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Large-scale Vision-Language Models (VLMs) have advanced by aligning vision inputs with text, signi�cantly

improving performance in computer vision tasks. Moreover, for VLMs to be e�ectively utilized in real-world

applications, an understanding of diverse multi-vision sensor data, such as thermal, depth, and X-ray

information, is essential. However, we �nd that current VLMs process multi-vision sensor images without

deep understanding of sensor information, disregarding each sensor’s unique physical properties. This

limitation restricts their capacity to interpret and respond to complex questions requiring multi-vision sensor

reasoning. To address this, we propose a novel Multi-vision Sensor Perception and Reasoning (MS-PR)

benchmark, assessing VLMs on their capacity for sensor-speci�c reasoning. Moreover, we introduce Diverse

Negative Attributes (DNA) optimization to enable VLMs to perform deep reasoning on multi-vision sensor

tasks, helping to bridge the core information gap between images and sensor data. Extensive experimental

results validate that the proposed DNA method can signi�cantly improve the multi-vision sensor reasoning for

VLMs. Codes and data are available at https://github.com/top-yun/MS-PR

Corresponding author: Yong Man Ro, ymro@kaist.ac.kr

1. Introduction

In recent days, large-scale Vision-Language Models (VLMs) have made strides in areas like visual dialogue[1],

video analysis[2], and document understanding[3], establishing themselves as valuable tools in the pursuit of

arti�cial general intelligence (AGI). These models, similar to the human brain, process multi-sensor

information to generate complex inferences. For instance, VLMs like OpenAI’s GPT-4o[4]  exhibit reasoning

abilities that not only rival but sometimes even exceed human performance.

VLMs are currently reaching into applications in the real world, such as autonomous vehicles[5][6][7], Internet of

Things (IoT) devices[8][9][10], and robotics[11][12][13][14][15]. Devices that connect to the real world often use

multi-vision sensors, making it essential for VLMs to understand these kinds of information. Multi-vision

sensors, such as thermal imaging, depth sensing, and X-ray detection, provide information that goes beyond

human eyesight, enriching the understanding of real-world environments.
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While humans can interpret multi-vision sensor images easily based on contextual knowledge of physical

characteristics, we �nd that VLMs face signi�cant challenges with multi-vision sensor data. Figure 1

demonstrates two di�erent examples of interactions between humans and VLMs[16][17]. The �rst interaction

shows that VLMs can easily recognize and correctly identify the type of sensor. However, in the second example,

VLMs fail to select the correct answer when faced with the challenging question that requires deeper

understanding and multi-vision sensor reasoning. As illustrated in Figure 1, even without direct experience,

humans can understand a thermal image by integrating scienti�c and contextual knowledge, allowing them to

interpret aspects like heat distribution. In contrast, VLMs confuse the brightness of thermals images for sunlight

re�ection, instead of heat emission.

Figure 1. Multi-vision sensor related question and response examples of recent VLMs[16][17]. Note that, this example

underscores the di�culty that VLMs face in understanding physical properties unique to multi-vision sensors.

We hypothesize that it primarily arises because VLMs are predominantly trained on RGB images, making it

di�cult to e�ectively align each multi-vision sensor’s unique physical properties with perceptual information.

The scarcity of multi-vision sensor data further contributes to this signi�cant problem. In other words, VLMs

tend to make super�cial judgments based on prior visible information derived from RGB image data. This limits

their ability to understand sensor-speci�c details, leading to super�cial RGB-bounded reasoning without
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genuine multi-vision sensor understanding. For instance, VLMs often confuse certain characteristics in multi-

vision sensor data, such as confusing light scattering and glow e�ects in thermal images or mistaking fog and

haze in depth images. VLMs might rely on the patterns learned from similar-looking RGB images rather than

understanding the actual physical properties of the multi-vision sensors. This limitation severely a�ects

applications where sensor-speci�c accuracy is crucial, such as autonomous driving[5][6], security systems[18],

and medical image diagnosis[19][10].

In this paper, to handle the aforementioned challenge, we design a novel benchmark called the Multi-vision

Sensor Perception and Reasoning (MS-PR) for evaluating multi-vision sensor reasoning in VLMs. MS-PR

benchmark consists of multi-vision perception task and multi-vision reasoning task. Multi-vision perception

refers to the task required to assess a VLM’s e�ectiveness in meeting visual perception demands. Multi-vision

reasoning measures the VLM’s ability to base its responses on fundamental information from the provided

sensor knowledge. To enhance the understanding capability of multi-vision sensor in VLMs, we also propose a

novel Diverse Negative Attributes (DNA) optimization. By leveraging diverse negative examples, DNA improves

learning in sensor-speci�c contexts, essential when data is scarce. A range of diverse negatives is incorporated

into the optimization process, acting as stone bridges in the VLM’s reasoning process and pushing it beyond the

naive RGB-bounded assumptions. The evaluation of MS-PR benchmark demonstrates that most state-of-the-

art VLMs display de�ciencies in sensor reasoning to varying extents. Moreover, VLMs with the proposed DNA

optimization show a signi�cant increase of performance on multi-vision sensor reasoning task. In summary, the

key contributions of this work are as follows:

We �rst identify the limitations of current Vision-Language Models (VLMs) in multi-vision sensor reasoning.

To address this issue, we propose new Multi-vision Sensor Perception and Reasoning (MS-PR) benchmark,

providing a structured framework to rigorously assess VLMs’ multi-vision sensor reasoning capabilities.

