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The conventional approach to sleep analysis relies on pre-de�ned, visually scored stages derived

from electrophysiological signals. This manual method demands substantial e�ort and is in�uenced

by subjective assessments, implicitly assuming that these categories accurately re�ect underlying

biological processes. Recent advancements indicate that low-dimensional representations of

complex brain activity can provide objective means of identifying brain states. These approaches can

potentially uncover inherent patterns within sleep, o�ering valuable insights into its organization.

In this study, we applied Principal Component Analysis (PCA) to spectral features extracted from

high-density EEG, EOG, EMG, and ECG recorded overnight at both 30– and 4-second resolutions.

Notably, the �rst principal component—the “Hypno-PC”—strongly aligns with the hypnogram at

both time scales. Subsequently, we employed a Gaussian Hidden Markov Model (GHMM) to delineate

discrete states in the PCA-transformed data and to quantify their temporal dynamics. Using minimal

supervision (less than 0.5% of the data labeled) and a cross-subject approach, the model achieved

alignment with standard sleep labels comparable to the typical inter-rater agreement. Finally,

independent component analysis (ICA) was applied to the PCA space, decomposing it into an

independent set of components that potentially represent distinct physiological processes.

The integrated use of PCA, GHMM, and ICA provides a reproducible and scalable methodology that

aligns with traditional sleep staging, while o�ering a more �exible and comprehensive perspective

on sleep states. Our �ndings indicate that these data-driven, unsupervised methods e�ectively

uncover the intrinsic dynamics of sleep, advancing automated sleep analysis and enhancing our

understanding of sleep organization.
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Statement of Signi�cance

This study introduces a data-driven framework for sleep analysis designed to objectively identify

brain states using low-dimensional representations of electrophysiological signals during sleep. By

integrating a suite of unsupervised learning techniques, our methodology o�ers an alternative to

subjective manual scoring, potentially enhancing both e�ciency and reproducibility. In addition to

aligning with traditional sleep staging, this approach uncovers subtle sleep dynamics across multiple

time scales, enabling the discovery of patterns that conventional methods might overlook. These

advancements hold promise for automated sleep monitoring and the study of sleep disorders,

potentially improving diagnostic accuracy and facilitating large-scale sleep research. By addressing

current limitations in sleep analysis techniques, this framework lays the groundwork for more

elaborate and scalable assessments.

Introduction

Understanding the complex dynamics of brain activity is a fundamental goal in neuroscience, with

signi�cant implications for understanding brain dynamics and diagnosing and treating neurological

disorders. Neuroimaging tools such as functional magnetic resonance imaging (fMRI)[1]  and

electroencephalography (EEG)[2] have been instrumental in unraveling brain dynamics—particularly

in the study of sleep stages.[3]

Sleep research focuses on �ve stages: wake, non-rapid eye movement (NREM) 1-3, and rapid eye

movement (REM). The American Academy of Sleep Medicine (AASM) classi�es these stages based on

polysomnographic (PSG) recordings, which include EEG, electrooculography (EOG), and

electromyography (EMG).[4]  Each stage is associated with characteristic oscillatory patterns in the

EEG: posterior alpha activity marks quiet wakefulness; frontal theta dominates in N1 and REM; spindle

activity is a hallmark of N2; and slow waves and delta waves de�ne N3, or slow-wave sleep (SWS).

Meanwhile, EOG and EMG play key roles in distinguishing REM sleep from wakefulness. Sleep stages

are strongly tied to autonomic balance; thus, heart rate and variability measures from

electrocardiography (ECG) may provide essential information.[5]
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Clinical polysomnography (PSG) typically employs a limited number of EEG electrodes for practical

reasons, such as ease of placement and streamlined visual analysis. However, this approach limits the

information captured about the spatial distribution of electrophysiological activity. High-density EEG

has become a valuable tool for studying sleep architecture in greater detail.[6][7][8][9][10] Nevertheless,

representing such complex multidimensional data in a clear and interpretable way remains a

signi�cant challenge.[11]

Recent work utilizing whole-night fMRI has revealed the intricate dynamics of sleep, identifying

multiple distinct states and highlighting the complexity of sleep architecture[12].  From a di�erent

avenue, advancements in data analysis have demonstrated that complex brain dynamics can be

robustly embedded into low-dimensional spaces, revealing integrated brain dynamics[13]. These tools

o�er powerful insights into various brain states during sleep. However, methods often rely on non-

linear transformations, making it non-trivial to interpret and map back to the source signals. This

hinders a direct understanding of the mechanisms driving these representations and limits the

relation of low-dimensional representation with clinical conventions and basic research �ndings.

Principal Component Analysis (PCA)[14]  o�ers a linear, unsupervised dimensionality reduction

technique that can identify the principal axes of variation in high-dimensional data. The linearity of

PCA enables straightforward interpretation of the directions of major variance axes in the high-

dimensional feature space. As an unsupervised method, PCA is free from the subjective biases that are

associated with manual labeling. Demonstrating convergence between PCA-derived representations

and standard sleep classi�cation can validate the robustness of both approaches. Such convergence

can enhance our understanding of sleep dynamics and provide a complementary, quantitative

perspective for evaluating sleep.

Rather than viewing sleep as a sequence of discrete, isolated stages, it is more accurate to describe it as

a continuous progression of physiological states that evolve throughout the night, as re�ected in

dynamic changes in neuronal oscillations. A good starting point for characterizing this progression is

to examine the spectral pro�le of the EEG signal and then use dimensionality reduction to identify

patterns of temporal co-variation within that pro�le. Integrating EMG, EOG, and ECG signals—which

capture muscular, ocular, and cardiac activity, respectively—can further reveal a broad range of

physiological changes and help provide a more holistic view of the sleep process. These additional

modalities also facilitate the alignment of PCA-derived representations with established sleep-stage

classi�cations, bridging the gap between this data-driven approach and conventional frameworks.
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We applied a Gaussian Hidden Markov Model (GHMM)[15]  to the PCA-transformed data to capture

temporal dynamics and classify the data into discrete states. The GHMM divides the data into a

prede�ned set of states and determines the likelihood of each sample belonging to a particular state by

considering both the observed signal (emission probability) and the probability of transitioning from

one state to another (transition probability) based on the previous state. By simultaneously

considering the observed data at a particular time and its temporal context, the GHMM provides a

more nuanced depiction of how signals evolve over time.

