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Abstract

The aim of this article is to introduce Ekeland variational principle (EVP) and some results in fuzzy quasi metric space

(FQMS) under the non-Archimedean t-norms. In this article the basic topological properties and a partial order relation

are defined on FQMS. Utilizing Brézis-Browder principle on a partial order set, we extend the EVP to FQMS also.

Moreover, we derive Takahashi’s minimization theorem, which ensures the existence of a solution of an optimal

problem without taking the help of compactness and convexity properties on the underlying space. Furthermore, we

give an equivalence chain between these two theorems. Finally, two fixed point results namely the Banach fixed point

and the Caristi-Kirk fixed point theorems are described extensively.
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1. Introduction

In 1972, Ekeland introduced an approximate minimizer of a bounded below and lower semi-continuous function on

complete metric space, named Ekeland variational principle (EVP). The EVP, an enthralling theory, has some

comprehensive applications in optimization theory, game theory, optimal control theory, non-linear analysis and dynamical
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system etc. In 2010, Q. H. Ansari[1] developed several version of EVP, Takahashi’s minimization theorem (TMT), Banach

contraction principle (BCP), Caristi’s fixed point theorem (CFPT) with some applications on equilibrium problems. Because

of its wide research interest, several authors have introduced EVP in various directions. Alleche et al.[2] gave a new

version of EVP for countable systems of equilibrium problems on complete metric space , Khanh et al.[3] defined three

types of Ekeland points and their existence based on an induction theorem in partial metric space, Bao[4] derived an exact

and approximate vectorial version of EVP based upon Dance-Hegedüs-Medvegyv’s fixed point theorem for a dynamical

system on complete metric space,Iqbal[5] presented a variational principle without assuming completeness property and

solved some minimization problems by taking a non lower semi-continuous function in the metric space. On the other

side, Cobzas[6] provided EVP on complete quasi metric space on an extension of the Brézis-Browder maximality principle,

Ai-Homidan[7] gave a new version of Takaashi’s minimization theorem with two different types of conditions in the setting

of a complete quasi metric space and further they constructed error bound solutions and weak sharp solutions for

equilibrium problems. Recently, Zao et al.[8] extended Lin-Du’s abstract maximal element principle to generalise EVP for

essential distance in the environment of quasi order set. Furthermore, a broad extension of EVP involving set

perturbations attracted so many researchers to work on this direction. Some multi-objective optimization problems and

vector variational inequality problems were analysed by Hai[9] based on EVP relating to set perturbations.

Moreover, many researchers have a lot of attraction to work on different fuzzy version of EVP. In 1975, Kramosil and

Michalek[10] introduced an idea of fuzzy metric space, which indicates the uncertainty of distance functions. This idea was

extended in 1994 by George and Veeramani[11]. They defined fuzzy metric space in a different way, called GV fuzzy

metric space. Several research works on EVP have been done in various types of fuzzy metric space in different

directions. In the setting of GV fuzzy metric space, Abbasi et al.[12] extended EVP, Caristi’s fixed point theorem,

Takahashi’s minimization theorem and described an equivalence relation on EVP and TMT in 2016. The Caristi type

mapping was developed by Martı ́nez-Moreno et al.[13] in an Archimedean-type fuzzy metric space. Qiu et al.[14] also

extended the above theorems in GV fuzzy metric spaces subsequently.

However, the variational principle and fixed point results have also been discussed in the setting of fuzzy metric space[15].

The set valued EVP has been established incorporating a set valued map on locally convex fuzzy metric space[16]. Some

related works about EVP on Fuzzy metric space was presented by Pei-jun[15], in which the author has defined fuzzy

metric space as quadruple (X, d, L, R) and discussed EVP on a α-level set. Removing the symmetric property, several

authors have generalised the fuzzy metric as fuzzy quasi metric space and have established multiple results. Gregori et

al.[17] have generalised the KM-fuzzy metric space and the GV-fuzzy metric space to the KM-fuzzy quasi metric space

and the GV-fuzzy quasi metric space respectively and claimed that every fuzzy quasi metric induces a quasi metrizable

topology and vice-versa. Similarly, Romaguera[18] introduced bi-completion and D-completion of fuzzy quasi metric

spaces via quasi uniform isomorphism. At the same time, Romaguera et.al[19] constructed some contraction mapping to

establish the existence and uniqueness of a fixed point result on preordered complete fuzzy quasi metric space. Recently,

an extension of EVP, TMT, CFPT on fuzzy quasi metric space under Archimedean t-norm have been studied

extensively[20].
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Author(s) with
publication year

Use of t-
norm

Metric
structure

Use of EVP and
TMT

Completenes and Fixed point results Area of Application

Gregori and
Mascarell, 2005

none
T2 fuzzy
quasi metric
Space

none bi-completeness of fuzzy quasi metric space none

Mihet, 2010 none
fuzzy metric
Space

none
fixed point theory using fuzzy contractive mappings in 
G-complete fuzzy metric spaces

the domain of words

Cobzas, 2011 none
T1 Quasi
Metric
Space

EVP on quasi
metric space

none none

Romaguera, and
Tirado, 2014

none
fuzzy quasi
metric space

none
fixed point theory using a continuous non-decreasing
self map

solution for the general
recurrence equations

Al-Homidan,
Ansari and
Kassay, 2019

none
quasi metric
space

TMT on quasi
metric Space

none
error bounds and weak sharp
solutions for equilibrium
solutions

Wu and Tang,
2021

Archimedean 
t-norm

T1 Fuzzy
quasi metric
space

EVP and TMT on
fuzzy quasi metric
space

CFPT on fuzzy quasi metric space  

This paper
non
Archimedean 
t-norm

T1 Fuzzy
quasi metric
space

EVP and TMT on
fuzzy quasi metric
space

BCP and CFPT using fuzzy quasi version of EVP with
a proper bounded below and lower semi continuous
function

existence of solution of
equlibrium points

Table 1. Major literature review over the related topic

From the above literature study it is seen that none of the researchers has discussed EVP in the light of FQMS utilizing

non-Archimedean t-norm. Thus in this study we present EVP, TMT, BCP, CFPT and related results in the setting of

FQMS under the presence of non-Archimedean t-norms. This article has been organised as follows : section 2 includes

the formation of FQMS from Quasi Metric Space and defines three types of Cauchy sequences, three types of

convergences and seven types of completeness properties on it. Section 3 contains the EVP of Fuzzy Quasi version,

section 4 develops Takahashi’s minimization theorem and an equivalent chain between EVP and TMT . Section 5

represents two types of fixed point results namely Banach contraction fixed point and Caristi’s fixed point theorems.