We propose a novel training method, Diverse Negative Attributes (DNA) optimization, which enhances deep

sensor understanding even with limited data. This approach can be applied to any large-scale VLM without

altering the model architecture.

We evaluate a total of 10 state-of-the-art VLMs using our MS-PR benchmark. Also, the extensive

experimental results validates that the proposed DNA optimization can signi�cantly improve the multi-

vision sensor reasoning ability among VLMs.

2. Related work

Large-scale Vison Language Models.

Recently, there has been signi�cant interest in visual language multimodal learning. Visual language models

such as LLAVA[20][21], BLIP-2[22], InternVL2[16], VideoLLaMA2[23], MiniCPMv2.5[17], Qwen2-VL[24] have shown
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impressive performance in a variety of downstream tasks. In addition, to obtain richer contextual information,

VLMs have developed the capability to handle multi-vision sensor inputs. For example, InternVL2[16] is an open-

source multi-modal large language model that bridges the gap between open-source and commercial models by

enhancing visual understanding, dynamic high-resolution processing, and bilingual dataset quality.

Consequently,[25]  presents ImageBind, which creates a joint embedding space across multi-vision sensors

including depth and thermal sensor data. PandaGPT[26] is a VLM that integrates multi-modal encoders and large

language models to enable multi-modal instruction-following capabilities, performing complex tasks. However,

relatively less attention has been devoted to whether VLMs genuinely understand the physical meanings of

multi-vision sensors.

Evaluation Benchmark for VLMs

Numerous studies have leveraged existing vision-language datasets to develop benchmarks for assessing the

reliability of VLMs. MME[27]  includes 14 sub-tasks based on publicly available images with manually created

annotations, evaluating both the recognition and perception capabilities of VLMs through yes/no question

answering. SEED-benchmark[28] designed to evaluate the generative comprehension capabilities of multimodal

VLM through human-annotated multi-choice questions across 12 evaluation dimensions. Other comparable

benchmarks include MMMU[29], Q-Bench[30], and MMBench[31]. Unlike those previous evaluation benchmarks,

the proposed MS-PR is designed to rigorously test and evaluate the capabilities of understanding the physical

meaning of multi-vision sensors.
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3. Multi-Vision Sensor Perception and Reasoning (MS-PR) Benchmark

Model
Vision

Sensors
Existence Count Position

General

Description

Multi-

vision

Perception

Contextual

Reasoning

Sensory

Reasoning

Multi-

vision

Reasoning

Open Source Large-scale Vision-Language Models

BLIP-2[22]

Thermal 59.2 32.2 57.8 65.3 53.6 74.8 42.7 58.7

Depth 60.4 40.0 52.4 71.6 56.1 71.3 26.3 48.8

X-ray 65.2 55.0 58.6 81.7 65.1 75.8 59.3 67.5

LLaVA-1.5-

7B[32]

Thermal 60.7 27.6 65.6 60.7 53.7 74.4 41.1 57.8

Depth 73.6 22.1 61.0 77.6 58.6 73.0 22.1 47.5

X-ray 63.2 35.3 54.6 75.0 57.0 73.9 49.6 61.7

InternVL2-

8B[16]

Thermal 66.7 47.7 70.3 73.0 64.4 74.8 50.4 60.6

Depth 71.2 40.5 67.2 77.6 64.1 68.8 28.7 48.7

X-ray 69.5 39.8 64.9 82.8 64.3 75.6 65.0 70.3

VideoLLaMA2-

7B[23]

Thermal 82.4 49.8 69.5 81.7 70.8 83.8 76.2 80.0

Depth 82.2 40.5 66.9 83.5 68.3 77.9 29.9 53.9

X-ray 70.2 49.0 60.2 85.7 66.2 80.6 72.9 76.7

MiniCPM-V-

2.5-8B[17]

Thermal 76.1 52.8 72.7 77.8 69.8 80.9 59.8 70.4

Depth 76.8 43.7 71.6 84.7 69.2 77.4 51.3 64.3

X-ray 75.2 51.0 72.1 85.3 70.9 85.7 81.6 83.7

Qwen2-VL-

7B[24]

Thermal 76.1 47.7 72.7 77.6 68.5 70.6 62.8 66.7

Depth 75.1 38.4 64.1 81.6 64.8 65.0 19.3 42.1

X-ray 71.0 39.8 63.8 84.4 64.7 76.0 64.4 70.2

Phantom-

7B[33]

Thermal 71.1 46.3 75.0 72.7 66.3 77.4 50.6 64.0

Depth 67.8 36.3 68.1 76.6 62.2 66.9 29.6 48.2

X-ray 69.9 44.6 64.1 82.4 65.3 76.8 67.6 72.2

Closed Source Large-scale Vision-Language Models

Gemini-Pro[34] Thermal 81.8 57.3 79.7 80.7 74.9 84.5 68.7 76.6
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Model
Vision

Sensors
Existence Count Position

General

Description

Multi-

vision

Perception

Contextual

Reasoning

Sensory

Reasoning

Multi-

vision

Reasoning

Depth 82.1 38.4 73.7 86.6 70.2 78.2 32.5 55.3

X-ray 76.7 49.4 66.5 89.8 70.6 86.9 76.2 81.5

GPT-4o[4]

Thermal 79.3 55.3 78.9 84.4 74.5 90.6 69.7 80.2

Depth 84.9 45.8 73.2 90.2 73.5 85.0 33.6 59.3

X-ray 78.2 41.0 72.5 90.6 70.6 85.5 79.3 82.4

Claude-3.5-

Sonnet[35]

Thermal 75.3 46.2 64.1 67.8 63.3 65.4 64.4 64.9

Depth 63.3 30.5 52.3 73.0 54.8 53.8 44.5 49.1

X-ray 66.8 33.1 68.1 82.4 62.6 76.9 72.9 74.9

Table 1. Evaluation results of di�erent VLMs on the MS-PR benchmark are reported, using accuracy as the metric.

