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Graph databases (GDBs) like Neo4j and TigerGraph excel at handling interconnected data but lack

advanced inference capabilities. Neural Graph Databases (NGDBs) address this by integrating Graph

Neural Networks (GNNs) for predictive analysis and reasoning over incomplete or noisy data.

However, NGDBs rely on prede�ned queries and lack autonomy and adaptability. This paper

introduces Agentic Neural Graph Databases (Agentic NGDBs), which extend NGDBs with three core

functionalities: autonomous query construction, neural query execution, and continuous learning.

We identify ten key challenges in realizing Agentic NGDBs: semantic unit representation, abductive

reasoning, scalable query execution, and integration with foundation models like large language

models (LLMs). By addressing these challenges, Agentic NGDBs can enable intelligent, self-

improving systems for modern data-driven applications, paving the way for adaptable and

autonomous data management solutions.
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1. Introduction

Graph databases like Neo4j[1], TigerGraph[2], and Azure Cosmos DB are useful tools for representing

and querying interconnected data using nodes and edges. These databases are adept at handling the

complex relationships inherent in graph-structured data, providing e�cient mechanisms for storage

and retrieval.
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A Neural Graph Database (NGDB), as introduced in[3], represents a system architecture that merges

the predictive capabilities of Graph Neural Networks (GNNs) with the rich data representation features

of graph databases (GDBs). NGDBs enhance graph databases by leveraging GNNs for advanced

machine-learning tasks while preserving and utilizing the information embedded within the graph

data model.

However, methodologies for conducting inferences within this latent neural space are yet to be

thoroughly explored. To address this gap, the integration of neural execution engines on top of neural

graph storage has been proposed[4]. By utilizing neural embeddings and neural networks, NGDBs

enhance their ability to perform complex reasoning and more e�ectively infer hidden relationships,

which are the capabilities that traditional graph databases lack. This fusion of symbolic graph

representations with neural computation paves the way for more intelligent and adaptable data

management systems to address contemporary applications’ diverse demands. The process of

“neuralization” is particularly bene�cial for inferring missing information within the underlying

graph data model, enriching the database with additional knowledge.

From a broader perspective, the principles of data management systems revolve around e�ciently

storing, retrieving, and managing data while providing a layer of abstraction to users. These systems

aim to handle large volumes of data and complex operations, concealing the underlying complexities

from end-users. Motivated by this principle, we propose the concept of Agentic Neural Graph

Databases (Agentic NGDBs), extending neuralization to further automate data and data management

processes. Here, we summarize the challenges regarding the Agentic NGDB from the following three

perspectives interface, learning, and system:

Interface: The Agentic NGDB should automatically construct appropriate queries that generate

useful answers for a given task in a speci�c context.

Learning and Inference: Agentic NGDB should leverage neural networks to execute queries and

derive meaningful answers as neural network predictions, even when the underlying data model is

incomplete.

System: The Agentic NGDB should remain compatible with existing graph databases, supporting

most standard GDB operators. Additionally, it should function as an adaptor for foundation models,

enhancing knowledge and reasoning capabilities. Furthermore, it must actively learn by

constructing and executing appropriate CREATE, UPDATE, or DELETE queries in a given context.
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There are signi�cant challenges to achieving each of these aspects, as illustrated in Figure  1. We

identify the most critical challenges for realizing these functionalities based on recent progress in the

research community on logical query answering and logical hypothesis generation for relational

graphs.

Figure 1. The top ten challenges in achieving Agentic NGDB. Its three perspectives include interface,

learning, and system.

Interface

The �rst signi�cant challenge in the Interface component is addressing fundamental semantic units

(Challenge 1) within the neural graph database’s query and data model. Semantic units refer to the

data types associated with nodes and edges, such as atomic IDs, text strings (e.g., entities and events),

numbers, and dates. Constructing queries that e�ectively handle these diverse semantic units

presents a signi�cant obstacle. Beyond managing individual semantic units, another critical challenge

lies in connecting these units to construct more complex queries. The Interface component also

requires advanced abductive reasoning capabilities (Challenge 2). In Agentic NGDBs, abductive

reasoning refers to identifying the optimal NGDB query that best explains or supports a speci�c task

in a given context. This capability ensures that the database can adaptively generate meaningful, task-

relevant queries. The generated queries can then be executed symbolically by a graph database or

through neural execution within the system.

