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Most existing image tokenizers encode images into a �xed number of tokens or patches, overlooking the inherent

variability in image complexity. To address this, we introduce Content-Adaptive Tokenizer (CAT), which

dynamically adjusts representation capacity based on the image content and encodes simpler images into fewer

tokens. We design a caption-based evaluation system that leverages large language models (LLMs) to predict

content complexity and determine the optimal compression ratio for a given image, taking into account factors

critical to human perception. Trained on images with diverse compression ratios, CAT demonstrates robust

performance in image reconstruction. We also utilize its variable-length latent representations to train Di�usion

Transformers (DiTs) for ImageNet generation. By optimizing token allocation, CAT improves the FID score over

�xed-ratio baselines trained with the same �ops and boosts the inference throughput by 18.5%.

1. Introduction

Image tokenizers compress high-resolution images into low-dimensional latent features to generate compact and

meaningful representations[1][2][3][4][5][6][7].

Despite their e�ectiveness, most existing tokenizers use a �xed compression ratio, encoding images into feature

vectors of exactly the same dimensions, regardless of their content. However, di�erent images contain varying levels

of detail, which suggests that a one-size-�ts-all approach to compression may not be optimal. Indeed, traditional

codecs like JPEG[8] typically produce di�erent �le sizes based on the spatial frequency of the images, even when set to

the same quality level.

Moreover, using the same representation capacity for all images can compromise both the quality and the e�ciency of

the tokenizer. Over-compressing complex images may result in the loss of important visual details, while under-

compressing simple images can lead to ine�ciencies in training downstream models, as additional compute is wasted

on processing redundant information. Several recent studies have proposed to adjust the number of tokens used at

inference time based on the compute budget[9]. However, these methods overlook the intrinsic complexity of images

when training the tokenizers. Besides, they do not account for the downstream use cases in the tokenizer design. For

example, image tokenizers are often used to produce inputs for latent di�usion models (LDMs)[10] and perform text-

to-image generation, where only the user’s text prompt is available at inference time. Nonetheless, existing work all

require image inputs to perform adaptive tokenization.
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In this work, we present Content-Adaptive Tokenizer (CAT), which dynamically allocates representation capacity

based on image complexity to improve both compression quality and computational e�ciency. To achieve this, we

propose a text-based image complexity evaluation system that leverages large language models (LLMs) to predict the

optimal compression ratio given the image description. Then, we train a single uni�ed variational autoencoder to

generate latent features of variable shapes (Figure 1).

Figure 1. Content-Adaptive Tokenization. CAT uses an LLM to evaluate the content complexity and determine the optimal

compression ratio based on the image’s text description. The image is processed by a nested VAE architecture that

dynamically routes the input according to the selected compression ratio. The resulting latent representations thus have

varying spatial dimensions. Images shown in the �gure are taken from COCO 2014[11].

Our complexity evaluation system is designed to accurately re�ect the content complexity, while being compatible

with diverse downstream tasks, including text-to-image generation with LDMs. Speci�cally, we use the text

description of an image to prompt an LLM and generate a complexity score. The text description includes the image

caption and answers to a set of perception-focused queries, such as “are there human faces/text”, which are designed to

help identify elements sensitive to human perceptions. Based on the complexity score, the image is classi�ed into one

of 8x, 16x, or 32x compression. A higher ratio means that we can compress a simpler image more aggressively.

Then, we develop a nested variational autoencoder (VAE) architecture that can perform multiple levels of compression

within a single model. This is achieved by routing the intermediate outputs from the encoder downsampling blocks to a

shared middle block to generate variable-dimensional Gaussian distributions. From these, we can sample latent

features of di�erent spatial resolutions.