Finally, section 6 ends with the conclusion of the propose a study followed by the scope of future research.

2. Preliminaries

In this section we introduce some basic definitions and properties over the fuzzy quasi metric spaces which will be used to

develop the proposed study

Definition 2.1. [21] Let X be a non-empty set. A function dq:X × X → [0, ∞) is called quasi metric if the following properties

hold for all x, y, z ∈ X:

(M1): dq(x, x) = 0

(M2): dq(x, y) = 0 ⟹ x = y

(M3): dq(x, y) = d(y, x)

Qeios, CC-BY 4.0   ·   Article, August 19, 2024

Qeios ID: VJGGST.2   ·   https://doi.org/10.32388/VJGGST.2 3/22



(M4): dq(x, y) ≤ d(x, z) + d(z, y).

Then the order pair (X, d) is called quasi metric space.

Generally a metric is defined by means of a distance function, but if the distance function itself assumes fuzzy flexibility

then the subject under study is a part of fuzzy metric space ([22][23]).

Definition 2.2. [24] A binary operation ∗ :[0, 1]2 → [0, 1] is said to be continuous t-norm if it satisfies the following

conditions for all a, b, c, d ∈ [0, 1]:

i. a ∗ (b ∗ c) = (a ∗ b) ∗ c

ii. a ∗ 1 = a

iii. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d.

Moreover, the basic t-norms; minimum, product and Lukasiewicz continuous t-norms are defined by 

a ∗mb = min {a, b}; a ⋅ b = ab;  and a ∗Lb = max {a + b − 1, 0}

 respectively.

Definition 2.3. A structure which has a pair of non-zero elements, one of which is infinitesimal with respect to other, is

said to be non-Archimedean. It is easy to see that the t-norm " ∗m "  is not Archimedean, while the other two t-norms are

Archimeadean.

Definition 2.4. [20] Let X be an arbitrary non-empty set, ∗  being a continuous t-norm and a mapping 

Mq:X2 × (0, ∞) → (0, 1] be a fuzzy membership function. Then a 3-tuple (X, Mq, ∗ ) is said to be a fuzzy quasi metric

space (FQMS) if it satisfies the following conditions for all x, y, z ∈ X and t > 0 :

(FQMS 1): Mq(x, y, t) > 0

(FQMS 2): Mq(x, y, t) = 1 if and only if x = y

(FQMS 3): Mq(x, y, s + t) ≥ Mq(x, z, t) ∗ Mq(z, y, s)

(FQMS 4): Mq(x, y, . ): (0, ∞) → (0, 1] is continuous

(FQMS 5): 
lim

t→∞Mq(x, y, t) = 1.

The function Mq is called the Fuzzy Quasi Metric (FQM) and it denotes the degree of closeness between x and y with

respect to t.

The conjugate FQM M̄q, corresponding to each FQMS (X, Mq, ∗ ), is defined as M̄q(x, y, t) = Mq(y, x, t) for all 

x, y ∈ X and t > 0.

Also we define mapping Ms
q:X2 × (0, ∞) → (0, 1] is defined as

Ms
q(x, y, t) = min {Mq(x, y, t), M̄

q(x, y, t)}, ∀x, y ∈ X and t > 0,
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is a fuzzy metric on X.

In rest of the article we shall use "minimum" t-norm ( ∗m) to express the triangle inequality and we redefine FQMS as 

(X, Mq, ∗m).

Example 2.5. [25] Let (X, dq) be a quasi-metric space, let ϕ: (0, ∞) → (0, ∞) be an increasing left continuous function with 

ϕ(t + s) ≥ ϕ(t) + ϕ(s) and let g: [0, ∞) → [0, 1] be a decreasing left-continuous function such that g(0) = 1. Then (X, Mq, ∗m)

 is a fuzzy quasi metric space, where the fuzzy set Mq:X × X × (0, ∞) is given for each x, y ∈ X and t ∈ (0, ∞) by 

Mq(x, y, t) = g

dq(x, y)
ϕ(t)

Definition 2.6. Let (X, Mq, ∗m) be a fuzzy quasi metric space. A set A( ⊆ X) is called

i. left bounded (l-bounded) if and only if there exists t > 0 and 0 < r < 1 such that Mq(x, y, t) > 1 − r for all x, y ∈ A.

ii. right bounded (r-bounded) if and only if there exists t > 0 and 0 < r < 1 such that M̄q(x, y, t) > 1 − r for all x, y ∈ A.

Definition 2.7. Let us consider a FQMS (X, Mq, ∗m). For given any parameter of fuzziness 0 < ϵ < 1, center x and radius 

a > 0, we can define the left open ball (l-open ball) Bl(x, a,ϵ) and the left closed ball (l-closed ball) Bl[x, a,ϵ] respectively

as:

Bl(x, a,ϵ) = {y ∈ X :Mq(x, y, a) > 1 − ϵ}

and Bl[x, a,ϵ] = {y ∈ X :Mq(x, y, a) ≥ 1 − ϵ}

and similarly we may define the right open ball (r-open ball) Br(x, a,ϵ) and the right closed ball (r-closed ball) Br[x, a,ϵ]

 respectively as:

Br(x, a,ϵ) = {y ∈ X :M̄q(x, y, a) > 1 − ϵ}

and Br[x, a,ϵ] = {y ∈ X :M̄q(x, y, a) ≥ 1 − ϵ}

Definition 2.8. Let (X, Mq, ∗m) be a FQMS. A sequence < xn >n∈N is said to be

i. l-Cauchy if and only if for each ϵ ∈ (0, 1), t > 0 ∃n0 ∈ N such that Mq(xn, xm, t) > 1 − ϵ for any m ≥ n ≥ n0.

ii. r-Cauchy if and only if for each ϵ ∈ (0, 1), t > 0 ∃n0 ∈ N such that Mq(xm, xn, t) > 1 − ϵ for any m ≥ n ≥ n0.

iii. Cauchy if and only if for each ϵ ∈ (0, 1), t > 0 ∃n0 ∈ N such that Ms
q(xm, xn, t) > 1 − ϵ for any n, m ≥ n0.