This process resembles the approach taken by human scorers during sleep staging; however, unlike a

human rater, the model explicitly provides the emission and transition probabilities for each state.

This detailed information o�ers valuable insights into how each state is represented within the

feature space, the typical state sequences observed during sleep, and the stability of each state. These

properties could enhance the reproducibility of state classi�cation and o�er complementary

information about stage stability, which may be particularly relevant in various clinical conditions[16].

PCA assumes that variation directions must be orthogonal, yet independent processes in brain activity

may not fully adhere to this assumption. Moreover, orthogonality in the feature space may not

accurately capture the independent processes that occur throughout the night. To address this, the PC

representation can be re�ned by applying a blind source separation approach to identify independent

processes. For this task, Independent Component Analysis (ICA)[17]  is a suitable candidate, as it

maintains linearity while also addressing this limitation of PCA. ICA decomposition can potentially

isolate processes originating from distinct sources, further re�ning the PCA representation and

re�ecting underlying physiological processes.[18]  By applying ICA to the PCA-transformed data, we

sought to pinpoint independent processes captured in the low-dimensional representation and

examine the temporal and spatial patterns of these components.[19]

In this study, we analyzed a high-density EEG dataset of 29 healthy subjects to derive a cross-subject

representation of signal co-variation during sleep. First, we applied PCA to reduce the dimensionality

of the data. The �rst principal component closely matches the human-labeled hypnogram, re�ecting

major sleep stages. Next, we employed a GHMM on the PCA-transformed data at 30-second and 4-

second resolutions to segment sleep into discrete states.

We used a minimally supervised approach to label these states that assigns a sleep stage to each

hidden state based on the “most typical” sample (i.e., requiring only one labeled example per hidden
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state per training subject). Quantifying the agreement rate with the manual sleep labels, we found that

the labels assigned by the model fall within the range of the reported inter-rater agreement,

highlighting its robust alignment with the current sleep scoring approach. We then re�ned the low-

dimensional representation through ICA, enabling us to isolate independent components within the

PCA space and gain further insights into underlying physiological processes.

By combining the linearity and interpretability of PCA and ICA with the capacity of the GHMM for

temporal modeling, we constructed a concise yet informative representation of sleep states. This

framework captures the temporal dynamics of brain oscillations, along with eye, muscle, and heart

activity, aligning with existing sleep analysis methodologies while providing a more precise and

automated avenue for investigating both the temporal and spatial characteristics of sleep.

Methods

Data

A rich, high-quality dataset that captures a broad range of physiological signals during sleep. By using

a well-characterized and publicly available dataset, our analyses can be more easily replicated and

validated. Thus, we used the ANPHY-Sleep dataset,[6]  a publicly available resource containing

polysomnographic (PSG) recordings of 29 healthy, normal sleepers. Each recording includes high-

density EEG with 83 channels, two bipolar EOG channels, three bipolar EMG channels (legs and chin),

and one bipolar ECG channel. The data were scored according to AASM guidelines,[4]  providing a

reference hypnogram for each subject. Subject demographics such as age and gender, along with

overnight sleep measures, are documented in Wei et al. 2024.[6]

Pre-processing

Current pre-processing aims to clean the raw signals and remove non-physiological noise sources.

This step provides stable inputs for subsequent feature extraction and prevents systematic artifacts

from in�uencing the analysis. The pre-processing was performed using custom code with MNE-

Python[20] functions. All signals were initially band-pass �ltered, with the frequency bands adjusted

to capture information that was relevant for each signal set. The �lters applied included EEG: 0.5-40

Hz, EOG: 0.3-15 Hz, EMG: 10-50 Hz, and ECG: 0.5-20 Hz.
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We applied an average reference on the EEG channels. For EOG, we added a derived channel by

referencing left EOG to right EOG to emphasize horizontal eye movements. Bipolar referencing was

used for EMG and ECG. Signals were segmented into contiguous, non-overlapping epochs of 30

seconds and 4 seconds. These epochs form the fundamental time windows for feature extraction.

Feature Extraction

Feature extraction converts the raw signals into numerical summaries that re�ect the physiological

characteristics of the signal. This step distills large volumes of data into meaningful metrics

representing brain rhythms, muscle activity, eye movements, and cardiac dynamics.

For each epoch, we computed the following:

EEG Features: We used the Welch method to estimate the power spectral density (PSD) at 0.5– 40 Hz.

Relative spectral power was extracted for low delta (0.5-1.5 Hz), high delta (1-4 Hz), theta (4-8 Hz),

alpha (8-12 Hz), low sigma (10-13 Hz), high sigma (12-16 Hz), beta (15-25 Hz), and gamma (25-40

Hz) bands. The aperiodic slope and intercept (from linear �ts on log-log PSD), spectral entropy, and

total power were also calculated using log-transformed spectral power.

EMG Features: PSD between 10 and 50 Hz was computed, and total power in this range represented

muscle activity.

EOG Features: Total spectral power between 0.3-2 Hz served as an index of eye movements.