Learning and Inference

Neural query execution is the core functionality of traditional NGDBs, referring to the ability to

perform tasks or actions according to a prede�ned plan or strategy within the neural space[5]  by
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learning and inferences. However, several practical challenges remain in this area. One major

challenge is enhancing inference capabilities for better generalization (Challenge 3) across query

families. This involves ensuring that NGDB systems can e�ectively handle and generalize across

diverse query structures and types, even when presented with novel or complex combinations of

queries. Another critical hurdle involves maintaining data privacy and security (Challenge 4). Due to

their inherent vulnerability to extracting latent knowledge, NGDBs must safeguard sensitive

information against advanced inference attacks, particularly in neural models. Robust privacy

mechanisms are essential for building trust and ensuring security in NGDB applications. The scaling

laws of neural query execution (Challenge 5) must be explored. Scaling laws in NGDBs describe how the

system’s performance improves as key factors, such as the number of model parameters, the size of

the training dataset, and training costs, are increased. This concept is rooted in neural scaling laws

observed in deep learning, where larger models generally lead to better performance, albeit at higher

computational costs.

System

The System component focuses on building a system on top of the learning and inference algorithms

that can ensure continuous learning and adaptation within Agentic NGDBs. E�ciently processing and

managing large-scale data while maintaining high performance becomes especially critical when

dealing with massive datasets. This challenge is further ampli�ed in distributed NGDB architectures,

where optimizing query performance under read-intensive workloads and dynamically �uctuating

demands is necessary. Ensuring elastic scalability and developing NGDBs that operate e�ectively as

distributed systems (Challenge 6) are key to achieving these goals. These systems must be capable of

improving themselves by writing and executing CREATE, UPDATE, and DELETE clauses or performing

model editing directly within the neural latent space. The �rst aspect of this functionality involves

ensuring compatibility with graph database models (Challenge 7). The fundamental CRUD (CREATE,

READ, UPDATE, DELETE) actions are essential for managing and modifying persistent data elements

in traditional graph databases. Seamlessly integrating these actions into NGDBs is necessary for

enabling e�ective self-improvement. The second aspect involves grounding vectors within NGDBs

(Challenge 8). For e�ective learning and adaptation, the system must accurately identify the locations

of relevant knowledge and understand how reasoning is conducted within the latent neural space.

Proper grounding ensures that modi�cations and updates align with the underlying knowledge

representation. Moreover, the Agentic NGDB must be capable of integrating with foundation models,
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such as large language models (LLMs), to enhance its reasoning and knowledge capabilities

(Challenge 9). The NGDB can provide more reliable and contextually accurate results for various tasks

by leveraging foundation models’ advanced natural language understanding and reasoning

capabilities. Finally, we discuss the challenge of developing Smart Neural Graph Databases (NGDB)

applications (Challenge 10), particularly Agentic NGDB. The challenges lie in creating systems that

leverage their advanced functionalities across diverse applications.

Agentic NGDBs extend the capabilities of traditional NGDBs by incorporating autonomy, active

learning, and adaptability. While NGDBs enhance graph databases by integrating Graph Neural

Networks (GNNs) to perform advanced inference and reasoning and handle incomplete or noisy data,

they rely heavily on prede�ned tasks and human-de�ned queries. In contrast, Agentic NGDBs

introduce three core functionalities: automatic query construction tailored to speci�c tasks and

contexts, neural query execution for predictive analysis, and continuous learning and adaptation

through active updates to the knowledge base. In the following sections, we will individually discuss

each identi�ed challenge.

2. Challenge 1: Semantic Units

The NGDB primarily relies on relational graphs, where nodes and relations are the basic semantic

units. Incorporating diverse semantic units, such as numbers and events, introduces complexity due

to their intrinsic relationships. For example, numbers involve algebraic operations (e.g., addition,

subtraction), while events involve temporal and causal relations. Addressing these complexities

requires reasoning engines that can learn and process such relationships e�ectively.

Number literals (e.g., age, height) are critical for �ltering and querying within NGDBs. Prior work

includes methods like KBLRN[6], KR-EAR[7], and LitCQD[8], which improve reasoning by integrating

numeric constraints into queries. Despite these advancements, challenges remain. These include

developing advanced numerical operations and integrating neural-symbolic systems into NGDBs

while ensuring compatibility with symbolic solvers for faithful reasoning. Existing approaches focus

on entity-centric knowledge graphs, but event-centric knowledge graphs (EVKGs) like ATOMIC[9] and

ASER[10] emphasize relationships between events (e.g., temporal and causal relations). Reasoning on

EVKGs involves determining event occurrences and their sequences, which introduces unique

challenges compared to entity-centric KGs. Recent work extends traditional reasoning by integrating

temporal and occurrence constraints[11].
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Moreover, beliefs, desires, and intentions (BDI) represent higher-level, abstract semantic units

extending beyond simple entity-attribute relationships and eventualities. These elements are crucial

for modeling human-like reasoning, decision-making, and behavior prediction. Beliefs refer to what

an agent (human or system) assumes or holds to be true about the world. These can include factual

statements like It is raining outside and subjective perspectives like This movie is great. In KGs, beliefs

are often represented as knowledge nodes or statements that may vary across agents or contexts,

allowing for personalization or multi-agent reasoning. Intentions represent the goals or purposes

behind an agent’s actions or decisions and as a bridge between beliefs and actions. Intentions are

often implicit and must be inferred from user behavior or contextual information. KGs are typically

modeled as motivational nodes or goals that guide reasoning about why an agent performs speci�c

actions. For instance, PersonX intends [to buy a gift for a friend], which could explain why PersonX

searches for [gift shops nearby]. On the other hand, desires represent an agent’s wants, preferences, or

needs, which may not always lead to concrete actions unless accompanied by intention. In knowledge

graphs, desires are commonly expressed as preferences or motivational entities that in�uence

behavior, such as PersonX desires [to eat ice cream]. These three elements allow knowledge graphs to

capture human motivations more comprehensively. These concepts are closely connected to the