“Multi-vision Perception” shows the average performance on four dimensions (Existence, Count, Position, and

General Description) for evaluating visual perception, and “Multi-vision Reasoning” shows the average performance

on two dimensions (Contextual Reasoning and Sensory Reasoning) for evaluating vision sensory understanding. VLMs

are sorted in ascending order of release date.

3.1. Evaluation on Multi-vision Sensor Tasks

Our benchmark dataset was collected according to two multi-vision tasks: multi-vision perception and multi-

vision reasoning. As illustrated in Figure 2, multi-vision perception focuses on the VLM’s ability to accurately

interpret and identify objects, scenes, and relationships from various multi-vision inputs. This involves tasks

such as object detection, image classi�cation, scene recognition, and relationship detection, where the model

must process and understand the content of images from multiple vision sensors. The goal is to ensure that the

model can consistently recognize and categorize visual elements across di�erent contexts from di�erent vision

sensors. On the other hand, multi-vision reasoning requires the model to not only perceive but also make

inferences based on the multi-vision sensor data. This involves higher-order cognitive tasks such as

understanding relationships between objects, prediction of intent of sensor use, and understanding sensor

knowledge. Multi-vision reasoning tests the VLM’s capability to integrate multi-vision information with

contextual sensor knowledge, making logical deductions that go beyond mere perception.
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Figure 2. Data samples of Multi-vision Sensor Perception and Reasoning (MS-PR) benchmark for evaluating the

abilities of VLMs in multi-vision sensor understanding, which covers four types of multi-vision perception tasks

(Existence, Counting, Position, and General Description) and two types of multi-vision reasoning tasks (Contextual

Reasoning and Sensory Reasoning).

3.1.1. Multi-vision Perception

Multi-vision perception is the foundational process by which large-scale Vision-Language Models (VLMs)

analyze images captured by various multi-vision sensors, including thermal, depth, and X-ray images. This

process involves recognizing and interpreting the fundamental elements within each visual input based on

cognitive science[36][37]. In this context, multi-vision perception tasks include (1) Existence: the ability to

identify and list common objects present in the image, such as people, vehicles, animals, and so on. (2) Count:

the ability to count the number of identi�ed objects or entities. (3) Position: the ability to determine the spatial

arrangement of objects within the image, noting their positions relative to one another. (4) General Description:

the ability to generate nuanced descriptions of the overall scene depicted in an image. VLMs can articulate what

is happening, identify objects, and provide factual information that enhances the understanding of the image

itself. At the perception stage, VLMs focus on extracting essential information directly from raw image data

captured by multi-vision sensors. This foundational perception is critical for all subsequent reasoning tasks,

serving as the foundation upon which more complex interpretations are built.
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3.1.2. Multi-vision Reasoning

Multi-vision reasoning is where VLMs truly showcase their advanced capabilities. Beyond simply perceiving

images, VLMs can engage in logical reasoning to derive deeper insights and make informed decisions. This

distinguishes recent VLMs, which primarily focus on understanding and interacting with the real world, from

traditional computer vision models. Multi-vision reasoning tasks include (1) Contextual reasoning: the ability to

utilize fundamental knowledge and contextual clues to make judgments about a given scenario. This type of

reasoning allows VLMs to ensure that the reasoning process remains consistent with the context provided by the

image. (2) Sensory reasoning: a more complex reasoning ability to map 2D image data to the physical meanings

associated with di�erent multi-vision sensors. This process not only involves processing the raw data from

images but also integrates it with a speci�c information about the underlying physical sensor knowledge in the

real world. Sensory reasoning requires a deep understanding of the knowledge underlying the physical meaning

of multi-vision sensor data. This approach goes beyond surface-level naive image recognition, demanding that

VLMs make sense of the sensor data in a way that accurately re�ects real-world environments.

3.2. Evaluation Benchmark Design

Our benchmark aims at evaluating the multi-vision sensor understanding capability of large-scale VLMs. We

�ltered images according to six tasks in Figure 3 to improve question quality, excluding low-resolution or

sequentially captured images. According to Figure 4, we begin by curating a collection of detailed question set

involving multi-vision sensor inputs that guide VLMs to interpret image information. To fully understand the

multi-vision sensor, ChatGPT/GPT-4o is then used to generate challenging question and answer sets based on

the sensor knowledge and task prompts. By doing this, each sensor type provides distinct knowledge relevant to

speci�c sensor properties. Also, the model can produce challenging questions that require multi-hop reasoning

and deep understanding based on the speci�c characteristics of each sensor type with targeted tasks. Human

annotators thoroughly review and re�ne the question and answer set. Positive answer set provides accurate

answers based on sensor-speci�c information. While negative answer set includes plausible but incorrect

responses. Each question and answer pair is structured as a chain-of-thought instruction, simulating human

reasoning and directing VLMs to focus on relevant details at each step.
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Figure 3. Distribution of data sources of the MS-PR benchmark. In MS-PR, we

demonstrate six core multi-vision sensor tasks in the outer ring, and the inner

ring displays the number of samples for each speci�c task.
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Figure 4. Overview of the pipeline for generating the proposed benchmark dataset. Based on the prompts

corresponding to knowledge on multi-vision sensors and tasks, ChatGPT/GPT-4o generates challenging question and

answer set. We re�ne the dataset further by utilizing human annotators to construct positive and negative sets,

allowing each pair to be classi�ed into a speci�c evaluation dimension.
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Model
Sensor