ECG Features: R-peaks were detected using the SciPy “�nd_peaks” function[21],  yielding R-R

intervals. Heart rate (HR) and heart rate variability (HRV) metrics (SDNN and RMSSD) were

computed[22].  It is important to note that HRV measures generally provide unstable information at

such short time scales. However, unlike previous studies that considered a single estimate[22],  our

approach focuses on relative changes rather than on absolute HRV values. By doing so, we utilize this

instability as a feature rather than viewing it as a limitation, o�ering a novel perspective on HRV

dynamics.

Feature Cleaning and Standardization

This step ensures that all extracted features are on a comparable scale and that missing or extreme

values do not bias downstream analyses. It stabilizes the dataset in order to apply dimensionality

reduction techniques and modeling.
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Within each subject, features were z-scored by subtracting the mean and dividing by the standard

deviation. Missing values occurred only for the ECG measure at the 4-second resolution and in less

than <0.2% of the data in 12 subjects. Most missing values were found in subject EPCTL29, where

RMSSD could not be calculated for 430 segments, likely due to a low heart rate, as at least three

detected peaks are required for this calculation. To maintain temporal sampling consistency, missing

values were linearly interpolated. To reduce the impact of outliers on the PCA features, values were

clipped to the range of [-5, 5]. Across features, the mean portion of clipped values was lower than 1%

of the segments, and no trend was observed in individual features.

Principal Component Analysis (PCA)

PCA reduces the complexity of the dataset by identifying orthogonal directions (principal

components) of maximal variance. This step condenses a large number of features into a handful of

variables, making the predominant patterns in the data easier to visualize and analyze.

PCA was applied to the standardized feature matrix. Components explaining at least 2% of the total

variance were retained, resulting in �ve principal components (PCs). These PCs were plotted over time

and compared to the hypnogram to interpret their relation to known sleep stages.

Visualizing the Component Filters

This visualization aims to make the principal and independent components more interpretable by

showing how each feature contributes to a component linking the abstract PCs back to meaningful

physiological patterns. For EEG, spatial topography was generated by projecting the component

weights of each feature onto a head map according to the electrode layout. Non-EEG features (EOG,

EMG, ECG) were represented in bar plots. The color and scale of these maps highlight which features

heavily in�uence each component, guiding physiological interpretation.

Statistical Analysis

This analysis quanti�ed the relationship between each component and known sleep stages. It tested

whether the PCs (or later ICs) reliably di�er across these stages. We �tted a mixed-e�ects linear

model for each component using Statsmodels[23] with the following formula:

 Component  ∼ 0 +  Stage  + (0 +  Stage  ∣  Subject )
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The model estimates the direction and strength of the association between each component and sleep

stages while accounting for individual di�erences and repeated samples and estimating both the

individual and overall slopes. We extracted the coe�cients, p-values, standard errors, and 95%

con�dence intervals and visualized signi�cance using conventional markers and plotting patient-

speci�c slopes to assess cross-subject consistency.

Gaussian Hidden Markov Model (GHMM)

While traditional sleep staging relies on pre-de�ned categories, the goal here was to discover

underlying states directly from the data. The GHMM treats the transformed data as observations

generated by a sequence of hidden states, each with its own emission (observation) distribution. By

�tting a GHMM, we aimed to identify discrete states that re�ect inherent patterns in the data—

potentially corresponding to, but not dictated by, conventional sleep stages. This method allowed us

to model the distribution of observations within each state and the temporal transitions between

them, providing a time-resolved, data-driven perspective on sleep architecture.

We applied the GHMM to the PCA-transformed data at both 30-second and 4-second resolution

epochs, allowing us to investigate the dependence of state segmentation on the temporal scale of

analysis. We implemented a leave-one-subject-out cross-validation scheme. For each run, the data

from 28 subjects served as training data, and the remaining subject was held out as test data. This

process was repeated 29 times, ensuring that each subject was used as the test set exactly once.

GHMMs were trained with a range of possible state counts (2 to 15). For each state count, we evaluated

the Bayesian information criterion (BIC) and Akaike information criterion (AIC) for the held-out

subjects. The optimal number of states was chosen where increasing the number of states no longer

improved either the median BIC or AIC, balancing model complexity and �t quality.

Minimal Supervision for Label Assignment

We used a minimally supervised approach to link hidden states to known sleep stages. For each

candidate state in the training set, we identi�ed the segment within that state with the highest

posterior probability—representing the most “typical” example of that state. We then examined the

sleep stage labels of these most typical segments across training subjects. The sleep stage that

appeared most frequently for each state was assigned as its label. This procedure uses fewer than 0.5%
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of the labeled segments in the data, signi�cantly reducing manual labeling overhead. This ensures

that states are primarily de�ned by the data, with only a minimal reference to known stages.

Agreement Evaluation with Manual Labels

After assigning labels to the hidden states, we evaluated how well the GHMM-assigned labels aligned

with the manual sleep labels in each model con�guration (ranging from 2 to 15 states). Speci�cally, we

computed both accuracy and Cohen’s kappa to quantify agreement with conventional sleep scoring.

Comparing Di�erent Modeling Approaches

After determining the optimal number of states, we explored three strategies for training the hidden

state models. First, we used our original cross-validation approach, training each model on a subset of

subjects and validating it on the remaining subjects. Second, we trained a single, uni�ed model using

data from all subjects. Finally, we adopted a personalized strategy, in which we started with the

uni�ed model and then �ne-tuned it on the data of each subject prior to evaluation. We assessed the

performance of these three approaches across all subjects, focusing on both the median performance

and the variability observed among individuals.

At a group level, we compared the GHMM-derived overnight measures—total sleep time (TST), sleep

onset latency (SOL), wake after sleep onset (WASO), sleep e�ciency (SE), and time spent in each stage

—with the corresponding measures obtained from manual hypnograms. We then computed inter-

class correlation coe�cients (ICCs)[24] and p-values to evaluate how consistently the GHMM-based

measures aligned with conventional sleep scoring.