We train the nested VAE on images with diverse complexity, speci�cally using the compression ratios produced by our

LLM evaluator. We analyze its reconstruction performance on a variety of datasets, including natural scenes (COCO[11],

ImageNet[12]), human faces (CelebA[13]), and text-heavy images (ChartQA[14]). On complex images featuring human

faces or text, CAT substantially improves the reconstruction quality, reducing the rFID by 12% on CelebA and 39% on

ChartQA relative to �xed-ratio baselines. On natural images like ImageNet, CAT maintains the reconstruction quality

while using 16% fewer tokens.

We further validate the e�ectiveness of CAT in image generation by training Latent Di�usion Transformers (DiTs)[15].

Due to its content-adaptive representation, CAT more e�ectively captures both high-level and low-level information
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in image datasets compared to �xed-ratio baselines, hence accelerating the di�usion model learning process. We

demonstrate that CAT achieves an FID of 4.56 on class-conditional ImageNet generation, outperforming all �xed-

ratio baselines trained with the same �ops. Additionally, CAT improves inference throughput by 18.5%. Beyond the

quality and speed improvements, we show that CAT enables controllable generation at various complexity levels,

allowing users to specify the number of tokens to represent the images based on practical needs.

To summarize, we introduce CAT, an image tokenizer that enables: (1) Adaptive Compression: It compresses images

into variable-length latent representations based on content complexity, leveraging an LLM evaluator and a nested

VAE model; (2) Faster Generative Learning: It boosts the e�ciency of learning latent generative models by e�ectively

representing both high-level and low-level image information; (3) Controllable Generation: It enables generation at

various complexity levels based on user speci�cations. Overall, CAT represents a crucial step towards e�cient and

e�ective image modeling, with promising potential for extension to other visual modalities, such as video.

2. Related Work

Visual Tokenization. Existing visual tokenizers use diverse architectures and encoding schemes. Continuous

tokenizers map images into a continuous latent space, often utilizing the VAE architecture[2]  to generate Gaussian

distributions for sampling latent features. Discrete tokenizers like VQ-VAE[16] and FSQ[7] use quantization techniques

to convert latent representations into discrete tokens. While our experiments focus on the continuous latent space, the

proposed adaptive image encoding method is compatible with both continuous and discrete tokenizers.

Adaptive Compression. Traditional codecs, such as JPEG[8] for images and H.264[17] for videos, apply varying levels of

compression based on the input media and the desired quality, resulting in �les of di�erent sizes. In the �eld of deep

learning, a line of work studies adaptive patching for Vision Transformers[18] via patch dropout or merging[19][20][21]

[22]. [23] use mixed-resolution patches to obtain variable-length token sequences. However, these methods are tailored

for visual understanding tasks and cannot be used to generate images.

Developing adaptive tokenizers capable of image generation remains underexplored. ElasticTok[9], a concurrent work

to ours, employs a random masking strategy to drop the tail tokens of an image when training the tokenizer. This

allows for using an arbitrary number of tokens to represent an image at inference time. However, by assigning random

token lengths to training images, ElasticTok overlooks the inherent complexity of the visual content. Another

concurrent work, ALIT[24], iteratively distills 2D image tokens into 1D latent tokens to reduce the token count. Unlike

ALIT, CAT compresses images based on complexity predicted from captions. Our approach enables adaptive allocation

of representation capacity using only text descriptions, without directly observing the images.

Multi-Scale Feature Extraction. A �nal line of relevant research involves designing neural networks that e�ectively

extract multi-scale features. CAT builds upon VAE and adds skip connections inspired by U-Net[25]  and Matryoshka

representation learning[26][27][28]. In parallel, transformer-based multi-scale feature extractors have also been

explored in[29][30][31][32][33][34]. We opt for a convolutional tokenizer architecture due to its strong empirical

performance.
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3. Method

In this section, we introduce CAT for adaptive image tokenization. We begin by discussing how to measure and predict

image complexity. Then, we introduce the CAT architecture for performing compression at di�erent ratios.

3.1. Proof of Concept

3.1.1. How Much Can We Actually Compress?

A key question in this work is to determine how much an image can be compressed without signi�cant loss of quality.