Theory of Mind (ToM), which refers to the ability to understand that other agents (humans, machines,

etc.) possess their own beliefs, desires, and intentions that may di�er from one’s own. In the context

of knowledge graphs, the Theory of Mind enhances reasoning about multi-agent knowledge by

enabling the understanding of diverse perspectives. Theory of Mind also enables the inference of

motivations by reasoning about the interplay between beliefs, desires, and intentions.

Integrating BDI and ToM in Agentic NGDB has practical applications across various domains. In e-

commerce, systems like FolkScope[12], COSMO[13], and RIG[14] are the knowledge graphs that leverage

BDI to model user behavior, enabling personalized recommendations by linking user actions (e.g.,

purchases) with inferred desires and intentions. In commonsense reasoning, resources like ATOMIC

use BDI to represent cause-e�ect relationships, allowing systems to reason about potential outcomes

of actions. Multi-agent systems bene�t from BDI-enhanced KGs by enabling cooperative and

competitive interactions that account for multiple agents’ goals, beliefs, and desires. Additionally, in

natural language understanding, BDI helps interpret user intent in queries, conversations, and social

media posts by associating semantic meanings with inferred motivations. We still need systematic

storing and inference with these intention knowledge graphs.
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3. Challenge 2: Abductive Reasoning with NGDB

Abductive reasoning, the process of inferring the most plausible explanations for observations, is a

fundamental aspect of human cognition and arti�cial intelligence. In the context of knowledge graphs

(KGs), abductive reasoning generates hypotheses to explain observations (entity sets) by leveraging

structured relationships and entities. Complex Logical Query Answering (CLQA) has further advanced

abductive reasoning by enabling multi-hop logical inferences over large, incomplete graphs. Neural

Graph Databases (NGDBs) build on these advancements, o�ering a more �exible and robust

framework for abductive reasoning.

Early methods for abductive reasoning in KGs relied on supervised learning and search-based

techniques. Generative models, such as transformer-based architectures, were used to produce logical

hypotheses. For example,[15] proposed a supervised generative model trained on datasets like FB15k-

237 and WN18RR, which excelled in structural �delity but struggled to generalize to unseen

observations due to the limitations of supervised objectives. To address these limitations,

reinforcement learning (RL) techniques were introduced. Reinforcement Learning from Knowledge

Graph feedback (RLF-KG) employed proximal policy optimization (PPO) to generate hypotheses

aligned with observed evidence. This approach improved explanatory power and generalizability,

achieving signi�cant gains in metrics like Jaccard similarity and Smatch scores across multiple

datasets. NGDBs extend these methods by embedding knowledge graph data in a latent space,

enabling �exible query processing and hypothesis generation. By leveraging latent embeddings,

NGDBs can infer missing information and generate hypotheses for complex logical queries, even on

incomplete graphs, outperforming traditional graph databases. NGDBs represent a signi�cant step

forward in abductive reasoning, synthesizing the strengths of CLQA and advanced generative models.

However, several challenges must be addressed:

More Generalized Observation In the current de�nition of abductive reasoning, the de�nition of

the observations is a set of entities. However, observation can be further generalized to a context,

for example, a conversation history in the conversational recommendation task setting, or a

structured shopping session.

More Complex Structured Hypotheses Existing abductive reasoning models on KGs primarily focus

on conjunctive tree-formed queries. NGDBs, with their increased query expressiveness, require

hypothesis generation models capable of handling more complex structured observations. For
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instance, hypotheses should accommodate EFOk(existential �rst-order logic) and cyclic queries,

expanding beyond the limitations of earlier models.

Graph-Based Hypothesis Generation Models Traditional sequence-based models struggle to

capture the structural complexity of logical hypotheses, which are fundamentally query graphs.

These graphs exhibit features like permutation invariance of logical operators, requiring models

explicitly designed to generate graph-structured hypotheses.

NGDB as a Reward Model for Reinforcement Learning Previous RL-based methods, such as[15],

relied on symbolic execution results from knowledge graphs to provide reward signals during

hypothesis generation. However, these reward signals su�er from the incompleteness inherent to

the open-world assumption. NGDBs can address this issue by serving as a more robust reward

model, leveraging their latent embeddings and �exible query capabilities to improve hypothesis

generation.