Type
Existence Count Position

General

Description

Multi-

vision

Perception

Contextual

Reasoning

Sensory

Reasoning

Multi-

vision

Reasoning

Phantom-

7B

Thermal 71.1 46.3 75.0 72.7 66.3 77.4 50.6 64.0

Depth 67.8 36.3 68.1 76.6 62.2 66.9 29.6 48.2

X-ray 69.9 44.6 64.1 82.4 65.3 76.8 67.6 72.2

Phantom-

7B

+ SFT

Thermal 82.8 46.2 73.4 81.7 71.0 79.3 78.5 78.9

Depth 71.0 48.4 71.7 84.7 69.0 77.1 65.3 71.2

X-ray 73.5 47.4 67.7 82.0 67.7 78.3 73.5 75.9

Phantom-

7B

+ DNA

Thermal 86.8 49.8 75.8 86.4 74.3 82.9 86.4 84.6

Depth 79.1 49.0 74.5 87.9 72.6 81.2 86.1 83.7

X-ray 78.2 49.4 73.3 84.8 71.4 85.8 82.1 84.0

Qwen2-

VL-7B

Thermal 76.1 47.7 72.7 77.6 68.5 70.6 62.8 66.7

Depth 75.1 38.4 64.1 81.6 64.8 65.0 19.3 42.1

X-ray 71.0 39.7 63.7 84.4 64.7 76.0 64.4 70.2

Qwen2-

VL-7B

+ SFT

Thermal 85.7 50.8 80.5 82.6 74.9 85.8 80.6 83.2

Depth 83.0 44.2 73.3 89.0 72.4 75.6 30.6 53.1

X-ray 78.2 43.8 70.5 89.8 70.6 84.4 84.2 84.3

Qwen2-

VL-7B

+ DNA

Thermal 89.1 52.3 80.5 88.4 77.6 89.0 85.7 87.4

Depth 84.4 44.2 74.8 90.0 73.3 80.5 59.8 70.2

X-ray 79.8 45.0 73.7 91.4 72.5 86.4 86.0 86.2

InternVL2-

8B

Thermal 66.7 47.7 70.3 73.0 64.4 74.8 50.4 60.6

Depth 71.2 40.5 67.2 77.6 64.1 68.8 28.7 48.7

X-ray 69.5 39.8 64.9 82.8 64.3 75.6 65.0 70.3

InternVL2-

8B

+ SFT

Thermal 80.8 48.8 70.3 78.7 69.6 77.0 69.4 73.2

Depth 72.0 41.1 69.8 81.9 66.2 72.1 49.7 60.9

X-ray 72.8 46.2 67.3 84.8 67.8 78.6 73.7 76.1

InternVL2-

8B

Thermal 84.0 50.3 75.0 84.5 73.4 82.9 82.0 82.4

Depth 74.1 42.6 71.9 84.7 68.3 77.3 77.8 77.6
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Model
Sensor

Type
Existence Count Position

General

Description

Multi-

vision

Perception

Contextual

Reasoning

Sensory

Reasoning

Multi-

vision

Reasoning

+ DNA X-ray 75.2 47.0 70.9 85.7 69.7 83.0 78.1 80.6

Table 2. Performance is increased by Diverse Negative Attributes (DNA) optimization in the sense of multi-vision

reasoning. Highlighted columns show average performance for perception and reasoning capabilities. The best results

are denoted in bold.

4. Enhancing Multi-vision Sensor Reasoning

4.1. Problems on Multi-vision Sensor Data

Through the MS-PR benchmark, we reveal that multi-vision sensor reasoning problems are widespread in

current VLMs in Table 3. The primary reason is the scarcity of publicly available multi-vision sensor instruction-

tuning datasets. Lacking su�cient opportunities to learn sensor knowledge, VLMs tend to misunderstand the

image information. Due to this data constraint, VLMs often rely on RGB-bounded reasoning, causing them to

confuse the unique characteristics of multi-vision sensor data. Considering these inherent issues in multi-vision

sensor data, we propose an e�cient, data-centric approach that enables e�ective learning even with a limited

dataset. To demonstrate this, we design a method that achieves comparable performance by using only a small

portion of data. We construct approximately 600 multi-vision sensor images, with 200 images for each sensor

type, all of which are not included in the MS-PR evaluation benchmark.