To better understand the relationship between GHMM states and conventional sleep stages, we

assessed the proportion of each standard sleep stage within each hidden state, the spatial distribution

of these states in the principal component space, their occurrence throughout the night, and the

transition probabilities among them. We then compared these GHMM-derived properties with the

corresponding features derived from conventional sleep stages.

Independent Component Analysis (ICA)

ICA was applied to further decompose the principal components (PCs) into statistically independent

processes, helping to isolate distinct physiological generators that might be mixed within the PCs. To

ensure robust separation and identi�ability, each PC was re-scaled before ICA training, and the model
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was �tted on the �ve PCs using Python-Picard, which implements an extended infomax algorithm to

separate both sub– and super-Gaussian signals[25]  After �tting, the ICA unmixing transformation

was applied without unit scaling to preserve the original variance ratios. We then analyzed the

resulting independent component (IC) time series in the same manner as the PCs, employing

topographic maps and mixed-e�ects modeling as described in previous sections.

Results

Applying PCA to the extracted features (EEG, EOG, EMG, and ECG) at the 30-second timescale yielded

�ve PCs, each explaining at least 2% of the variance. The �rst PC (PC1) accounted for 41.8% of the

variance, suggesting that it captures a dominant pattern in the electrophysiological signals.

Strikingly, when examining this PC over time in individual subjects, we found that it closely resembled

the manually scored hypnogram (Figure 1A-B). This strong alignment was observed across subjects,

motivating us to refer to PC1 as the “Hypno-PC.”
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Figure 1. Principal Component Timeline and Sleep Stages.

This �gure illustrates the relationship between principal components derived from the 30-second

segment decomposition of sleep data. A similar plot for the 4-second segments is provided in Figure S1.

A. The manually scored hypnogram for a representative subject (EPCTL01).

B. Left Panel: Time series of Principal Components 1 through 5 (PC1–PC5) for the representative subject,

highlighting the strong similarity between PC1 (termed the “Hypno-PC”) and the hypnogram. Right
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Panel: Cross-subject distributions of component values for each sleep stage, demonstrating that PC1

systematically distinguishes sleep stages across individuals. Additionally, an example time series and the

overall value distribution by stage are shown for each component.

C. 3D Representation: Cross-subject 3D plots of PC 1-3 and 3-5, illustrating how sleep stages occupy

distinct regions within the principal component space. Notably, there is some overlap between N1 and

REM sleep, as evidenced in panels A and B.

Abbreviations:

PC: Principal component, Hypno-PC: Principal component 1, aligned with the hypnogram, N1-3: Non-

rapid eye movement 1-3, REM: Rapid eye movement sleep, W: Wake

Note:

All principal components are derived from spectral features of high-density electroencephalography

(EEG), electrooculography (EOG), electromyography (EMG), and electrocardiography (ECG) recordings.

Beyond PC1, the remaining PCs together captured more nuanced and mixed variations in the data. For

example, PCs 2 and 3 provided additional axes along which di�erent sleep stages were arranged within

the low-dimensional space (Figure 1C). While the wake, N2, and N3 stages occupied relatively distinct

positions, the separation between N1 and REM was less clearly de�ned. These overlaps highlight the

complexity and continuity of sleep physiology rather than discrete boundaries between stages.

At the 4-second resolution, a similar PCA structure emerged (Figure S1). Although PC1 still tracked the

hypnogram-like pattern, the increased temporal resolution introduced greater within-stage

variability. Additionally, certain patterns observed at 30-second epochs—for instance, a clearer REM

signature in PCs 3-5—were less distinct at 4 seconds. The ground-truth labels were provided for 30-

second windows and were resampled for this evaluation. Thus, the manual labels may not re�ect

possible changes at this timescale.

Feature Maps and Statistical Modeling

To associate each principal component with speci�c electrophysiological processes, we created “�lter

maps” that depict the spatial distribution of weights for each feature. Additionally, we assessed the

statistical relationship between each PC and the sleep stages using mixed-e�ects models. For PC1,

which explained 41.8% of the variance and closely mirrors the sleep stage values in the hypnogram,
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positive values were associated with higher-frequency power bands, primarily beta power.

Conversely, negative values corresponded to lower-frequency power bands, mainly log-delta power.

This relationship was further supported by positive weights on the spectral slope, indicating that

�atter (less negative) spectral slopes are linked to higher PC1 values (see Figure 2 and its caption for

details on additional PCs).
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Figure 2. Principal Component Filter Maps.

This �gure depicts the principal component (PC) �lters derived from high-density

electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), and

electrocardiography (ECG) recordings during sleep. Each PC functions as a linear �lter applied to the high-

dimensional feature space, highlighting the contributions of di�erent frequency bands, electrodes, and

physiological measures.

PC1 (Hypno-PC): Primarily di�erentiates wakefulness and slow-wave sleep. Positive (red) values are

associated with higher-frequency EEG activity, which is characteristic of wakefulness and rapid eye

movement (REM) sleep. In contrast, negative (blue) values correspond to increased lower-frequency

activity, indicating deeper non-REM (NREM) sleep.

PC2: Negative values emphasized N2 sleep, with features linked to the theta-to-sigma range. Positive

values drew elements from N3 (slow waves), REM (eye movements), and wakefulness (muscle movement

and high-frequency activity) states, re�ecting a mixture of multiple processes.

PC3: Strongly related to a wake-REM contrast, with positive values associated with posterior alpha (wake)

and negative values related to REM and N1, and associated with an increase in theta and delta values. This

component does not strongly relate to eye movement and thus may be related to tonic REM.

PC4: Most positive for REM sleep. In this direction, there is an increase in bilateral frontal slow waves,

central theta, and posterior alpha and beta, which are patterns observed in REM. Muscle activity drives the

component to negative values, the opposite of REM and a trend that aligns with REM atonia.