Definition 2.9. Let X be a non empty set. A sequence ⟨xn⟩n∈N in a FQMS (X, Mq, ∗m) is said to be

i. l-converges to a ∈ X, if and only if 
lim

n→∞Mq(a, xn, t) = 1 for all t > 0, i.e. for each ϵ ∈ (0, 1) and t > 0, ∃n0 ∈ N such that 

Mq(a, xn, t) > 1 − ϵ for all n ≥ n0.

ii. r-converges to a ∈ X, if and only if 
lim

n→∞Mq(xn, a, t) = 1 for all t > 0, i.e. for each ϵ ∈ (0, 1) and t > 0, ∃n0 ∈ N such that 

Mq(xn, a, t) > 1 − ϵ for all n ≥ n0.

( )
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iii. converges to a ∈ X, if and only if 
lim

n→∞Ms
q(a, xn, t) = 1 for all t > 0, i.e. for each ϵ ∈ (0, 1) and t > 0, ∃n0 ∈ N such that 

Ms
q(a, xn, t) > 1 − ϵ for all n ≥ n0.

Definition 2.10. The FQMS (X, Mq, ∗m) is

i. ll-complete if every l-Cauchy sequence is l-converges to a point in X.

Similarly we can define rr, lr, rl-completeness in FQMS.

ii. l-complete (r-complete) if every l-Cauchy (r-Cauchy) sequence converges to a point in X.

iii. complete if every Cauchy sequence converges to a point in X.

Example 2.11. Let us consider X = [1/2, 1) be a non-empty set. Consider the fuzzy quasi metric (Mq, ∗m) defined in the

example 2.5 and we define quasi metric d:X × X → (0, ∞) by 

d(x, y) = 0,  x ≤ y
= 1,  x > y

 Then every l-Cauchy sequences in X are l-convergent. Therefore (X, Mq, ∗m) is ll-complete fuzzy quasi metric space

Remark 2.12.

i. Let < xn >n be a sequence in a FQMS (X, Mq, ∗m). If ⟨xn⟩ be l-convergent to x and r-convergent to y, then we get 

x = y.

ii. Let < xn >n be a sequence in a FQMS (X, Mq, ∗m). The sequence ⟨xn⟩ is l-convergent in (X, Mq), if every l-Cauchy

sequence ⟨xn⟩ in (X, Mq) has a l-convergent subsequence in (X, Mq).

3. Ekland Variational Principle in Complete Fuzzy Quasi Metric Space

We shall establish Ekeland’s Variational Principle on complete FQMS using an extension theorem of Brézis-Browder

principle[6][26] on a partial ordered set. This theorem ensures that a partially ordered set has a minimal (dually maximal)

element by choosing a strictly increasing function on it. So first we recall the Brézis-Browder principle on ordered set.Then

we construct a partial order relation on X and then we apply Brézis-Browder principle to establish the EVP on FQMS.

Let (Z, ≤ ) be a partially ordered set. For x ∈ Z, put S+(x) = {z ∈ Z:x ≤ z} and S−(x) = {z ∈ Z:z ≤ x}. Here the notation 

x < y imples (x ≤ y) ∧ (x ≠ y) and for dual formulation we just reverse the order of x and y.

Lemma 3.1. [27] Let (Z, ≤ ) be a partially ordered set.

i. Suppose that ψ :Z → R is a function satisfying the conditions:

1. the function ψ is strictly increasing;

2. for each x ∈ Z,  ψ(S−(x)) is bounded below;

3. for any decreasing sequence ⟨xn⟩ in Z there exists y ∈ Z such that y ≤ xn, n ∈ N.

Then for each x ∈ Z there exists a minimal element z ∈ Z such that z ≤ x.
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ii. Dually, let ϕ:Z → R is a function satisfying the conditions:

1. the function ϕ is strictly increasing;

2. for each x ∈ Z,  ϕ(S+(x)) is bounded above;

3. for any increasing sequence ⟨xn⟩ in Z there exists y ∈ Z such that xn ≤ y, n ∈ N.

Then for each x ∈ Z there exists a maximal element z ∈ Z such that x ≤ z. 

Theorem 3.2. Let (X, Mq, ∗m) be a FQMS and a function F:X → R on X. Define a relation on X by

x ≤ y ⇔

t
1+ t F(x) + 1 − Mq(x, y, t) ≤

t
1+ t F(y).

Then the relation "≤"  is a partial order.

Proof. Reflexive: It is obvious that x ≤ x holds,

Anti-symmetric: Let x ≤ y and y ≤ x hold. Then

t
1+ t F(x) + 1 − Mq(x, y, t/2) ≤

t
1+ t F(y) and 

t
1+ t F(y) + 1 − Mq(y, x, t/2) ≤

t
1+ t F(x)

hold respectively. From these two relation we get, 

{Mq(x, y, t/2) + Mq(y, x, t/2)} ≤ 2 ⟹ Mq(x, y, t/2) = Mq(y, x, t/2) = 1 ⟹ x = y.