4.2. Diverse Negative Attributes Optimization

In this paper, we propose a novel Diverse Negative Attributes (DNA) optimization. Unlike previous reinforcement

learning-based methods such as Reinforcement Learning from Human Feedback (RLHF)[38], Direct Preference

Optimization (DPO)[39], and Simple Preference Optimization (SimPO)[40], DNA optimization reduces the RGB-

bounded reasoning during the training process by directly adding the designed loss to the supervised �ne tuning

process. It is the optimization process where the model identi�es the correct answer while simultaneously

learning to avoid being misled by confusing answers. By using various negative samples in a limited set of

image-question pairs, richer knowledge can be �lled. We jointly use the autoregressive supervised �ne-tuning

(SFT) loss as follows:

= + Lmin
θ

LDNA LSFT (1)
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Negative

Sample 

Sensor

Type
Existence Count Position

General

Description

Multi-

vision

Perception

Contextual

Reasoning

Sensory

Reasoning

Multi-

vision

Reasoning

 = 1

Thermal 86.6 48.8 74.2 83.3 73.2 81.2 85.0 83.1

Depth 79.9 48.4 73.5 87.6 72.3 80.8 80.2 80.5

X-ray 76.8 48.2 69.7 82.8 69.4 84.2 80.5 82.3

 = 2

Thermal 86.9 49.3 73.4 84.2 73.4 81.6 86.4 84.0

Depth 76.6 46.8 74.9 88.5 71.7 81.0 84.4 82.7

X-ray 76.0 49.4 71.3 81.6 69.6 84.8 81.9 83.3

 = 3

Thermal 86.8 49.8 75.8 86.4 74.3 82.9 86.4 84.6

Depth 79.1 49.0 74.5 87.9 72.6 81.2 86.1 83.7

X-ray 78.2 49.4 73.3 84.8 71.4 85.8 82.1 84.0

Table 3. Ablation study on multi-vision sensor reasoning performance according to the number of negative sample  .

where    represents the parameters to be trained,    denotes the supervised �ne-tuning loss for question-

answer pairs, and    stands for a speci�c input prompt. Here,    denotes a correct answer, while 

 represents the set of confusing answers including   number of incorrect answers   such

that  . The minimizing process e�ectively reinforce the model’s tendency toward correct answers

rather than confusing ones.

The proposed DNA optimization is designed for scenarios with limited training samples, e�ectively enhancing

learning through a greater diversity of negative examples. This approach is particularly valuable for multi-vision

sensor data, where data scarcity is a signi�cant issue. By introducing diverse counterfactual negatives, VLMs

gain more opportunities to learn from a small dataset. Furthermore, VLMs often misinterpret multi-vision

sensor data due to an over-reliance on RGB-bounded reasoning. DNA counteracts this by creating diverse

negatives that prevent the VLMs confuse with similar-looking images. Instead, it encourages deep

understanding on the unique attributes of each sensor type. This approach aligns with multi-vision sensor

reasoning tasks by allowing the VLMs to acquire a deeper understanding of sensor-speci�c contexts.

L = − log σ β − β − γEDEy −

⎡

⎣
⎢

⎛

⎝
⎜

log ( |x)πθ y+

| |y+

log ( x)πθ y−
j

∣∣

∣∣y
−
j

∣∣

⎞

⎠
⎟
⎤

⎦
⎥ (2)

k

k

k

k

k

θ LSFT

x y+

= { , , ⋯ , }y− y−
1 y−

2 y−
k

k y−
j

j = {1, 2, ⋯ , k}
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5. Experiment

5.1. Experimental Setup

5.1.1. Dataset Collection

To construct the MS-PR benchmark, we focused on assembling a dataset that captures diverse scenarios and

sensor-speci�c information. We collected a total of 13 distinct datasets, which include 7k images that represent a

wide variety of situations. From these images, we can generate approximately 10k unique questions for

evaluation. The depth images include both indoor and outdoor environments and capture various objects in

diverse settings. For thermal images, we collected datasets covering a broad range of di�erent objects and

scenarios, such as in-vehicle sensors, landscapes, people, animals, and thermal screening&scanning. The X-ray

images include human body-part images and the security inspection of luggage in airport datasets. This

collection o�ers a robust dataset where di�erent multi-vision sensors are represented across a broad range of

real-world scenarios. We described the overall distribution of data of the MS-PR benchmark in Figure 3. For the

training dataset, we used 600 images (200 images per sensor) from the 13 datasets mentioned above that were

not included in the MS-PR benchmark, generating 3,600 question-answer pairs. We focused on six problem task

types requiring high level reasoning to compile the source dataset: Existence, Counting, Position, General

Description, Contextual Reasoning, and Sensory Reasoning. More details about the task type and visual context

of each source dataset are demonstrated in the supplementary materials.

5.1.2. Implementation Details

In our evaluation, we selected 10 state-of-the-art (SOTA) Vision-Language Models (VLMs) that represent the

leading edge of the current research �eld. These models were chosen to provide a comprehensive assessment of

the capabilities and performance of both open-source and closed-source VLMs across a variety of multi-vision

sensor tasks on the MS-PR benchmark. Open source model include BLIP-2[22], LLAVA-v1.5-7B[20], InternVL2-

8B[16], VideoLLaMA2-7B[23], MiniCPM-V-2.5-8B[17], Qwen2-VL-7B[24], and Phantom-7B[33]. While closed

source model include GPT-4o[4], Claude 3.5 Sonnet[35], and Gemini-Pro[34]. In the DNA Optimization, we set the

hyper-parameters to  ,  , and  . Each VLM was trained using QLoRA[41], and during training, we

used the AdamW optimizer[42]. For Phantom-7B[33], a learning rate of    was applied, with one training

epoch. All layers of the VLM utilized 256 rank and 256 alpha parameters. For Qwen2-VL-7B[24], a learning rate

of    was also applied, with one training epoch. All layers of the VLM utilized 64 rank and 64 alpha

parameters.