PC5: Negatively correlated with N3 sleep. Positive values are more related to REM and N2 sleep, featuring

horizontal movement, anterior slow waves, posterior 10-25 Hz oscillations, and an increased posterior

spectral slope, particularly in the signal range. Similar patterns have been associated with dream

experiences[26].

*=p < 0.001, **=p < 0.0001, ***=p<0.0001,

Abbreviations:

PC: Principal component, EEG: Electroencephalography, EOG: Electrooculography, EMG:

Electromyography, ECG: Electrocardiography, REM/R: Rapid eye movement sleep, NREM: Non-rapid eye

movement sleep, N1-3: NREM1-3, W: wake.

Note:
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All principal components are derived from spectral features of high-density EEG, EOG, EMG, and ECG

recordings during sleep.

At the 4-second resolution, the spatial patterns and directional relationships remained broadly

consistent for PCs 1-3. However, PCs 4-5 displayed less de�ned spatial structures and appeared more

sensitive to high-frequency spatial variability at this �ner temporal scale (see Figure S2 for more

detail).

Identifying Inherent States Using a Gaussian Hidden Markov Model (GHMM)

To identify inherent states in the data and to assess their temporal dynamics, we applied a GHMM to

the PCA-transformed data. The GHMM framework assumes that the observed signals are generated as

emissions from a series of hidden states that evolve sequentially over time. In this context, emission

refers to the measured signals or data points that are produced by the underlying, unobserved

(hidden) states.

We trained GHMMs with varying numbers of states (ranging from 2 to 15) and employed a leave-one-

subject-out cross-validation strategy to determine the optimal state number across subjects. For the

30-second epoch, a four-state model provided the best balance between model complexity and �t

quality, as indicated by both the BIC and AIC. At the �ner 4-second resolution, a seven-state model

emerged as optimal. These results, detailed in Figure S3, demonstrate that di�erent temporal scales

can uncover varying levels of granularity in sleep structure, highlighting the nuanced dynamics

captured by the GHMM approach.

Minimal Supervision and Agreement with Labels

To map the hidden states to conventional sleep stages, we used a minimally supervised labeling

approach. For each hidden state and each subject in the training set, we identi�ed the most

representative segment—de�ned as the segment with the highest posterior probability of belonging

to that state. We then assigned each hidden state the most frequent sleep stage label among these

representative segments across all training subjects. Notably, this procedure required less than 0.5%

of the labeled data.

Despite such sparse supervision, the GHMM approach achieved an inter-rater-level agreement rate

within the reliability range commonly seen among expert human scorers[27]  (kappa ≈0.71 at 30-

qeios.com doi.org/10.32388/VKYPGF 16

https://www.qeios.com/
https://doi.org/10.32388/VKYPGF


second resolution). This result shows that the GHMM e�ectively captured the underlying structure of

the data and that this structure generally aligns with clinical sleep staging, thus providing a reliable

and interpretable automated approach to estimating sleep stages.

Modeling Approaches and Overnight Measures

To evaluate how training the approach a�ected the alignment of the sleep labels and GHMM states, we

compared three GHMM setups:

1. Cross-Subject (Leave-One-Out) Approach: Each run was trained on 28 subjects and tested on the

remaining subject, providing a robust measure of generalizability.

2. Shared Model: A single model trained on all subjects simultaneously, creating a global model of

sleep structure.

3. Personalized Model: Here, the shared model was �ne-tuned based on the data of each subject

prior to evaluation.

At a 30-second temporal resolution, the shared model demonstrated slightly higher consistency with

manual scoring than the other approaches. Interestingly, personalized models—designed to capture

individual sleep nuances—not only did not improve agreement with standard labels, but they also

often diminished it. This indicates that there are key elements in sleep structure that are shared across

individuals that align with the conventional criteria. Re�ning the �t on a particular subject that

highlights personal idiosyncrasies reduces the agreement with conventional criteria (Table 1, Top).

Nonetheless, exploring the individual variations and the divergence from “normal” sleep architecture

using personalized models may provide insights into di�erent sleep pathologies.
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Table 1. Agreement Metrics and Intraclass Correlation (ICC) Values for Overnight Sleep Measures across

Modeling Approaches at 30 and 4 Second Resolutions

Symbols: ns=not signi�cant, *=p < 0.01, **=p < 0.001, ***=p<0.001,

Abbreviations:

TST: Total sleep time, SOL: Sleep onset latency, WASO: Wake after sleep onset, SE: Sleep e�ciency, NREM:

Non-rapid eye movement sleep, REM: Rapid eye movement sleep

Note:

All values are presented as Mean [Standard Deviation] where applicable.

At the 4-second scale, absolute agreement was lower, which is expected given that ground-truth

labels were not originally de�ned at this temporal resolution (Table 1, bottom). The shared model is

the only one where N1 is consistently included. In Figure 5, we can see that in this model, both the N1

and REM-related stages are highly heterogeneous, with a high proportion of wake and REM-labeled

segments in the state assigned to N1 and a high portion of N1 and N2 in the state assigned to REM.

These heterogeneities may result in short temporal patterns (e.g., brief frontal theta or alpha waves,

tonic REM phases) that are typically observed within the 30-second segments.
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This heterogeneity led to underestimates of SOL and overestimates of REM time, yet each model

continued to capture important features of sleep. For instance, TST, WASO, and sleep e�ciency SE

exhibited strong ICC values across approaches, demonstrating that the GHMM remains valuable for

capturing essential aspects of overnight sleep architecture.

Understanding Sleep and Hidden State Characteristics

To further explore how the GHMM states relate to conventional sleep stages, we examined the

distribution of labels within each hidden state. We visualized the temporal evolution of these states

overnight. By considering emission and transition probabilities, the GHMM provides insights into the

temporal dynamics of the states throughout the night. Figure 3 illustrates temporal metrics derived

from the hypnogram and highlights two illustrative examples showing the importance of stability and

transition measures. Figure S4 demonstrates common temporal patterns captured from the 4-second

model in these subjects.
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Figure 3. Temporal Analysis of Sleep Stage Transitions.