Transitive: Let x ≤ y and y ≤ z holds. Then

t
1+ t F(x) + 1 − Mq(x, y, t/2) ≤

t
1+ t F(y) and 

t
1+ t F(y) + 1 − Mq(y, z, t/2) ≤

t
1+ t F(z)

holds respectively. Now, 

t
1 + tF(x) + 1 − Mq(x, z, t) ≤

t
1 + tF(x) + 1 − {Mq(x, y, t/2) ∗ Mq(y, z, t/2)}

≤

t
1 + tF(x) + 1 − min {Mq(x, y, t/2), Mq(y, z, t/2)}

≤

t
1 + tF(x) + 1 − Mq(x, y, t/2) + 1 − Mq(y, z, t/2)

≤

t
1 + tF(y) + 1 − Mq(y, z, t/2)

≤

t
1 + tF(z)

 Thus x ≤ z holds. Hence the proof. ◻

Theorem 3.3. Let (X, Mq, ∗m) be a FQMS and consider a function F:X → R on X. Consider the partial order relation

given in the theorem 3.2,
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x ≤ y ⇔ Mq(x, y, t) ≥ 1 − (

t
1+ t )[F(y) − F(x)]

i. If X be a ll-complete FQMS and F:X → R is bounded below and lower semi-continuous on X, then every element x of 

X is minored by a minimal element z in X.

ii. If X be a rr-complete FQMS and F:X → R is bounded above and upper semi-continuous on X,then every element x of 

X is majored by a maximal element z in X.

Proof.

i. From the definition of FQMS we know that if x ≠ y, then Mq(x, y, t) < 1. Consequently,

x < y ⟺ (x ≤ y) ∧ (x ≠ y) ⟹ 1 > Mq(x, y, t) ≥ 1 − (

t
1+ t )[F(y) − F(x)].

This shows that F is strictly increasing, therefore condition (a)(lemma 3.1,(i)) holds.

Since F is bounded below, therefore (b)(lemma 3.1,(i)) holds.

Now we consider a decreasing sequence ⟨xn⟩ ∈ N in X. Then F(xn+1) ≤ F(xn), ∀n ∈ N. Since F is bounded below,

then ⟨F(xn)⟩ has an infimum, say b and the sequence is convergent. Consequently it is Cauchy, so that, for given ϵ > 0

, there exists n0 ∈ N such that

F(xn+p) − F(xn) < ϵ for all n ≥ n0 and p ∈ N.

This implies that Mq(xn, xn+p, t) ≥ 1 − (

t
1+ t )ϵ > 1 − ϵ.

This claims that < xn >  is a l-Cauchy sequence. Since X is ll- complete then from the definition 2.10 it is l-converges

to some point y ∈ X, i.e. 
lim

t→0 Mq(y, xn, t) = 1.

Again, since xn+k ≤ xn ⟹ Mq(xn+k, xn, t) ≥ 1 − (

t
1+ t )[F(xn) − F(xn+k)].

Now,

 

Mq(y, xn, t) > min {Mq(y, xn+k, t − s), Mq(xn+k, xn, s)}
≥ Mq(xn+k, xn, t)

≥ 1 − (

t
1 + t)[F(xn) − F(xn+k)]

≥ 1 − (

t
1 + t )[F(xn) − lim inf F(xn+k)]

≥ 1 − (

t
1 + t)[F(xn) − F(y)]

which shows that y ≤ xn for all n ∈ N.

ii. To prove the second assertion, we can apply the first assertion on (X, ≤M̄
q , −F). Then we get 

x ≤Mq ,F y ⟺ Mq(x, y, t) ≥ 1 − (

t
1 + t )[F(y) − F(x)]

⟺ M̄(y, x, t) ≥ 1 − (

t
1 + t )[ − F(x) − ( − F(y))]

⟺ y ≤M̄
q , −Fx
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for all x, y ∈ X. The space (X, M̄
q) and the function −F satisfy all the condition of the first assertion of this theorem. So,

for every x ∈ X there exists a minimal element z in (X, ≤M̄
q , −F), i.e. z is the maximal element in (X, ≤Mq ,F) and 

x ≤Mq ,Fz.

◻

Theorem 3.4. (Ekland Variational Principle)

Suppose that (X, Mq, ∗m) be a ll-Complete FQMS and a mapping F:X → R ∪ { + ∞} is a proper bounded below and lower

semi-continuous function. Given any ϵ ∈ (0, 1), let x̃ ∈ X be such that 

F(x̃) ≤ inf F(X) + ϵ.

Then for every λ ∈ (0, 1 + t), there exists an x̄ = x̄(ϵ, λ) ∈ X such that

(a)(

t
1+ t )F(x̄) + 1 −

ϵ
λ Mq(x̄, x̃, t) ≤ (

t
1+ t )F(x̃)

(b)Mq(x̄, x̃, t) ≥ λ(1 − (

t
1+ t ))

(c)∀x ∈ X╲{x̄}, (

t
1+ t )F(x) + 1 −

ϵ
λ Mq(x, x̄, t) > (

t
1+ t )F(x̄).

Proof. Consider a set Y = {y ∈ X : (

t
1+ t )F(y) ≤ 1 −

ϵ
λ Mq(x̃, y, t) + (

t
1+ t )F(x̃)}

The set Y is non empty as x̃ ∈ Y. Now we have to show that Y is a closed subset of X. Suppose < yn >n∈N be a

sequence in Y and that is l-convergent to some y in X i.e. 
lim

n→∞Mq(y, yn, t) = 1 for all t > 0. Then we have 

(

t
1 + t)F(yn) ≤ 1 −

ϵ
λ Mq(x̃, yn, t) + (

t
1 + t)F(x̃)

≤ 1 −

ϵ
λ min {Mq(x̃, y, s), Mq(y, yn, t − s)} + (

t
1 + t)F(xϵ)

for all n ∈ N. Since F is lower semi-continuous, then we get

(

t
1+ t )F(y) ≤

t
1+ t

lim
n→∞F(yn) ≤ 1 −

ϵ
λ Mq(x̃, y, t) + (

t
1+ t )F(x̃).

This shows that y ∈ Y.

Since X is ll-Complete FQMS and Y is a non-empty closed subset of X, then Y is also ll-Complete FQMS, i.e. every l-

Cauchy sequence in Y is l-convergent in some y ∈ Y.