4. Challenge 3: Generalization across Query Families

Introducing neural modules in graph databases enables the generalization to the knowledge in

databases. However, the development of neural modules is always entangled with their targeted query

families, thus naturally biased toward them due to their inductive biases, emphasizing the challenge

of generalizing towards di�erent query types. Compared to classic database algorithms that support an

entire query family as long as it is formally de�ned, neural modules still su�er a loss in performance

for generalization even when the query family is �xed[16]. Readers are also referred to related

surveys[17][18].

4.1. Di�erent Query Families and Their Neural Modules

Tree-formed Queries and Compositional Generalizability. The tree-formed query is a collective term

that describes the whole query family that can be recursively de�ned in a tree structure, in which

logical connectives and variables are carefully organized so that set operations can formally derive the

answers[16], the set operations include set projection[19], intersection, union[20], complement[20] and

set di�erence[21]. To tackle such kinds of queries, a line of research is known as query embeddings,

where sets are modeled as embeddings, and set operations mentioned above are modeled directly by

neural modules[22][21][23]. The set operations composition allows the models to generalize the entire

tree-form query family. This connection between model design and query family is termed the
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compositional generalizability[16][24], and the performance drop with the increasing of compositional

levels is still universally observed and remains a challenge to address.

EFO-1 Queries and Query Graph. It is shown that tree-formed query family is constrained by certain

assumptions and fails to represent the whole family of Existential First Order queries with one free

variable (EFO-1 query) such as cyclic query[25]. To handle new graph-theoretic features which cannot

be represented in tree-formed queries. One commonly adopted technique for EFO-1 queries is the DNF

normal form or the UCQ query-solving strategy[20][26], which solves the conjunctive query �rst and

then takes the union of the answer set of each conjunctive query. A query graph[26]  can naturally

describe each conjunctive query. This formulation motivates graph-related search methods[25]  or

graph neural networks[26].

More Advanced Query Types. More advanced query families still exist, though the development of

corresponding neural models on these topics is insu�cient at the current stage. Thus, we discuss

some of the challenges we might face in pursuit of more advanced queries in NGDB from the following

aspects (i) Multi-arity predicates: The �rst challenge we may encounter is when the knowledge

databases are constructed by  -ary tuples, the relation corresponds to  -ary predicate and a

graph becomes a hypergraph[27]. (ii) Support of functions The corresponding research gap is the

support for functions in the query – a function can output nodes, numbers, semantic units, or data of

more advanced modality – for example, the AVG and COUNT functions in SQL but not in current CQA

models. We have noted one preliminary research trying to �ll this gap[8].

4.2. Minimal Assumption for Broad Generalization

Previous case studies showcase the close entanglement of the neural modules and the query types they

support syntactically. In other words, the key to generalization is minimizing the query families’

assumptions and the inductive biases of the neural part of NGDB. We present two types of methods

with minimal assumptions.

Neuro-symbolic Methods. NGDB implies that the underlying database is a graph, meaning neural

modules solely modeling the graph itself impose no assumptions on the query family it might support.

Such neural modules include link predictors or knowledge graph embeddings that map a triple 

  of subject, predicate, and object into a score[28]. Therefore, the critical design task of NGDB

with such modules is revising the algorithms into the neuro-symbolic forms with the scores produced

(n + 1) n

(s, p, o)
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by link predictors[29][25]. An apparent and more decomposed approach is to derive an instance of a

classic graph database using the link predictor, and all previous research in graph databases applies

directly. Notably, the neuro-symbolic approach achieves the same level of generalizability in queries

as the classic database research.

Sequence Models. Language models or sequence models are general-purpose models and thus further

disentangle the inductive bias of neural modules and the speci�c task (queries in NGDB). Such models

support the sequence inputs, which cover inputs from all possible kinds of query types. However, the

performance on speci�c query types is transferred from designing neural architectures to curating the

training datasets. The cost is transferred from the complex inference algorithms to the training

phase[30].

4.3. Learning Aspects of Generalization

From the machine learning perspective, one new issue is uniformly improving the performance of all

queries of a particular query family under the analogy of query types as tasks. The approach towards

this goal also varies for di�erent methods. For neuro-symbolic approaches, the generalization will be

improved coherently as link prediction performance improves. For neural methods, the challenge of

generalization is the same as multi-task learning. Query embeddings, as a particular case of neural

methods, recent works propose adopting set operators with meta-learning, yielding the solution of

meta operators[24].