To explore this, we analyze the reconstruction performance of existing tokenizers with various compression ratios. We

take the open-source image tokenizers from LDM1[10]  with 8x, 16x and 32x compression ratios and compute their

reconstruction mean squared error (MSE) on 41K 512 512 images from the COCO 2014 test set[11]. Our analysis reveals

that for 28.3% of the images, 32x compression results in less than a 0.001 MSE increase compared to 8x compression,

while reducing the token count by a factor of 16. We also compute the best MSE among all compression ratios for each

image and determine the maximum acceptable compression ratio under a tolerance  . That is, denote the compression

ratio as  , we want to �nd

Figure 2 shows that 56% of the images can be compressed at least to 16x with negligible (0.0001) increase in MSE2. A

large portion of natural images can be compressed more aggressively while maintaining the same quality level as a

�xed 8x tokenizer.

Figure 2. Left: Maximum acceptable compression ratios for COCO images under di�erent error tolerance. We can compress

most images more aggressively without compromising reconstruction quality. Right: Pearson correlation between various

metrics and max acceptable compression ratio with tolerance 0.0015.

On the other hand, our visual inspection reveals that images with �ne-grained elements like text have much better

reconstruction quality at 8x compression compared to 32x (see for example row 3 and 4 in Figure 3). This suggests that

more tokens are required to accurately reconstruct low-level details in such images. The above results provide strong

×

τ

f

(MS − MS ) < τ.argmaxf∈{8,16,32} Ef min
∈{8,16,32}f ′

Ef ′ (1)
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motivation for developing a tokenizer with adaptive compression ratios. Accordingly, we set the target ratios for CAT

to be 8, 16, and 32.

Figure 3. Existing metrics can misjudge image complexity. Metrics like JPEG size, MSE, and LPIPS consider images with

high contrast and repetitive patterns as complex but underestimate the complexity of text-heavy images that are more

challenging for human perception (note the distortion in the bottom two rows). Images shown in the �gure are taken from

COCO 2014[11].
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3.1.2. Limitations of Existing Complexity Metrics

Next, we want to identify a metric for predicting the optimal compression ratio given an image. We explore some

existing options, categorized into two groups: (1) metrics produced by traditional codecs, i.e., the JPEG �le size; (2)

metrics based on pretrained VAEs3, including reconstruction MSE and LPIPS[35], which measures the L2 distance of

VGG Net[36] activations between the original and reconstructed images. We �rst compute these metrics on the COCO

dataset and analyze their correlation with the maximum acceptable compression ratio under  . However,

Table 2 shows that the Pearson correlations are relatively low.

After that, we manually inspect the images with large JPEG sizes and MSEs. We note that images featuring repetitive

patterns, such as grass, forests, and animals like gira�es and zebras consistently show high complexity metrics.

Indeed, JPEG compression can be ine�cient for images with sharp edges and high contrast. A single-pixel shift in a

zebra image can toggle pixel values between black and white, signi�cantly increasing the pixel-wise MSE. However, as

the top rows in Figure  3 show, large MSEs do not always notably a�ect visual quality. For example, we can easily

recognize the zebra and may not perceive the di�erences resulting from various compression ratios.

On the contrary, we �nd that many images with low considered metrics in fact have low �delity. These images often

contain visual elements like human faces or text, where even slight distortions can degrade visual quality (Figure 3,

bottom rows). Despite this, these images have low MSEs possibly because the critical elements occupy only small

portions of the images. Thus, metrics like JPEG size, MSE, and LPIPS might not e�ectively capture details crucial to

human perception. Contrary to the predicted complexity, we actually want to use a small compression ratio for text-

heavy images, and a large compression ratio for the zebra.

Lastly, the considered metrics all require images as input and cannot be used to measure complexity for text-to-image

generation tasks, where no image is available at inference time. Given all these limitations of existing metrics, we seek

a new method that is independent of pixel data and aligns with human perception to predict image complexity.