Now we consider a equivalent FQM Mq(x, y, t) =

ϵ
λ Mq(x, y, t), x, y ∈ Y, t > 0. Defining an order relation ≤  on Y by 
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x ≤ y ⟺ Mq(x, y, t) ≥ 1 − (

t
1 + t)[F(y) − F(x)]

⟺

ϵ
λ Mq(x, y, t) ≥ 1 − (

t
1 + t)[F(y) − F(x)]

for all x, y ∈ Y, it follows that all the hypothesis of theorem 3.3 are satisfied by this FQMS (Y, Mq, ∗m) and with φ = F |Y.

Consequently, there exists a minimal element x̄ ∈ Y such that x̄ ≤ x̃. Since 

x̄ ≤ x̃ ⟺

ϵ
λ Mq(x̄, x̃, t) ≥ 1 − (

t
1 + t)[F(x̃) − F(x̄)]

⟺ (

t
1 + t)F(x̄) + 1 −

ϵ
λ Mq(x̄, x̃, t) ≤ (

t
1 + t)F(x̃)

It follows that x̄ satisfies the condition (a).

By equation (1) and (a), 

(

t
1 + t)F(x̄) + 1 −

ϵ
λ Mq(x̄, x̃, t) ≤ (

t
1 + t)F(x̃)

≤ (

t
1 + t)[ inf F(X) + ϵ]

≤ (

t
1 + t)[F(x̄) + ϵ]

implies, Mq(x̄, x̃, t) ≥ λ

1− (
t

1 + t )ϵ
ϵ ≥ λ(1 − (

t
1+ t )), showing (b) holds too.

Now, if we consider a x ∈ Y╲{x̄}. By the minimality of x̄, the inequality x ≤ x̄ does not hold, so that

(

t
1 + t )F(x) + 1 −

ϵ
λ Mq(x, x̄, t) > (

t
1 + t)F(x̄)

which shows that (c) is satisfied for such an x. Now, if x ∈ X╲Y, then

(

t
1 + t)F(x) > 1 −

ϵ
λ Mq(x̃, x, t) + (

t
1 + t)F(x̃).

Now, if possible let condition (c) does not hold, then we have 
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(

t
1 + t)F(x̄) ≥ (

t
1 + t )F(x) + 1 −

ϵ
λ Mq(x, x̄, s)

> (

t
1 + t )F(x̃) + 1 −

ϵ
λ Mq(x̃, x, t) + 1 −

ϵ
λ Mq(x, x̄, t)

>

t
1 + tF(x̃) + 1 −

ϵ
λ min {Mq(x̃, x, t − s)Mq(x, x̄s)},  for 0 < s < t

> (

t
1 + t)F(x̃) + 1 −

ϵ
λ Mq(x̃, x̄, t)

which contradicts the fact that x̄ ∈ Y. Consequently, the condition (c) holds for x ∈ X╲Y, as well as x ∈ X╲{x̄}. Hence

the proof. ◻

Corollary 3.5. Suppose that (X, Mq, ∗m) be a rr-Complete FQMS and a mapping F:X → R ∪ { + ∞} is a proper bounded

above and upper semi-continuous function. Given any ϵ ∈ (0, 1), let x̃ ∈ X such that 

F(x̃) ≤ inf F(X) + ϵ

Then for every λ ∈ (0, 1 + t), there exists an x̄ = x̄(ϵ, λ) ∈ X such that

(a)(

t
1+ t )F(x̃) + 1 −

ϵ
λ Mq(x̃, x̄, t) ≤ (

t
1+ t )F(x̄)

(b)Mq(x̃, x̄, t) ≥ λ(1 − (

t
1+ t ))

(c)∀x ∈ X╲{x̄}, (

t
1+ t )F(x̄) + 1 −

ϵ
λ Mq(x̄, x, t) > (

t
1+ t )F(x).

Theorem 3.6. (Ekeland Variational Principle-weak form): Suppose that (X, Mq, ∗m) be a ll-Complete FQMS and a

mapping F:X → R ∪ { + ∞} is a proper bounded below and lower semi-continuous function. Given any ϵ ∈ (0, 1), let 
x̃ ∈ X be such that 

F(x̃) ≤ inf F(X) + ϵ.

Then there exists an x̄ = x̄(ϵ, λ) ∈ X such that 

t
1 + tF(x̄) + 1 − ϵMq(x̄, x̃, t) ≤

t
1 + tF(x̃)

Proof. It can be easily proved by putting λ = 1 in theorem 3.4. ◻

Next, we are to show that the validity of the weak version of Ekeland variational principle ensures the completeness of the

space.

Example 3.7. Let us consider X = [0, 1) b e a non-empty set and Mq be a fuzzy quasi metric defined in the example 2.5.

Then (X, Mq, ∗m) be ll-complete FQMS. Now consider F:X → R defined by 

F(x) = x2, x ≠ 0
= 0,  otherwise 
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 is lower semi-continuous at 0 and bounded below. Then there exists a point ̄x( = 0) ∈ X which satisfies the EVP.

Let (X, Mq, ∗m) be FQMS and F:X × X → R be a bifunction. If there exists ̄x ∈ X such that F(x̄, y) ≥ 0 for all y ∈ X, then 
x̄ is called the solution of the equilibrium problem (EP)[7].

Theorem 3.8. (Equilibrium version of EVP)

Let (X, Mq, ∗m) be ll-complete FQMS and F:X × X → R be a bifunction. Asuume that there exists a proper bounded

below and lower semi-continuous function F:X → R ∪ { + ∞} such that 

F(x, y) ≥ F(y) − F(x) for all x, y ∈ X

Then for given any ϵ ∈ (0, 1), let x̂ ∈ X be such that inf F(x̂, x) > − ∞ and for every λ > 1, t > 0, there exists an 
x̄ = x̄(ϵ, λ) ∈ X such that

a. 

t
1+ t F(x̄, x̃) +

ϵ
λ Mq(x̄, x̃, t) ≥ 1

b. ∀x ∈ X ∖ {x̄},  

ϵ
λ Mq(x, x̄, t) −

t
1+ t F(x̄, x) < 1

Theorem 3.9. (Converse of EVP): Let (X, Mq, ∗m) be a FQMS. If for every lower semi-continuous function F:X → R and

for every ϵ > 0 there exists yϵ ∈ X such that

∀x ∈ X,  (

t
1+ t )F(yϵ) + 1 − ϵMq(yϵ, x, t) ≤ (

t
1+ t )F(x)

then the FQMS X is ll-complete.