β = 2 γ = 0.2 k = 3

2e − 5

2e − 5
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Model

Number

of

Training

Images

per

Sensor 

Sensor

Type
Existence Count Position

General

Description

Multi-

vision

Perception

Contextual

Reasoning

Sensory

Reasoning

Multi-

vision

Reasoning

Phantom-

7B

+ SFT

 = 50

Thermal 75.7 46.8 73.4 74.9 67.7 77.8 56.6 67.1

Depth 69.5 43.7 69.5 81.2 66.0 72.9 43.7 58.3

X-ray 71.5 45.0 66.7 82.4 66.4 77.7 69.3 73.5

Phantom-

7B

+ DNA

 = 50

Thermal 85.7 46.8 75.0 81.4 72.2 81.6 77.5 79.5

Depth 73.7 47.4 72.0 85.2 69.6 78.0 66.6 72.3

X-ray 73.4 49.0 70.1 83.2 68.9 84.2 81.6 82.9

Phantom-

7B

+ SFT

 = 100

Thermal 80.9 46.3 73.4 78.5 69.8 79.3 70.1 74.7

Depth 71.2 43.7 68.0 82.3 66.3 72.9 50.0 61.4

X-ray 71.7 46.6 67.3 82.0 66.9 78.8 70.7 74.8

Phantom-

7B

+ DNA

 = 100

Thermal 86.5 48.2 75.8 83.0 73.4 82.2 83.8 83.0

Depth 76.8 48.4 73.6 86.2 71.3 80.0 69.9 75.0

X-ray 76.2 49.0 71.3 83.6 70.0 84.7 81.9 83.3

Table 4. Ablation study on multi-vision sensor reasoning performance according to the number of training images per

sensor 

Model MMMU MME MMBench Q-Bench SEED

Phantom-7B 47.8 2126 79.8 69.9 75.3

Phantom-7B

+DNA
49.3 2113 80.2 68.2 75.7

Table 5. Performance comparison of Phantom-7B with and without DNA optimization across various benchmarks.

n

n

n

n

n

n

I
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5.2. Experiment Result

5.2.1. Evaluation on MS-PR Benchmark

In this section, we conduct a comprehensive evaluation using the proposed MS-PR benchmark, a rigorous

framework designed to assess the capabilities of large-scale Vision-Language Models (VLMs) in two target

tasks: Multi-vision Perception and Multi-vision Reasoning. Multi-vision Perception presents the averaged

performance on four dimensions for evaluating visual perception. Meanwhile, Multi-vision Reasoning

demonstrates the averaged performance on two dimensions for evaluating the VLMs’ ability to understand and

reason about multi-vision sensor data. As shown in Table 1, the evaluation revealed that performance varies

signi�cantly depending on the type of multi-vision sensor used to capture the input images. VLMs generally

have moderate scores in multi-vision perception tasks, but vary signi�cantly in multi-vision contextual and

sensory reasoning. Sensory reasoning requires VLMs to not only recognize and describe images but also to

understand the physical principles underlying the sensor data. For example, interpreting thermal data involves

understanding heat signatures, while depth data requires an understanding of the need for spatial geometry

beyond naive 2D interpretation. The experiment demonstrates VLMs’ limited pro�ciency in interpreting sensor

data to its physical meaning. We recruited human participants from the crowd sourcing platform Proli�c and

asked them to evaluate the proposed benchmark. The results shows signi�cant alignment with human

assessments. Details of human agreement on our benchmark can be found in the supplementary materials.

5.2.2. Evaluation on the E�ects of DNA Optimization

In Table 2, we validate that our proposed Diverse Negative Attribute (DNA) optimization signi�cantly improves

the multi-vision reasoning performance in VLMs. As we already mentioned in the introduction, DNA

optimization is �exible and adaptable enough so that it is applicable to other VLMs without changing the

network architecture. With supervised �ne-tuning (SFT), Phantom-7B[33]  and Qwen2-VL-7B[24]  shows slight

improvements across all metrics, particularly in General Description and Contextual Reasoning. With the

proposed DNA optimization, Phantom-7B[33] and Qwen2-VL-7B[24] see signi�cant improvements in almost all

metrics, especially in Multi-vision Reasoning. This demonstrates DNA optimization signi�cantly enhances

multi-vision reasoning, especially in tasks that require an understanding of sensor-speci�c information.

5.3. Generalizability of DNA Optimization

The proposed DNA optimization has demonstrated exceptional performance in multi-vision sensor reasoning

tasks. To assess its generalization capability in general benchmark, we conduct evaluation experiments using the

MMMU[29], MME[27], MMBench[31], Q-Bench[30], and SEED [28]  benchmark, which encompasses various

disciplines and domains. The results are shown in Table 5. DNA optimization has a comparable performance on

I
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other benchmarks. This experiment result underscores its capability to generalize to downstream VLM

understanding and reasoning tasks. Furthermore, the �ne-tuning process using our synthetic data does not

detract from the VLMs reasoning abilities in other benchmarks; rather, it enhances its generalizability.