5. Challenge 4: Privacy and Security

5.1. Database Privacy

Privacy in data storage refers to protecting sensitive information from unauthorized access and

misuse[31]. Traditional databases are facing several privacy risks, which can be categorized into: (1)

Unauthorized Access[32]: Unauthorized access to databases can result in large-scale data leakage,

exposing sensitive personal information. (2) Insider Threats[33]: Employees with legitimate access

may misuse their privileges, either intentionally or unintentionally compromising data privacy. (3)

Data Inference Attacks[34]: Attackers can employ various techniques to deduce sensitive information

from seemingly innocuous data.
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To mitigate privacy risks, several protection methods have been developed: (1) Data

Anonymization[35]: Techniques such as k-anonymity[36]  and l-diversity[37]  help mask individual

identities within datasets, making it harder to trace data back to speci�c individuals. (2)

Encryption[38]: Data encryption ensures that unauthorized parties cannot access sensitive

information even if they breach a database. (3) Access Control[32]: Access control restricts data access

to authorized users only, reducing the risk of insider threats. (4) Di�erential Privacy[39]: This

approach adds noise to data outputs, ensuring that the presence or absence of an individual in a

dataset does not signi�cantly a�ect the results of queries.

5.2. New Privacy Challenges in NGDBs

Graph databases, while o�ering advantages in managing complex relationships, introduce speci�c

privacy risks: (1) Link Prediction Attacks[40]: Adversaries can use machine learning models to predict

hidden relationships within the graph, potentially uncovering private connections. (2) Structural

Attacks[41]: Even when the data content is anonymized, the graph’s structure itself can reveal

sensitive insights. The unique structure of graph data ampli�es these risks, as the relationships

between entities can reveal information that is not immediately apparent from isolated data points.

Neural Graph Databases (NGDBs) represent a signi�cant advancement in data management,

combining the strengths of traditional graph databases with the capabilities of neural networks. The

exploration of privacy issues in NGDBs remains largely underdeveloped, with signi�cant gaps in

research addressing potential vulnerabilities and mitigation strategies.

Potential Attacks. One of the primary strengths of NGDBs is their ability to generalize from

incomplete data by inferring hidden relationships. While this capability can enhance data retrieval and

knowledge discovery, it also poses signi�cant privacy risks[42]: (1) Model Inversion Attacks[43]: Neural

models can be susceptible to inversion attacks, where an adversary uses access to the model to recover

the graph data used for NGDB training. (2) Membership Inference Attacks[44]: Attackers may infer

whether a particular data point (node or edge) was part of the training data, revealing sensitive

information in NGDBs. (3) Embedding Leakage[45]: The embeddings generated by NGDBs to represent

nodes and relationships can leak sensitive information, as these embeddings often capture detailed

structural and content-based features of the graph stored.

Promising Defenses. (1) Di�erential Privacy in NGDBs: Extending di�erential privacy techniques to

protect neural graph databases is a key research direction. Adding noise to the model parameters or
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gradients during training can help mitigate membership inference and model inversion attacks[46]

[47]. (2) Embedding Obfuscation: Techniques to obfuscate embeddings without losing their utility for

answering complex queries need to be developed to prevent leakage of sensitive information[48]. (3)

Private Distribute Training: Privacy problems in distributed NGDBs need further development[49].

Federated learning, including Secure Multi-Party Computation (SMPC)[50]  and Homomorphic

Encryption (HE)[51]  techniques, can be adapted to NGDBs to ensure that data is processed without

being revealed.

Evaluation Benchmarks. Another signi�cant challenge in NGDBs is the evaluation of privacy

protection e�cacy. Assessing the e�ectiveness of privacy-preserving mechanisms requires robust

benchmarks that can accurately measure both privacy protection and the quality of retrieved data.

However, such benchmarks are currently lacking in the �eld. To address this challenge, standardized

evaluation metrics and datasets should be developed that can facilitate comprehensive testing of

privacy-preserving techniques in NGDBs. Establishing reliable benchmarks will provide insights into

the strengths and weaknesses of di�erent approaches, ultimately guiding future developments in

privacy protection.

6. Challenge 5: Scaling for Higher Complexity

In deep learning, neural scaling law is an empirical law that describes the performance of neural

models improves with the number of parameters, training dataset size, and training cost[52][53].

During the development of the NGDB model, scaling is also a major thread, primarily encompassing

the scaling of parameter number, query data size, and training costs. The query embedding methods

and sequence models often scale the training costs in the training stage, including the model

parameters and queries. In contrast, the neuro-symbolic methods often scale the computation cost

over the test stage to improve the performance. We mainly discuss how to scale these models further,

particularly when the query structure becomes increasingly complex[25][54] and the magnitude of the

knowledge databases becomes very large[55]. Speci�cally, we introduce the complexity of these

models in the training and inference stages and discuss their e�ciency and scalability challenges.

Data Scaling in the Training Stage. Both query embedding and sequence models are trained from

scratch, requiring many sampled queries as training data. The quality and size of these training

queries are crucial, and they typically encompass various query types. The NGDB models generally use
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the same dataset, with the basic 1p query type enumerating the entire knowledge graph[20]. To

incorporate new features such as negation[22], cyclic queries[25], and multivariable queries[54], it is

essential to sample query types that include these features. Materializing training queries becomes

infeasible as the knowledge graph grows, and sampling logical queries is incompatible with traditional

single-hop frameworks based on graph partitioning. To address this challenge, SMORE[55] proposes a

scalable framework that e�ciently samples training data on the �y with high throughput. In contrast,

neuro-symbolic methods primarily rely on pre-training for the knowledge graph completion task and

depend on search algorithms to address general logical queries.

