ 8b G 8a+
Clafoutis Mouxy 8a+ 7c+ M 7c+

Mo..Mo..Motus La Baume du Syratu 8a 7b+ G 7c+
Gras Mouillé Romeyer 8a 7c M 7c
Appel au Roi Barmaud 7c+ 6C N 7a+/b
Les samares Barmaud 7c 7a/a+ G 6B G 6B G 6c

Écureuil Plongeur Barmaud 7c 7b M 7b
La Chose Céüse 7c 6C+ G 7a

Télémaque Contrôle Saint Léger 7b+ 7a+/b G 7a+
Galaxy Céüse 7b+ 6C G 7a+

Le Concasseur Tamée 7b+ 6c G 6B N 7a
Miaou Mouxy 7b 6c+ B 7a

Une Ténébreuse Affaire Barmaud 7a 6c G 6c
Œstrogène La Brême 6b+ 6b G 6a+
Les Aigles La brême 5c 5a+ G 5b+

TABLE II. Dataset used for the parameter fitting.

Route Name Location Target Grade Sequences

First Round First Minute Margalef 9b 7C+ N/B 8A+ N/B 7B+/C
Qui Geisterschmiedwand 9a+ 8c M 8A+

Joe Blau Oliana 8c+ 8a+ G 8b+ M 8b
Le Nabab Saint Léger 8b+ 8a M 8a M 8a G 7b+

Mort aux voleurs de feux Le Quint 8a+ 6a+ N 7B G 6B
Le Grand Pouvoir Le Quint 8a 7b N/B 6C/C+

Coup de Pied de Biche Rurey 7c 6B+/C G 7b
Est pas P’tit Pois Moi Rurey 7b 6a G 7a+ M 6c

TABLE III. Dataset used to validate the fitted parameters.
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