3.2. Complexity Evaluation via Captions and LLMs

Image generation typically involves users providing a prompt that describes the desired image content. To better align

with such real-world use cases, we leverage the text description of an image to measure its content complexity.

We propose a three-stage complexity evaluation system: (1) obtaining the text description, (2) prompting an LLM to

output a complexity score, and (3) classifying the score into a compression ratio. The text description consists of both

the image caption and responses to a pre-de�ned set of perception-focused questions    where 

. This set can be expanded to accommodate di�erent needs. When images are available, we

use InstructBlip[37]  to generate the caption and the responses. Otherwise, users need to provide the required

description in text.

In stage 2, the text description is processed by an LLM to assess complexity. We use Llama 3 70B Instruct[38]  in this

work. To ensure consistency in scoring, we design a detailed prompt consisting of the evaluation instructions; the

output scale, i.e., an integer score ranging from 1 to 9, where higher scores indicate greater complexity; important

τ = 0.0015

“Are there [obj]?”

obj ∈ {human faces, text}
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factors for scoring, such as semantic complexity (objects, scenes), visual complexity (color, lighting, texture), and

perceptual complexity (presence of faces and text); and lastly, speci�c examples for each score as demonstrations. We

provide the prompt we use in Appendix 7.

We divide the scores into three intervals:  ,  , and  , where  . After obtaining the score from the

LLM, we classify it into one of 8x, 16x, and 32x compression ratios, with higher complexity scores corresponding to

lower compression ratios. The threshold points    and    are selected to achieve an average compression ratio of

approximately 16x across all training data, allowing us to make a fair comparison with �xed 16x baselines.

Formally, denote the training distribution as  , input resolution as  , the compression ratio of an image    as 

, and the target average compression ratio as  . After collecting the

complexity scores for all training images, we set   to meet the target compression ratio:

There could be multiple sets of thresholds that achieve the target compression ratio. We show in Section  4.3 that a

more diverse distribution of compression ratios leads to better empirical performance. We discuss the exact training

data we use and the threshold selection in Section 4.1.

Finally, we verify the proposed caption complexity indeed provides a good estimation of the optimal compression

ratio. We compute the correlation between our complexity score and the maximum acceptable compression ratio for

COCO images and �nd that it surpasses all existing metrics (Table 2). Meanwhile, the compression ratio selected by our

caption score achieves an exact agreement of 62.39% with the maximum acceptable compression ratio. We also

manually inspect the images and con�rm that perceptually challenging images are assigned high caption complexity.

3.3. Nested VAE for Adaptive Compression

To reduce training and storage costs, we introduce a nested structure to the standard VAE architecture[2]  to enable

multiple compression ratios within a single model. In the standard VAE architecture, the encoder consists of multiple

downsampling blocks followed by an attention-based middle block. The decoder consists of an attention-based middle

block followed by upsampling blocks. This symmetrical design is reminiscent of U-Net[25]  and Matryoshka

networks[26] for multi-scale feature extraction. Inspired by these works, we leverage the intermediate outputs of the

downsampling blocks to enable adaptive compression. We describe the proposed architecture below. See Figure 1 for

illustration.

Skip Connection with Channel Matching. Denote the feature shape under the largest compression ratio as  ,

where    is the channel dimension. We observe that, in the standard VAE encoder, the spatial dimension of the

intermediate outputs from the downsampling blocks decreases by a factor of 2 with each additional block. This means

that the output of the second-to-last downsampling block naturally has shape  , and the output of the third-

to-last downsampling block has shape  . An immediate thought is to directly route these intermediate

outputs to the middle block to generate latent features. However, since the channel dimensions of these intermediate
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outputs vary, we leverage ResNet blocks[39]  for channel matching. Let the latent channel dimension of the VAE be  .

Applying channel matching enables us to transform intermediate features of shape    to    for 

. This will be the shape of the latent parameters.