Test Time Scaling in Inference Stage. We �rst introduce the notion of query complexity and data

complexity[56]. Data complexity captures the relation between the time complexity and the database

size   (number of the edges) when the query is �xed. In contrast, query complexity is assessed based

on the size of the query    (number of the predicates) when assuming the database is �xed. When

discussing the complexity, the query is restricted to tree-formed queries and EFO-1 queries that we

have discussed before. The complexity of neural symbolic search is well studied. The complexity for

tree-formed queries is  . Such approaches[25][29] require   search steps, while each step

requires a search over the database, which is  . For the general EFO-1 query, the cyclic query

makes the general complexity particularly hard and results in   time, which is polynomial in

data but exponential in query. One distinct feature of query embeddings and sequence models

compared to neuro-symbolic methods is the disentanglement of the   term and   term. Notably,

the neural network encoder[26]  or sequence model[30]  work on the query directly, which is usually 

  to encode query information and    to decode the answer by embedding comparison.

However, this great advantage in inference time complexity of query embeddings and neural symbolic

models comes from the additional and usually resource-consuming training procedures.

7. Challenge 6: Distributed NGDB System

7.1. Scenario Features and System Requirements

Scenario Features. NGDB is targeted at a scenario where users can simultaneously conduct graph data

management and graph inference. We identify four features of such a scenario that signi�cantly a�ect

the system design. (1) Hybrid symbolic and neural operation[4]. Users can input queries requiring

algebraic, neural, or hybrid computation; (2) Massive graph data and embeddings. Not only do the

|E|

|Q|

O(|Q||E|) O(|Q|)

O(|E|)

O(|E )|
|Q|

|E| |Q|

O(|Q|) O(|E|)
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graph data of di�erent domain knowledge exhibit tremendous scale[57], but also various types of

embeddings[58] of these graph data further enlarge the volume; (3) Read intensive workload. During

the serving stage, most of the graph data and embeddings are queried more frequently rather than

updated[59]; (4) Dynamic workload �uctuation. Di�erent parts of the graph data and embeddings are

accessed in di�erent time slots and the number of online users and frequency and data volume of one

query �uctuate[60].

System Requirements. The neural graph database system should ful�ll the following requirements to

handle these features e�ectively and e�ciently. (1) Co-located graph and embedding management.

The NGDB system should support symbolic graph data and neural embedding management. (2) High

query performance. The latency of a single query and system throughput for numerous tenants

serving massive data should be optimized. (3) Scalability.. The hardware resource management should

be scalable to handle workload �uctuation, especially computational resources, cost-e�ciently.

Challenges are introduced to the system design of neural graph databases to implement these system

features.

7.2. Challenges of System Design

User Interface Design. Existing vector databases provide SQL-like interfaces and parameterized

API[61], while most of the interfaces mainly focus on relational data. Graph databases provide

numerous interfaces[58], but there is little experience in combining neural operations into symbolic

graph operations. It is essential to design highly expressive declarative user interfaces as well as

programming interfaces.

Query-Oriented Distributed Storage. Due to the massive volume of graph data and corresponding

embeddings, which is out of the capacity of standalone storage, distributed storage is an indispensable

mechanism of NGDB. Under read-intensive workload, partitioning (or sharding), acting as a

distributed index, tailored for most frequent and costly types of query could remarkably reduce the

intermediate data transfer, consequently enhancing the overall latency and throughput[61]. Practices

in graph database community[62][63][64][65]  and vector database community concludes valuable

principles and strategies on distributed storage and indexing of graph data and embedding separately.

However, the hybrid storage of both data types is not explored, especially in circumstances where

hybrid queries, requiring both symbolic and neural processes, are of evident importance. A typical

example question is about whether embeddings and raw graph data shall be co-located. Although
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some open source graph database[66][67]  and vector databases[68][60][69][70]  could be utilized as

standalone storage engine in NGDB, partitioning should be carefully designed under speci�c query

workload.

Distributed Graph Computing and Inference. There are abundant works on distributed graph query

and analysis with various algorithms in the graph database community[71][72]. However, distributed

system support for knowledge graph inference has not been adequately explored. Atom[73] points out

a key observation that query embedding is the performance bottleneck, which shall be one of the

considerations in NGDB query execution. On the base of these two kinds of computation optimization,

when encountered with hybrid queries requiring both computation, query planning, and scheduling

for maximized parallelism and minimized network communication overhead, still remain an

unexplored direction. There are some preliminary practice cases in relational databases[74][75][76],

which consider the optimization with neural operators but are still far from mature.