5.4. Ablation on the Number of Negative Sample

Table 3 presents an ablation study on multi-vision sensor reasoning performance based on the number of

negative samples, denoted as  . Baseline model is Phantom-7B[33]  with DNA optimization. This table

demonstrates the impact of using di�erent numbers of negative samples in DNA optimization on the

performance of multi-vision sensor reasoning. As a result, increasing number of negative sample    generally

improves multi-vision perception and reasoning scores, especially for Contextual and Sensory reasoning tasks,

suggesting that more negative samples help VLMs better di�erentiate relevant features in sensor-speci�c

contexts. In other words, using diverse negative samples can provide the most balanced and comprehensive

understanding for VLMs across various multi-vision sensors.

5.5. Ablation on the Number of Training Images

Table 4 presents an ablation study analyzing multi-vision sensor reasoning performance as a function of the

training image count, denoted by  . This table illustrates how adjusting the number of training images per

sensor in�uences multi-vision sensor reasoning performance in both SFT and DNA optimization methods. Even

with a limited quantity of training images, DNA optimization surpasses SFT, suggesting that DNA optimization

can e�ectively yield results comparable to those obtained with a larger dataset.

6. Conclusion

In this study, we focus on assessing and improving the ability of large-scale Vision-Language Models (VLMs) to

understand and process multi-vision sensor inputs. As VLMs are increasingly deployed in real-world

applications, their ability to accurately interpret and reason about data from diverse vision sensors has become

crucial. To address this, we propose a new evaluation benchmark called MS-PR, which generates samples aimed

at speci�c physical sensor understanding. We also propose novel DNA optimization to improve the multi-vision

sensor reasoning ability. Through extensive experiments, we assess the performance of understanding sensor

knowledge in the latest state-of-the-art VLMs handling multi-vision input. Moreover, extensive experimental

results validate that the proposed DNA optimization signi�cantly improve the performance of multi-vision

sensor reasoning in VLMs. We believe that integrating a sensor knowledge annotated evaluation benchmark and

tailored optimization pave the way for promising future applications of VLMs.

k

k

n
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Appendix A. Detailed Description on Dataset

We collect 13 di�erent datasets for each multi-sensor vision task type, together with 7k images and 10k unique

questions and answers in total. To ensure the generalizability of MS-PR benchmark, we gather a wide variety of

situations and object types from various di�erent datasets. These datasets are mainly classi�ed into three

categories according to multi-vision sensors. 1) For thermal sensor datasets, we collect 2.2k images from 8

di�erent thermal datasets, including M3FD[43], Dog&People[44], Pet[45], TCVP[46], HIT-UAV[47], AnimalDet[48],

CTFD[49], and IFSOD[50]. 2) Additionally, we gather 3.1k images from 3 di�erent datasets for depth sensor,

including DIODE[51], NYUv2[52], and DIML[53]. 3) Finally, we sampled 2.6k images from the two di�erent public

X-ray datasets, including UNIFESP[54] and BDXR[55] datasets.

M3FD[43]  dataset contains images from three primary scenes: road views, university campuses, and resort

settings. The dataset comprises 24-bit grayscale infrared and visible images, each with a resolution of 1024×768

pixels. Thermal Dogs and People[44] dataset includes 203 thermal infrared images captured at varying distances

from people and dogs in park and home environments. Images are available in both portrait and landscape

orientations with a spectral color palette applied. Pet dataset[45]  features 640×640 images depicting diverse

activities and motions of cats, dogs, and humans. This dataset has 640×640 image size. Thermal Computer

Vision Project(TCVP) dataset[46] focuses on heat detection in groups of humans, with an average image size of

640×640 pixels. A high-altitude infrared thermal dataset for object detection applications on Unmanned Aerial

Vehicles(HIT-UAV)[47]  is a high-altitude infrared thermal dataset for object detection applications involving

unmanned aerial vehicles (UAVs). It includes 2,898 infrared images derived from 43,470 video frames captured

in diverse scenarios. Animal detection(AnimalDet) dataset[48] consists of thermal images of eight animal species

—deer, bear, cow, dog, elephant, fox, goat, and wild boar. The average image size is 369×363 pixels. The Chips

Thermal Face Dataset[49]  comprises over 1,200 thermal face images of male and female subjects aged 18–23

from three continents. It supports research in advanced thermal facial classi�cation and recognition systems

using deep learning techniques. IFSOD dataset[50] contains thermal sensor images of various objects, including

bicycles, birds, dogs, and humans, with an average resolution of 640×480 pixels. A Dense Indoor and Outdoor

DEpth Dataset(DIODE)[51] provides high-resolution color images paired with precise, dense, long-range depth

measurements. It is the �rst publicly available RGBD dataset featuring both indoor and outdoor scenes captured

using a single sensor suite. The NYU-Depth V2 dataset[52]  includes video sequences of indoor environments

captured with the RGB and depth cameras of Microsoft Kinect. It contains 1,449 densely labeled pairs of aligned

RGB and depth images. Digital Image Media Laboratory(DIML)/Computer Vision Laboratory(CVL) RGB-D

dataset[53] contains 2 million color images paired with depth maps, covering diverse indoor and outdoor scenes.

The RGB images have a resolution of 1920×1080, while depth maps are captured at 512×424 pixels. UNIFESP X-

ray Body Part dataset[54] comprises X-ray images of various body parts, such as the knee, leg, hip, ankle, thigh,
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and pelvis. It stands out for its diversity of human anatomical coverage. Baggage Detection X-Ray(BDXR) dataset

contains X-ray images of baggage inspected at airports to ensure diversity and generalization. The average

image resolution is 1225×954 pixels. We described the overall distribution of data sources of the MS-PR

benchmark in Figure 3.