For the decoder, similarly, we add skip connection with channel matching and route the output from the decoder’s

middle block to the corresponding upsampling block. For the compression ratio  , we bypass the �rst 

 upsampling blocks to ensure the decoder output has the same resolution as the original image.

Shared mean/variance parametrization. In the encoder, features after channel matching are directed to the middle

block to generate the parameters of the latent distribution. For the CAT architecture, we share the middle block for all

compression ratios to maintain scale consistency of the parameterized mean and variance. The convolutional design of

the middle block allows it to process inputs of varying spatial dimensions, as long as the channel dimension is aligned.

Thus, for all  , the mean  , variance  , and sample    of the Gaussian distribution all have shape 

, which is the original input compressed at ratio  .

Increasing parameter allocation for shared modules. Images assigned smaller compression ratios do not go through

the later downsampling blocks and are directed straight to the middle block. The middle block is thus tasked with

handling multi-scale features. To improve its capacity, we allocate more parameters to the middle block by increasing

the number of attention layers.

Training. While existing adaptive tokenizers like ElasticTok[9] do not consider the di�erent complexity levels within

the training data, we explicitly incorporate content complexity into the training process to learn feature extraction at

di�erent granularity. For each training example, we �rst obtain the compression ratio from the LLM evaluation

system. Then, the image is processed only by the layers dedicated to its compression ratio.

Similar to prior works[2][1], we use a joint objective that minimizes reconstruction error, Kullback-Leibler (KL)

divergence, and perceptual loss. Speci�cally, we use   loss for pixel-wise reconstruction. To encourage the encoder

output    towards a normal distribution, KL-regularization is added:  , where    is the

encoder parameters and  . The perceptual loss consists of the LPIPS similarity[35] and a loss based on the

internal features of the MoCo v2 model[40]. Beyond these, we train our tokenizer in an adversarial manner[41] using a

patch-based discriminator  . This leads to an additional GAN loss  . Thus, our overall objective is:

where   are the weights for each loss term. To simplify implementation, we �rst sample a compression ratio for

each GPU and ensure a batch of training data contains images with the same compression ratio. However, di�erent

GPUs can have di�erent compression ratios.

4. Image Reconstruction

We �rst evaluate CAT on image reconstruction. We will present downstream generation results in Section 5.
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4.1. Setup

Model and Training. We use a nested VAE architecture with six downsampling blocks; the output channels are 64, 128,

256, 256, 512, 512. We use 8 attention layers for the middle block. The latent channel   is 16 for experiments in Table 1,

but we study its e�ect as an ablation study in Table 5. The total number of parameters is 187M.

For training data, we use a collection of 380M licensed Shutterstock images with input resolution 512. After obtaining

the complexity scores, we �nd that two sets of threshold points,  , both achieve an average

compression ratio of approximately 16x. However, since   leads to a more diverse distribution and better emprical

performance (see Table 3 and ablation studies in Section 4.3), we use it in the �nal setup of CAT. All models including

the baselines are trained using a global batch size of 512 on 64 NVIDIA A100 GPUs for 1M steps. Further architecture

and training details (e.g., loss weights, optimizer, and learning rate schedule) can be found in Appendix 8.

Baselines. We compare CAT against �xed compression ratio baselines that use the same VAE architecture but without

the nested structure. To study the e�ect of caption-based complexity, we train another nested VAE using the JPEG �le

size of the image as the complexity metric. We ensure all models have average 16x compression. See Appendix 8.3 for

more baseline details.

Evaluation Datasets and Metrics. We evaluate the reconstruction performance on four datasets: COCO[11]  and

ImageNet[12], representing natural images; CelebA[13] and ChartQA[14], representing perceptually challenging images.

We report reconstruction FID (rFID), LPIPS, and PSNR[42] as the performance metrics.