Elastic Scalability. To deal with dynamic workload �uctuation, �ne-grained elasticity is of great

importance to distributed NGDB systems, in which case on-demand resource provision helps reduce

the cost[77] of NGDB service. Besides, not all the massive data are simultaneously accessed. There are

evident biases and data heat shifts in database serving scenarios. Therefore, we argue that being

cloud-native with elastic scalability is a crucial requirement for the NGDB system. Manu[60] detects

such workload �uctuation in industrial applications, thus fully embracing the mechanisms of elastic

scalability via dedicated abstraction of hardware resource management, including GPU, CPU, and disk.

Besides, storage-computation-separation is essential for cloud-native databases[78]. It is essential to

explore the combination of these separate practices. Additionally, the trade-o� between latency and

elasticity is a critical concern since practices in vector databases reveal that embedding management

requires a large memory occupation.

8. Challenge 7: Compatibility of NGDB with Traditional Graph

Database

Like graph databases, Neural Graph Databases (NGDB) are another way of the data model that derives

the properties from the existing graphs, including nodes and edges, to represent entities and their

relationships[4]. This structural consistency makes migrating and interoperating data between the

two databases relatively easy. In terms of interfaces, NGDB can maintain support for standard graph
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query languages[66][79]  while providing vectorized query capabilities, allowing users to query and

operate in familiar languages. In terms of operations, traditional CRUD operations remain fully

functional, with the reasoning function of neural networks serving as enhanced features. For instance,

conventional graph databases provide foundational support in query processing through mature

storage and indexing technologies, while NGDB handles queries requiring missing link inference. Such

compatibility design will enable a seamless system transition, where users can migrate to get NGDB

capabilities without completely reconstructing existing applications. However, NGDB faces several

challenges with traditional graph databases:

Novel Query Interface. Incorporating deep learning and graph neural networks extends beyond

conventional graph database functionalities, requiring novel interfaces for deep learning-based

queries and inference. This creates compatibility issues when attempting to reuse existing query

languages, highlighting the need to develop new query languages or extend current ones[80][79].

Performance-Consistency Trade-o�. While traditional graph databases are optimized for storage and

querying[81], they may struggle to meet performance requirements when handling large-scale graph-

based deep-learning tasks. NGDB emphasizes representation learning on nodes and edges[4],

requiring consideration of high-performance computing and distributed training paradigms. For

instance, during conventional CRUD operations, NGDB may need to update node and relation

embeddings, introducing additional computational overhead. Moreover, integrating neural

components introduces temporal consistency challenges, where model updates may lead to temporary

discrepancies between the base graph data and learned representations. Finding an optimal balance

between consistency guarantees and computational e�ciency remains a considerable challenge for

NGDB systems.

9. Challenge 8: Grounding to Vectors with NGDB

Grounding natural language to knowledge bases has been extensively studied in conventional graph

databases. Traditional approaches typically handle di�erent grounding scenarios: hypothesis or query

grounding (with free variables)[82][20], and entity[83] or event[11][84]). With the emergence of NGDBs,

where structural information and semantic content are encoded as vectors, the grounding process

faces new challenges and opportunities. Recent work[4]  introduces a neural graph engine that learns
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query planning and execution strategies through interactions with Neural Graph Storage. However,

grounding to general NGDBs still presents several unique challenges.

Semantic Granularity and Disambiguation. Semantic granularity and disambiguation pose

fundamental di�culties. The grounding process must accurately translate natural language queries

into appropriate vector representations while determining suitable levels of semantic granularity,

such events, propositions, etc.[85][84]. This challenge is compounded by the need to handle abstraction

and polysemy when mapping linguistic elements to vector spaces, as meanings can vary signi�cantly

based on context.

Compositional Semantics and Reasoning. Second, compositional semantics and reasoning path

selection present signi�cant challenges. NGDBs must e�ectively represent complex multi-hop

relations while maintaining transitivity and logical consistency in vector operations. The system

needs to identify relevant paths in the vector space for query resolution, which becomes particularly

challenging when dealing with multiple possible reasoning paths. In addition, determining

appropriate termination criteria for path exploration is crucial for both e�ciency and accuracy.

Interpretation and Groundedness Evaluation. The third challenge is around interpretation and

groundedness evaluation. The system is expected to reliably convert vector-based results back to

natural language while providing clear explanations for its reasoning process. Additionally, it needs to

report the level of groundedness for each grounding operation, ensuring semantic �delity is

maintained throughout the process. This is particularly important for applications requiring high

precision and explainability.

10. Challenge 9: Adapting NGDB to LLM

This section explores the integration of Neural Graph Databases (NGDBs) with Large Language Models

(LLMs) to enable joint reasoning and Retrieval-Augmented Generation (RAG). NGDBs can serve as

retrieval modules for LLMs, leveraging structured data and reasoning capabilities to enhance

generated outputs’ accuracy, scalability, and contextual relevance. Joint learning of LLMs and NGDBs

involves training these systems within a uni�ed framework to combine natural language

understanding with advanced logical reasoning.