This �gure examines the temporal dynamics of sleep stages across subjects, highlighting both overall
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patterns and individual variations.

Top-left Panel: Distribution of conventional sleep stages throughout the night, illustrating common

patterns such as an early dominance of N3 and a later increase in N2 and REM sleep.

Top-right Panel: Summary of stage-to-stage transitions averaged across subjects. Each circle represents

a sleep stage, with its size proportional to the number of transitions into that stage. The color saturation

decreases as outgoing transitions increase, providing a visual representation of the number of possible

transitions and connectivity to other stages. The number within each circle represents the stage stability

(self-transitions), e.g., how likely it is to remain in this stage across consecutive windows.

Bottom Panel: A comparison of two subjects (EPCTL16 and EPCTL28) exhibited high sleep e�ciency (96%

and 91%, respectively). Although EPCTL28 has a shorter Total Sleep Time (TST = 321.5 minutes vs. 392.5

minutes) and slightly more Wake After Sleep Onset (WASO = 27.5 minutes vs. 13 minutes), conventional

metrics alone do not fully capture the complexity of their sleep. The hypnogram for EPCTL16 indicates

more fragmented sleep with frequent transitions among the REM, N1, and N2 stages. Transition

probability plots re�ect these observations, showing reduced state stability and greater �ux between N1

and REM in EPCTL16 compared to EPCTL28. This comparison demonstrates how visualizing transitions

provides additional context beyond standard sleep e�ciency metrics, revealing nuances in sleep

architecture and stability.

Abbreviations:

REM/R: Rapid eye movement sleep, NREM: Non-rapid eye movement sleep, N1-3: NREM1-3, W: Wake,

TST: Total sleep time, WASO: Wake after sleep onset

Note:

The data presented in this �gure are extracted from the manual sleep label sequence.

The characteristics of the �nal chosen models (four states at 30 seconds, seven states at 4 seconds) are

presented in Figures 4 and 5. These �gures show how these data-driven states re�ect established

sleep patterns while capturing subtler transitions and variations that classical staging methods might

overlook[28]. Moreover, using the emission probabilities, we visualize the relationship between the PC

values and the di�erent stages.
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Figure 4. Properties of Hidden States Identi�ed by Gaussian Hidden Markov Model at 30-Second

Resolution.

This �gure illustrates the properties of the hidden states identi�ed by the Gaussian hidden Markov model

(GHMM) at the 30-second resolution.

Top-left panel: The proportion of standard sleep stages within each discovered hidden state. Four states

were identi�ed:

State 1 (W): Constitutes 21% of the data, with 79.6% of these segments labeled as Wake, 9.3% as N1, and

7.5% as N2.

State 0 (N3): Encompasses 22% of the data, primarily composed of N3 segments (80.2%) alongside some

N2 segments (19.7%).

State 3 (N2): Accounts for 36% of the data, with 89.8% labeled as N2 and a minor fraction (6.6%) as N1.

State 2 (REM): Includes 21% of the data. Although REM dominates at 56.3%, N1 (26.4%), N2 (10.8%), and

Wake (6.4%) also appear. This mixture re�ects the close physiological similarity between these stages, as

recognized by AASM guidelines.

An N1-related state (9.8% of the data) was not identi�ed. Segments labeled with this state were most
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commonly found in the REM-like state (5.5%), and at a comparable rate in the wake (2%) and N2 (2.4%)

states.

Top-middle panel: The overnight occurrence rate of these states shows that their temporal distribution

aligns well with conventional stage patterns presented in Figure 3.

Top-left panel: The transition probabilities among the hidden states. Each circle represents a hidden

state, with its size proportional to the number of transitions into that stage. The color saturation decreases

as outgoing transitions increase, providing a visual representation of the number of possible transitions

and connectivity to other stages. The number within each circle represents the stage stability (self-

transitions), e.g., how likely it is to remain in this stage across consecutive windows. The overall stability

of the hidden states was higher compared to the manual hypnogram stages; this may be due to the

reduction of the impact of the N1-related transitions observed in the hypnogram (e.g., W-N1, N1-N2),

suggesting better-de�ned states.

Lower panel: Distribution of hidden states within the principal component (PC) space. Comparing their

spatial arrangement to that presented in Figures 1 and 2 illustrates how GHMM states align with the

distribution of sleep stages in the PC space.

Despite some label misalignment, this visualization demonstrates that GHMM-derived states preserve key

temporal and spatial characteristics of established sleep stages while providing a more stable, data-driven

representation.

Abbreviations:

REM/R: Rapid eye movement sleep, NREM: Non-rapid eye movement sleep, N1-3: NREM1-3, W: Wake,

GHMM: Gaussian hidden Markov model, PC: Principal component, AASM: American Academy of Sleep

Medicine.

qeios.com doi.org/10.32388/VKYPGF 23

https://www.qeios.com/
https://doi.org/10.32388/VKYPGF


Figure 5. Properties of Hidden States Identi�ed by Gaussian Hidden Markov Model at 4-Second

Resolution.

This �gure illustrates the properties of the hidden states identi�ed by the GHMM at the 4-second
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resolution.

Top-Left Panel: The state distribution plots reveal that some hidden states align well with their

conventional sleep stages (e.g., those corresponding to W, N2, and N3). In contrast, the states associated

with N1 and REM are more heterogeneous, containing many segments from all stages except for N3

labeled segments. Thus, these could re�ect sub-states at this timescale that transiently occur within the

30-second epochs labeled as W, R, N1, or N2.