Proof. Suppose that ⟨xn⟩ is a l-Cauchy sequence in X. Consider a well defined function F:X → R, given by

F(x) = 1 −
lim
n sup Mq(x, xn, t).

First we shall show that the function F is lower semi-continuous. Let x ∈ X be fixed and x ′ ∈ X arbitrary. Then as per

definition, 

Mq(x, xn, t) ≥ min {Mq(x, x ′, t − s), Mq(x ′, xn, s)}

≥ min {1 − ϵ, M(x
′, xn, s)}

≥ Mq(x ′, xn, s) − ϵ

⟹ 1 − Mq(x ′, xn, t) ≥ 1 − Mq(x, xn, s) − ϵ

holds for every n ∈ N, yields

F(x ′) ≥ F(x) − ϵ

implying the lower semi-continuous of the function F at the point x.

Now we have to prove that limn→∞F(xn) = 0.
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We have for every ϵ > 0, there exists nϵ ∈ N such that

Mq(xn, xn+k, t) > 1 − ϵ, ∀n ≥ nϵ, ∀k ∈ N.

Now, F(xn) = 1 − limn sup Mq(xn, xn+k, t) < ϵ ⟹ limnF(xn) = 0.

Again, from the given condition (

t
1+ t )F(y) + 1 − ϵMq(y, xn, t) ≤ (

t
1+ t )F(xn), taking limn sup  of both sides we get 

(

t
1 + t )F(y) + 1 − ϵ[1 − F(y)] < 0

⟹ (ϵ +

t
1 + t )F(y) < ϵ − 1

⟹ F(y) <

ϵ − 1

ϵ + (

t
1+ t ) < ϵ

This gives limn sup Mq(y, xn, t) > 1 − ϵ, implies that ⟨xn⟩ is l-convergent. Hence X is ll-complete. ◻

Corollary 3.10. Let (X, Mq) be a FQMS. If for every upper semi-continuous function F:X → R and for every ϵ > 0 there

exists yϵ ∈ X such that

(

t
1 + t)F(x) + 1 − ϵMq(x, yϵ, t) ≤ (

t
1 + t)F(yϵ),  ∀x ∈ X

then the FQMS X is rr-complete.

4. Applications on Optimization Theory

Theorem 4.1. (Takahashi’s minimization theorem): Let (X, Mq, ∗m) be a ll-complete FQMS and a mapping 

F:X → R ∪ { + ∞} be a proper bounded below and lower semi-continuous function. Assume that there exists ρ > 0 and for

each x̂ ∈ X with infx∈XF(x) < F(x̂), there exists z ∈ X(z ≠ x̂) such that

ρMq(z, x̂, t) ≥ 1 −

t
1 + t [F(x̂) − F(z)],

then there exists x̄ ∈ X such that F(x̄) = infx∈XF(x).

Proof. On the contrary, suppose infx∈XF(x) < F(y) for all y ∈ X, and let x̂ ∈ dom(F). We define inductively a sequence 

⟨xn⟩ in X starting with x1 = x̂. Suppose that xn ∈ X is known. Put

Sn+1 = {x ∈ X :

t
1 + tF(xn) ≥

t
1 + tF(x) + 1 − ρMq(x, xn, t)},

and choose xn+1 ∈ Sn+1 such that
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F(xn+1) ≤

1
2 {

inf
x∈Sn +1F(x) + F(xn)}.

Now we have to verify that the definition of xn+1 is correct. To do this, let us first show that F(xn) > infx∈Sn +1
F(x).

Suppose that F(xn) = infx∈Sn +1
F(x). Then hypothesis, F(xn) > infx∈XF(x) such that, by the given condition, there exists 

y ∈ Sn+1╲{xn}, yielding a contradiction 

t
1 + tF(y) ≤

t
1 + tF(xn) − [1 − ρMq(y, xn, t)]

≤

t
1 + tF(xn)

⟹ F(y) ≤ F(xn) =
inf

x∈Sn +1F(x)

 which contradicts y ∈ Sn+1╲{xn}. Consequently, F(xn) > infx∈Sn1
 and F(xn+1) < F(xn).

Therefore we may claim that ⟨xn⟩ is a l-Cauchy sequence. Since xn+1 ∈ Sn+1 for all n ∈ N, then we have 

ρMq(xj+1, xj, t) ≥ 1 −

t
1 + t [F(xj+1) − F(xj)];  for allj ∈ N

If n > m then using equation (4), we obtain 

1 − ρMq(xm, xn, t) ≤ 1 − min {ρMq(xm, xm+1, t1), …, ρMq(xn−1, xn, tn−m)}
≤ 1 − ρMq(xm, xm−1, t1), …, 1 − ρMq(xn+1, xn, tm−n)

≤

t
1 + t

n

∑
j=m−1[F(xj+1) − F(xj)]

≤

t
1 + t [F(xm) − F(xn)] (5)

Since the sequence ⟨F(xn)⟩ is decreasing and the function F is bounded below, so ⟨F(xn)⟩ is convergent in R and hence it

is Cauchy. Now given ϵ > 0 there exists N ∈ N such that

|F(xm) − F(xn) | <

ϵ
t

1 + t
; for all m, n ≥ N

Then by equation (5),

1 − ρMq(xm, xn, t) ≤

t
1+ t [F(xm) − F(xn)] < ϵ; for all n > m > N,

which shows that the sequence ⟨xn⟩ is l-Cauchy.