NGDB-RAG: De�nition and Components. NGDB-RAG (Neural Graph Database - Retrieval-Augmented

Generation) is a system that integrates NGDBs with LLMs to enhance both retrieval and generation
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tasks. The NGDB-RAG system is composed of three main components. The �rst is the neural graph

storage, which stores embeddings of nodes and edges in the graph. These embeddings capture both

local and global structural relationships within the graph, providing a rich representation of the data.

The second component is the neural query engine, which tries formulating and processing logical

queries in the embedding space. This engine enables �exible modeling and supports logical operations

such as conjunction, disjunction, and negation, allowing for robust retrieval even in incomplete or

noisy graphs. The third component is integrating with LLMs, where NGDB reasoning results are

incorporated into the language model. This integration can be achieved through text-based methods,

by converting structured data into natural language, or through vector-based methods, by embedding

structured data as vectors for direct input into the LLM.

Functionality of NGDB-RAG. NGDB-RAG enhances retrieval by utilizing the structured relationships

in NGDBs to perform advanced reasoning tasks. Unlike traditional RAG systems that rely on document

similarity, NGDB-RAG leverages the intricate dependencies within knowledge graphs to retrieve more

accurate and contextually relevant information. In the generation process, NGDB-RAG integrates

structured knowledge and reasoning capabilities from NGDBs to improve the generated text’s factual

accuracy and logical consistency while reducing hallucinations. Furthermore, NGDB-RAG is designed

to handle large-scale graphs and supports various query types, including temporal, spatial, and

numerical reasoning, ensuring scalability and expressiveness in practical applications.

Joint Learning Framework. The joint learning framework of NGDBs and LLMs employs a co-training

approach where both systems share parameters or representation spaces to enable collaborative

learning. Improvements in one component positively in�uence the other, creating a feedback loop

that enhances the overall system. The combined training objective is expressed as: 

. In this equation,    represents the loss associated with the language

model, typically the cross-entropy loss for next-token prediction.   denotes the loss related to

NGDB reasoning tasks, such as the error between predicted and true query answers. The

hyperparameter   controls the balance between the two loss components. The objective of this joint

training is to improve the reasoning capabilities of the NGDB while enhancing the LLM performance.

Future work aims to develop the co-training framework further to enable simultaneous training of

NGDB reasoning engines and LLMs, ensuring parameter sharing and collaborative learning. E�orts

are also being made to re�ne the combined loss function to balance language modeling and reasoning

tasks better, enhancing both components’ performance. Integration modules are being developed to

= + λLtotal LLLM LNGDB LLLM

LNGDB

λ
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incorporate NGDB reasoning results into LLMs through text-based and vector-based methods. These

advancements are expected to create a uni�ed system capable of performing advanced reasoning and

generating high-quality, contextually accurate text.

11. Challenge 10: Smart Neural Graph Databases

Bene�ted from its rich functionalities, Agentic NGDB o�ers a wide range of applications across

domains:

Autonomous Data Management: Agentic NGDB can autonomously manage complex datasets,

optimize query execution, and organize storage structures without human intervention. This is

particularly useful in large-scale systems where manual optimization is impractical.

Personalized Recommendations: Through continuous learning, Agentic NGDB can provide real-

time personalized recommendations by analyzing user preferences and graph-based relationships.

This is crucial in e-commerce and social networks, where tailored experiences drive user

engagement[86].

Complex Event Processing: Agentic NGDB is well-suited for handling complex event

processing[11], where multiple events and data streams need to be analyzed in real-time. By

leveraging their semantic understanding and neural inference, Agentic NGDB can identify

correlations and patterns across seemingly unrelated events, making them valuable in

cybersecurity, fraud detection, and IoT systems.

12. Conclusion

Agentic Neural Graph Databases (Agentic NGDBs) represent an advancement in data management,

building on traditional graph databases and Neural Graph Databases (NGDBs) by introducing

autonomy, continuous learning, and advanced reasoning.

This paper identi�es ten key challenges to realizing Agentic NGDBs, including semantic

representation, abductive reasoning, generalization across query types, scalability, privacy, and

integration with foundation models like large language models (LLMs). Ensuring compatibility with

traditional databases, grounding knowledge in vectors, and developing distributed systems are

essential for achieving robust and scalable solutions.
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By overcoming these challenges, Agentic NGDBs can transform modern data-driven applications.

Their ability to autonomously generate and execute queries, support continuous learning, and

integrate symbolic and neural reasoning o�ers new possibilities in autonomous data management,

personalized recommendations, and complex event processing. These advancements promise to

rede�ne how we manage, query, and reason over interconnected data for the future.
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