Top-Middle Panel: The temporal distribution of these states throughout the night shows expected

patterns: wake-related states predominate at the beginning and end of the night, and N3-related states

cluster in a more phasic manner early on. In contrast, N1, N2, and R-related states gradually rise as the

night progresses. This pattern suggests that, even at shorter timescales, the GHMM captures temporal

structures that align with accepted sleep architecture.

Top-Right Panel: With more than one state per sleep stage, both hidden state and sleep stage dynamics

are evaluated in two ways:

1. Hidden State Transitions: Transition probabilities among the hidden states are determined using the

GHMM model.

2. Sleep Stage Transitions: Transition probabilities are estimated from the mapped states sequence after

label assignment using the minimally supervised approach and averaged across patients.

Each circle represents a hidden state (top) or a sleep stage (bottom), with its size proportional to the

number of transitions into that state/stage. The color saturation decreases as outgoing transitions

increase, providing a visual representation of the number of possible transitions and connectivity to other

stages. The number within each circle represents the stage stability (self-transitions), re�ecting the

likelihood of remaining in the same stage across consecutive windows.

Hidden states 1 and 4, aligned with N3, exhibit low stability with a high transition rate between these

stages, suggesting strongly alternating N3 substrates. Additionally, there appears to be a clear directional

�ow among the hidden states, primarily forming a chain-like structure. When represented as sleep stages,

we can see that the overall stage stability is high, demonstrating how integrating prior knowledge (sleep

labels) and data-driven segmentation produces better-de�ned states. Deviations from these stable

patterns can serve as potential markers of sleep stability at the individual level (see Figure S4).

Lower Panel (State Distribution in PC Space): This panel maps the probability of each hidden state within

the principal component (PC) space. Comparing the REM and N1-related states, the N1-related state aligns

with higher values in PC1. It includes a signi�cant proportion of wake segments, suggesting it acts as a

transitional phase from wakefulness and re�ects a higher arousal state. Similarly, the REM-related state

blends N1, R, and N2 features, re�ecting a shared sub-state among sleep stages.

Examining the two wake states shows di�erences primarily in PC2 and PC4 (see Figure S2 for the
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component �lters). One wake state (hidden state 3) correlates with increases in spectral slope, gamma,

slow-wave activity, and an increase in eye/muscle movement and heart rate (positive PC2), possibly

indicating a more activated form of wakefulness. In contrast, the other wake state (hidden state 0) is

associated with heightened theta and alpha power, suggesting a quieter wake state. A similar pattern

emerges with the two N3 states: one state (4) is relatively stable and mediates transitions to and from N2,

whereas the other (1) is less stable and frequently transitions back to state 4. Although these two N3 states

occupy close locations in the PC space, their distinct transition patterns hint at �ner-grained di�erences

within deep sleep at this temporal resolution. Overall, these hidden states and their transitions may

represent previously described phenomena, such as cyclic alternating patterns (CAP)[29].

Abbreviations:

REM: Rapid eye movement sleep, NREM: Non-rapid eye movement sleep, N1-3: NREM1-3, W: Wake,

GHMM: Gaussian hidden Markov model, PC: Principal component, CAP: Cyclic alternating pattern

To further dissect the low-dimensional representation obtained through PCA, we performed an ICA.

As detailed in the Supplemental Information (Figures S5 and S6), ICA unmixed overlapping

physiological signals (e.g., arousals, phasic REM �uctuations) that may be con�ated in PCA space.

Although these ICA �ndings do not substantially alter the stage-level conclusions drawn from PCA

and GHMM, they enhance our physiological interpretation by capturing partially independent

processes[3][30][26].  These observations reinforce the complexity of sleep-state transitions and

underscore the latent dynamics that shape wakefulness, NREM, and REM episodes at both temporal

and spatial scales[28][31][32][33][34].

Discussion

Recent advances in neuroscience have shown that complex brain activity, recorded from large

populations of neurons, can often be described within low-dimensional spaces[13],  providing an

enhanced understanding of the computations performed by the neuronal

population[35]. Dimensionality reduction techniques—ranging from linear methods such as principal

component analysis (PCA) and factor analysis to non-linear methods like t-SNE and variational

autoencoders—have been increasingly applied to characterize brain states and transitions within

those states[13].
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In the context of sleep, studies have employed these approaches across multiple modalities. For

example, recently, non-linear manifold learning techniques have been applied to fMRI data to

uncover subtle neural dynamics underlying sleep stages[12][36].  PCA decomposition has successfully

revealed robust patterns from EEG that parallel conventional sleep staging categories from only three

EEG electrodes[37].  These e�orts exemplify how low-dimensional representations can capture

essential features of sleep architecture.

In this study, we introduced a data-driven framework that integrates PCA and GHMMs to analyze the

inherent structure of high-density electrophysiological sleep data. Our results demonstrate that the

�rst principal component (PC1), or “Hypno-PC,” strongly aligns with the manually scored

hypnogram, con�rming that the largest axis of variance in our spectral feature space closely re�ects

established sleep staging criteria consistent with previous �ndings[37].  This convergence is

particularly notable, as it emerged from a purely unsupervised and linear decomposition,

underscoring the robustness of conventional stage de�nitions and the capacity of data-driven

approaches to recover similar structures independently.

By employing a minimally supervised GHMM trained on PCA-transformed features, we classi�ed

sleep states at both 30-second and 4-second resolutions. Remarkably, using less than 0.5% of the

training data’s labels, this model achieved agreement levels with manual staging comparable to

typical inter-rater reliability[24],  reducing labeling overhead and enhancing reproducibility.

Furthermore, applying ICA to the PCA space allowed us to isolate independent physiological processes

that underlie the observed variance, o�ering richer insights into the complexity of sleep dynamics

beyond the standard staging categories.