Appendix B. Detailed Description on Prompt

We designed the input prompts to create the proposed MS-PR benchmark, ensuring the prompts are

comprehensive and tailored to extract meaningful multi-vision sensor capabilities from challenging question

and answer sets. These prompts require �ve additional information to e�ectively guide the VLMs in generating

benchmark data:

To provide su�cient sensor information to the LLM, we developed Sensor Knowledge (Figure 5) and

incorporated it into  sensor_knowledge . This information contains detailed descriptions and context

about thermal, depth, and X-ray sensors. This ensures the VLMs understand the unique physical properties

and contextual applications of each sensor type.

The appropriate multi-vision sensor type is included in  sensor_type . This explicitly informs the VLMs

which sensor (thermal, depth, or X-ray) the prompt relates to, ensuring that the generated examples are

relevant to the speci�c sensor.

The desired question type and corresponding examples are provided in  question_type   and 

question_examples , respectively (Figure 5). This ensures that the model understands the format and

context of the questions it needs to generate.

The number of negative samples to be generated is speci�ed in  negative_samples_num . These negative

samples are designed to include plausible yet incorrect answers, encouraging the model to distinguish correct

answers from distractors.

< >

< >

< > <

>

< >
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Figure 5. Description of sensor knowledge information and questions types and examples.

Our input prompts for generating MS-PR benchmark is described in Figure 6.

Figure 6. Description of prompts for generating challenging multiple-choice questions and answers for multi-vision

sensor tasks
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Appendix C. Human Evaluation

We conducted a human evaluation study to assess how closely our newly proposed MS-PR benchmark aligns

with the answers a human would select when viewing sensor images. A total of 20 participants were recruited

through the crowd-sourcing Proli�c platform. We only accepted reviewers with English as their �rst language

and who had at least bachelor’s degree. In the human study, we recruited Proli�c participants with approval

rates higher than 95% and with at least 200 prior submissions.

Participants were rewarded €9.4/hr for completing all multiple choice questions. We sampled 45 multi-vision

reasoning questions from MS-PR benchmark, with 15 questions allocated to each sensor type: thermal, depth,

and X-ray. Experiment results on human evaluation are demonstrated in Figure 7. Participants achieved a 95.1%

accuracy rate, demonstrating that the proposed MSPR benchmark signi�cantly aligns with human assessment.

We also evaluated how other VLMs responded to the 45 sampled questions and veri�ed that their performance

on multi-vision reasoning, as shown in Table 1 of the main text, aligns within the margin of error. To be speci�c,

GPT-4o[4] achieved the highest score of 73.3, followed by InternVL2-8B[16] and Phantom-7B[33], both scoring

62.2, Qwen2-VL-7B[24]  with 60.0, and LLaVA-1.5-7B[20], which recorded the lowest score of 53.3. The

performance di�erence between the top VLMs (GPT-4o) and human participants is notable at 21.8%, re�ecting

the challenges that current VLMs face in achieving human-level understanding in multi-vision reasoning tasks.

Figure 7. Human Agreement Results on Multi-Vision Sensory Reasoning Performance Across

Diverse VLMs
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Appendix D. Additional Question and Answer Examples

Figure 8-13 provide examples of benchmark evaluations conducted using various Vision-Language Models

(LLaVA-1.5-7B[32], InternVL2-8B[16], Phantom-7B[33], and Phantom-7B with DNA optimization) across three

multi-vision sensors: thermal, depth, and X-ray. The answers selected by the models are displayed next to the

corresponding options using the models’ representative icons and pictograms, and they are color-coded based

on correctness: green indicates a correct answer, while red indicates an incorrect answer. By displaying these

visual examples with clear indicators and detailed observations, we provide valuable insights into how di�erent

VLMs perform on multi-vision sensor reasoning tasks. These examples underscore the importance of tailored

optimization techniques, like Diverse Negative Attributes(DNA) optimization, in enhancing the multi-vision

sensor reasoning capabilities of VLMs across diverse sensor modalities.
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Figure 8. The comparison of performance across di�erent multi-vision

sensors with respect to the representative VLMs in the Multi-vision

Perception task (Existence). Green font denotes the correct answer, while red

font denotes the incorrect answer.
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Figure 9. The comparison of performance across di�erent multi-vision

sensors with respect to the representative VLMs in the Multi-vision

Perception task (Counting). Green font denotes the correct answer, while red

font denotes the incorrect answer.
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Figure 10. The comparison of performance across di�erent multi-vision

sensors with respect to the representative VLMs in the Multi-vision Perception

task (Position). Green font denotes the correct answer, while red font denotes

the incorrect answer.
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Figure 11. The comparison of performance across di�erent multi-vision

sensors with respect to the representative VLMs in the Multi-vision

Perception task (General Description). Green font denotes the correct answer,

while red font denotes the incorrect answer.
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Figure 12. The comparison of performance across di�erent multi-vision

sensors with respect to the representative VLMs in the Multi-vision Reasoning

task (Contextual Reasoning). Green font denotes the correct answer, while red

font denotes the incorrect answer.
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Figure 13. The comparison of performance across di�erent multi-vision

sensors with respect to the representative VLMs in the Multi-vision Reasoning

task (Sensory Reasoning). Green font denotes the correct answer, while red

font denotes the incorrect answer.
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