Since (X, Mq, ∗m) is ll-complete, then ∃ x̃ ∈ X such that xn l-convergent to x̃. Since F is lower semi-continuous, then

Qeios, CC-BY 4.0   ·   Article, August 19, 2024

Qeios ID: VJGGST.2   ·   https://doi.org/10.32388/VJGGST.2 14/22



lim
n→∞Mq(xm, xn, t) ≤ Mq(x̃, xn, t).

By taking limit as m → ∞ in equation (5) and using lower semi-continuity of F, we obtain 

ρMq(x̃, xn, t) ≥
lim

n→∞ρMq(xm, xn, t)

≥ 1 −

t
1 + t [F(xn) − F(xm)]

≥ 1 −

t
1 + t [F(xn) − F(x̃)] (6)

On the other hand by the given condition, there exists z ∈ X such that z ≠ x̃ and we get 

ρMq(z, x̃, t) ≥ 1 −

t
1 + t [F(x̃) − F(z)]

From the definition of FQMS, we have 

Mq(z, xn, s) ≥ min {Mq(z, x̃, t), Mq(x̃, xn, s − t),  for 0 < t < s

≥ Mq(z, x̃, t)

From equations (6),(7) and (8), we obtain 

t
1 + tF(z) ≤

t
1 + tF(x̃) − [1 − ρMq(z, x̃, t)]

≤

t
1 + tF(xn) − [1 − ρMq(z, xn, s)]

Consequently, z ∈ Sn+1 for all n ∈ N.

Now since 

2F(xn+1) − F(xn) ≤

inf
x̃∈Sn +1F(x̃) ≤ F(z).

Then as per equations (7) and (9), we have 
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t
1 + tF(z) <

t
1 + tF(z) + [1 − ρMq(z, x̃, t)]

≤

t
1 + tF(x̃)

≤

t
1 + t

lim
n→∞F(xn)

=

t
1 + t

lim
n→∞{2F(xn+1) − F(xn)}

≤

t
1 + tF(z)

which is a contradiction. Therefore, there exists x̄ ∈ x such that F(x̄) =
inf

x∈XF(x). Hence the theorem. ◻

Corollary 4.2. Let (X, Mq, ∗m) be a rr-complete FQMS and F:X → R ∪ { + ∞} be an upper semi-continuous function,

proper and bounded above. Assume that there exists ρ > 0 and for each x̂ ∈ X with infx∈XF(x) < F(x̂), there exists 

z ∈ X(z ≠ x̂) such that

Mq(x̂, z, t) ≥ 1 −

t
1 + t [F(z) − F(x̂)],

then there exists x̄ ∈ X such that F(x̄) = infx∈XF(x).

Remark 4.3. Theorems 3.4 and 4.1 are equivalent.

Proof. First we prove theorem the 3.4 by using the theorem 4.1. Assume that the theorem 4.1 and all the hypothesis of the

theorem 3.4 are hold. Let x̂ ∈ X, consider a set Y = {y ∈ X : (

t
1+ t )F(y) + 1 −

ϵ
λ Mq(y, x̂, t) ≤ (

t
1+ t )F(x̂)}. Y is non-empty as 

x̂ ∈ Y and Y is closed (see the proof of theorem 3.4), hence the statement (a) in theorem 3.4 holds.

Now, for each z ∈ Y, we get 

(

t
1 + t)F(z) + 1 − Mq(z, x̂, t) ≤ (

t
1 + t)F(x̂)

≤ (

t
1 + t)[ inf F(X) + ϵ]

≤ (

t
1 + t)[F(z) + ϵ]

implies Mq(z, x̂, t) ≥ λ(1 −

t
1+ t ). Hence the statement (b) in theorem 3.4 holds. If possible let the statement (c) in theorem

3.4 is not true, therefore there exists y ∈ X(y ≠ z) such that

t
1 + tF(y) + 1 −

ϵ
λ Mq(y, z, t) ≤

t
1 + tF(z).
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Now from the definition of FQMS we have, 

1 −

ϵ
λ Mq(y, x̂, t) ≤ 1 −

ϵ
λ min {Mq(y, z, t − s), Mq(z, x̂, s)}

≤ 1 −

ϵ
λ Mq(y, z, t − s) + 1 −

ϵ
λ Mq(z, x̂, s)

≤

t
1 + t [F(z) − F(y) + F(x̂) − F(z)]

≤

t
1 + t [F(x̂) − F(y)]

Therefore y ∈ Y. Then by theorem 4.1 there exists ̄x ∈ X such that F(x̄) = infx∈YF(x), which contradicts the fact that

there exists y0 ∈ Y with F(y0) < F(x̄).

Hence the statement (c) in theorem 3.4 is true.

Conversely, we have to prove the theorem 4.1 by using the theorem 3.4. Let the theorem 3.4 holds and consider all the

hypothesis of the theorem 4.1. Put λ = 1 and ϵ = ρ in the statement (c) of the theorem 3.4, then for each ̄x ∈ X we have, 

t
1 + tF(x) + 1 − ρMq(x, x̄, t) >

t
1 + tF(x̄), with x ≠ x̄

If possible, let F(x̄) > infx∈XF(x). By the hypothesis of theorem 4.1 there exists z ∈ X, z ≠ x̄ such that we get the

following inequality, 

t
1 + tF(z) + 1 − ρMq(z, x̄, t) ≤

t
1 + tF(x̄).

which contradicts equation (10) for ρ =

ϵ
λ . Hence F(x̄) = infx∈XF(x). ◻

Theorem 4.4. (Equlibrium version of TMT)

Let (X, Mq, ∗m) be a ll-complete FQMS and F:X × X → R be a bifunction. Asuume that there exists a proper bounded

below and lower semi-continuous function F:X → R ∪ { + ∞} such that 

F(x, y) ≥ F(y) − F(x) for all x, y ∈ X.