Implications for Sleep Research

These �ndings complement and extend traditional manual staging approaches, which—despite their

clinical ubiquity—can be time-consuming, subjective, and prone to inter-rater variability[24][27]. Our

unsupervised framework not only corroborates standard stage boundaries but also quanti�es subtle

within-stage variability in the spatial and temporal organization. By unveiling �ner temporal

structures (e.g., a 4-second scale, Figure 5) and identifying stable states or transient sub-states, our

approach moves toward a more continuous and �ne-grained temporal representation of sleep states.

Overall, at the short analysis time scale, these transitions and micro-states captured as the hidden
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states may represent previously described phenomena in sleep stability analysis, such as cyclic

alternating patterns (CAP)[29].

Our approach not only provides temporal �exibility but also uses high-density EEG recordings to

create interpretable maps of spatial covariation of the di�erent brain oscillations, enhancing the

understanding of sleep-related processes from a spatial perspective[7][11].  Such an understanding

aligns well with the notion that sleep involves complex interactions among neural oscillations, muscle

activity, and autonomic regulation[5][2][28].  By embracing these continuous, data-driven methods,

researchers can gain new perspectives on how states evolve and interact at di�erent timescales,

improving our foundational models of sleep architecture.

Our transition probability analysis further underscores the ability of data-driven methods to capture

the probabilistic nature of sleep state transitions. This capability is crucial for understanding the

dynamics of sleep continuity and fragmentation, which are key indicators of sleep quality and

health[16].

Clinical Applications

From a clinical standpoint, automated, data-driven methods for characterizing sleep could facilitate

routine analyses in hospital sleep laboratories and potentially extend to home monitoring setups.

Indeed, it has been demonstrated that similar patterns emerge with three EEG electrodes in a di�erent

cohort[37]. We show that these may be improved by adding the EMG, EOG, and ECG that are typically

recorded in a PSG. This approach could reduce the burden of manual scoring, increase labeling

consistency, and detect more subtle changes in sleep patterns that may be clinically relevant[38].

Conditions characterized by disrupted sleep continuity or altered stage stability—such as insomnia,

sleep apnea, circadian rhythm disorders, and age-related changes—may be better understood by

examining data-driven state dynamics[16][39], particularly by leveraging transition probability graphs

to assess sleep stability. Moreover, conditions such as REM sleep behavior disorder[40],  Parkinson’s

disease[41],  autism spectrum disorder[42],  and Alzheimer’s disease[43]  are often associated with a

reduction in sleep disruptions. By quantifying the state transitions objectively, our GHMM-based

framework o�ers diagnostic information and may help tailor therapeutic strategies aiming to stabilize

particular sleep stages. In other disorders such as epilepsy[44],  linking the way pathological events

(e.g., seizures and interictal epileptiform activity) to their representation in the low dimensional space
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and in relation to the hidden states could pave the way for a better understanding of the interaction

between these pathological manifestations and brain states.

Methodological Considerations and Future Directions

While this study advances the application of unsupervised methods in sleep research, several

limitations warrant consideration. First, we relied on pre-de�ned segment lengths (30-second and 4-

second epochs), which may not fully capture non-stationary or scale-invariant sleep processes.

Evaluating di�erent time scales or adaptive segmentation strategies, such as change-point

detection[45], might reveal novel states or transitions previously obscured by �xed epochs.

In this work, the small portion of missing data were handled via interpolation—a potential source of

minor bias. Future implementations might leverage the inherent properties of the Markov model itself

to estimate latent states and missing observations[15].  This is particularly important for home

monitoring systems, where the quality or continuity of recordings may be impaired, and robust

methods for handling missing data are essential for reliable state estimation.

It is important to acknowledge that the assumption of linearity in PCA and ICA may not re�ect the full

complexity of brain dynamics[1][36].  Similarly, exploring additional feature sets beyond the spectral

domain, such as, non-linear time-domain features, metrics of critical brain dynamics[46][47]  or

connectivity measures[48]  could o�er deeper insights or highlight di�erent processes. Furthermore,

integrating additional modalities, including those derived from metabolic (breathing, temperature,

etc.) or hemodynamic signals, may provide a more holistic view of brain-body interactions during

sleep and wakefulness[12][49][50].

The training and validation were performed on a cohort of healthy individuals. While this ensures that

the discovered patterns are robust in typical sleep, clinical applications will require extension to

diverse populations and conditions. Similarly, reducing the number of electrodes or including

di�erent sensor modalities should be used to test the method’s adaptability and robustness.

Applying the method to patient populations with neurological or psychiatric conditions will help

validate its clinical utility and sensitivity to pathological changes in sleep. It may reveal particular

discrepancies that may be re�ected in the feature map or temporal structure of sleep. Integrating

these techniques into home-based sleep monitoring systems, wearable devices, or epilepsy

monitoring units may facilitate long-term, e�ortless sleep assessments that can add a prognostic and
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diagnostic value to these evaluations. This would signi�cantly reduce labeling overhead and empower

clinicians and researchers to study sleep over extended periods and large populations without

sacri�cing data quality or interpretability.

Conclusion

This study highlights the power of data-driven, unsupervised methods in sleep research. By

combining PCA, GHMM, and ICA, we captured and characterized essential features of sleep

architecture, replicating and extending conventional staging methods, while revealing new subtleties

in temporal dynamics and underlying physiological processes. The robust alignment with

conventional scoring, achieved using minimal labeled data, demonstrates the feasibility of scalable,

reproducible, and more objective sleep analysis.

In an era where big data and advanced computational tools are reshaping biomedical research, our

approach o�ers a �exible and transparent framework that enriches the understanding of sleep

architecture and state transitions. With further re�nement, validation, and integration into clinical

practice, these methods could improve the diagnosis and management of sleep disorders, advance our

understanding of sleep’s role in neurological conditions, and ultimately contribute to better health

outcomes.
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