Assume that there exists ρ > 0 and for each x̂ ∈ X with infx∈XF(x) < F(x̂), there exists z ∈ X(z ≠ x̂) such that

t
1 + tF(z, x̂) + ρMq(z, x̂, t) ≥ 1

then there exists x̄ ∈ X such that F(x̄, y) ≥ 0 for all y ∈ X.

Theorem 4.5. (Converse of Takahashi’s Minimization Theorem):

Let (X, Mq, ∗m) be FQMS and F:X → R ∪ {∞} be a bounded below, lower semi-continuous function. If for each ̃x ∈ X
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 with infx∈XF(x) < F(x̃),there exists z ∈ X(z ≠ x̃) such that the following inequality holds:

ρMq(z, x̃, t) ≥ 1 −

t
1 + t [F(x̃) − F(z)].

Therefore there exists x̄ ∈ X such that F(x̄) = infx∈XF(x), then (X, Mq) is ll-complete FQMS.

Proof. Let ⟨xn⟩ be a l-Cauchy sequence in X and consider the function F:X → R ∪ {∞} defined by

F(x) = 1 −
lim
n sup Mq(x, xn, t).

Then the theorem 3.9 shows that limn→∞F(xn) = 0. This implies infx∈XF(x) = 0.

Let us consider x̃ ∈ X with infx∈XF(x) = 0 < F(x̃), then there exists a n ∈ N such that F(x̃) ≤

1
2F(xn) and 

1 − Mq(x̃, xn, t) ≤

t
2(1+ t ) F(xn). Therefore for xn ≠ x̃, the condition of this theorem is represented by (for ρ = 1),

t
1 + tF(x̃) + 1 − Mq(x̃, xn, t) ≤ F(xn).

Thus, there exists x̄ ∈ X such that F(x̄) = infx∈XF(x) = 0.

This implies F(x̄) = 0 ⟹ limn→∞Mq(x̄, xn, t) = 1. Therefore, ⟨xn⟩ is l-convergent to x̄. Hence (X, Mq) is ll-complete. ◻

5. Applications on Fixed Point Theory

By using the notion of the fuzzy metric space in the sense of Kramosil et al.[10], George and Veeramani[11] proved the

Banach contraction principle (BCP) in fuzzy metric space. However, Cobzas[6] established another type of fixed point

result, named Caristi-Kirk Fixed Point Theorem, by using EVP in the setting of quasi metric space. Here we shall prove

these two fixed point results on the basis of FQMS by using EVP (theorem 3.4).

Theorem 5.1. (Banach Contraction Theorem): Let X be a ll-Complete FQMS and T:X → X be a contraction

mapping[28] satisfying 

Mq(Tx, Ty, κt) ≥ Mq(x, y, t),  for all x, y ∈ X, 0 < κ < 1,

then T has a unique fixed point in X.

Proof. Consider the function F:X → R ∪ { + ∞} defined by

F(x) = Mq(x, T(x), t) for all x ∈ X.

Then as per definition, F is bounded below and lower semi-continuous on X. Now we choose ϵ (0 < ϵ < λ) such that as

per theorem 3.4 there exists z ∈ X satisfying
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κt
1 + κtF(z) + 1 −

ϵ
λ Mq(z, x, κt) ≤

κt
1 + κtF(x).

Now putting z = T(x) in the above, we have 

κt
1 + κtF(Tx) + 1 −

ϵ
λ Mq(Tx, x, κt) ≤

κt
1 + κtF(x)

⟺

κt
1 + κtMq(Tx, TTx, κt) + 1 −

ϵ
λ Mq(Tx, x, t) ≤

κt
1 + κtMq(x, Tx, t)

⟺

κt
1 + κtMq(x, Tx, t) + 1 −

ϵ
λ Mq(Tx, x, t) ≤

κt
1 + κtMq(x, Tx, t)

⟺

ϵ
λ Mq(Tx, x, t) ≥ 1

⟺ Mq(Tx, x, t) = 1 ⟺ Tx = x

Therefore T has a fixed point. Now we are to show that this fixed point is unique. If possible there exists another fixed

point y( ≠ x) ∈ X such that Ty = y. 

1 ≥ Mq(x, y, t) = Mq(Tx, Ty, t)

≥ Mq(x, y,

t
k ) = Mq(Tx, Ty,

t
k )

≥ Mq(x, y,

t
k2

) = …

≥ Mq(x, y,

t
kn

) → 1,  as n → ∞

 This implies x = y. Hence the proof. ◻

Theorem 5.2. (Caristi-Kirk Fixed Point Theorem): Let (X, Mq, ∗m) be ll-complete FQMS. Consider a bounded below,

lower semi-continuous function F:X → R and a fuzzy function f:X → X satisfy the following condition 

t
1 + tF(x) + 1 − Mq(f(x), x, t) ≤

t
1 + tF(f(x))

 then f has a fixed point in X.

Proof. We define an order relation on X for x, y ∈ X as

x ≤ y ⟹ Mq(x, y, t) ≥ 1 − (

t
1+ t )[F(y) − F(x)]

Then the hypothesis of the theorem shows that 

f(x) ≤ x for all x ∈ X.

Now from theorem 3.3 we can say that there exists an minimal element z ∈ X. Then from equation (14), we have f(z) ≤ z,
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so f(z) = z as z is the minimal element. Hence the theorem. ◻

6. Conclusion

In this paper, Ekeland variational principle is developed by using Brézis-Browder principle on a partial order set over

FQMS under non Archimedean t-norm. Existence of a solution of optimization problem in the sense of Takahashi’s

minimization theorem has been established without compactness and convexity assumptions. Also an equivalence

relation between these two theorems and two types of equilibrium solutions are established here. Based on EVP, Banach

fixed point theorem and Caristi-Kirk fixed point theorem are employed in this FQMS.

Moreover, these results can further be developed in several optimization theories, game theory, differential equations and

non-linear analysis etc in the setting of fuzzy quasi metric space. Indeed, this approach can be extended to some other

fuzzy environments such as lock fuzzy set, dense fuzzy set, cloudy fuzzy set, fuzzy reasoning and hesitant fuzzy set also.
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