4.2. Main Results

Table 1 presents the image reconstruction results of CAT and various baselines. For �xed compression methods, the 8x

compression ratio achieves substantially better performance than the 16x and 32x compression ratios, which shows

that reducing the compression ratio is an e�ective strategy to improve reconstruction at the cost of increased

computational expense. Then, we compare our method with the �xed 16x baseline. On COCO and ImageNet, CAT

generally outperforms the baseline, with only a slight drop in rFID on ImageNet. However, the average dimension of

CAT latent features is 31.87 for COCO and 29.32 for ImageNet, both of which are smaller than the baseline dimension of

32 (Table 2). This shows CAT can e�ectively learn compact representations for natural images. On CelebA and ChartQA,

CAT  signi�cantly outperforms the baselines on all metrics. On ChartQA, CAT  even surpasses the �xed 8x baseline,

proving its e�cacy in capturing visual details.

c

(a, b) ∈ {(4, 7), (2, 8)}

(4, 7)
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Average Compression

COCO ImageNet CelebA ChartQA

rFID  LPIPS  PSNR  rFID  LPIPS  PSNR   rFID  LPIPS  PSNR   rFID  LPIPS  PSNR  

8 Fixed 8x 0.48 0.10 30.95 0.24 0.095 33.86 1.86 0.028 45.36 8.21 0.019 36.98

16

Fixed 16x 0.66 0.16 29.79 0.38 0.15 30.45 2.25 0.059 41.84 8.67 0.029 33.48

Adaptive JPEG 0.72 0.17 30.11 0.51 0.16 30.61 6.57 0.14 36.47 10.17 0.048 31.54

Adaptive CAT (Ours) 0.65 0.15 30.19 0.46 0.15 30.62 1.97 0.051 42.43 5.27 0.021 36.45

32 Fixed 32x 1.18 0.26 26.93 0.81 0.25 27.48 6.10 0.16 36.35 10.79 0.045 30.99

Table 1. Reconstruction results. All models have latent channel  . CAT outperforms �xed 16x and JPEG baselines on

most metrics.

We also compare CAT with training the same adaptive architecture but using JPEG size as the complexity metric. Across

all datasets, CAT achieves better rFID, LPIPS, and PSNR. While we ensure both tokenizers have the same

trainingcompression ratio distribution, the compression ratio distribution of the evaluation datasets varies

signi�cantly (Table 2). Notably, since JPEG size often cannot capture perceptually important factors (see discussion in

Section 3.1.2), nearly all images in CelebA and ChartQA are assigned the highest 32x compression ratio. Thus, CAT

signi�cantly outperforms JPEG on these two datasets, showing the e�ectiveness of caption-based metric and LLM

evaluation in determining an image’s intrinsic complexity.

↓ ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↑

c = 16
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Eval Dataset Compression Method

Eval Distribution

Latent Dim

8x 16x 32x

COCO

CAT 9% 54% 37% 31.87

JPEG 10% 54% 36% 32.43

ImageNet

CAT 6% 49% 45% 29.32

JPEG 9% 49% 42% 31.24

CelebA

CAT 17% 83% 0% 39.29

JPEG 0% 0% 100% 16

ChartQA

CAT 96% 4% 0% 63.02

JPEG 0% 3% 97% 16.61

Table 2. Test data distribution and average spatial dimension ( ) of the latent features. The numbers denote the proportion

of images for each dataset. Compared to �xed 16x baseline, which has a latent dimension of  , CAT uses smaller

latents for natural images and larger latents for CelebA and ChartQA.

Figure 4 shows qualitative examples of progressive reconstruction quality using the learned CAT VAE as we manually

reduce the compression ratio and use more tokens to represent each image. We highlight the compression ratio

selected by our caption metric in red. Di�erent visual inputs have di�erent optimal compression ratios. Natural images

with fewer objects and simpler patterns can be accurately reconstructed at 32x, whereas complex images with visual

details require lower compression. Thus, the caption-based CAT reconstruction has comparable quality to the �xed 16x

baseline on natural images but surpasses it on text-heavy images. These results further demonstrate the e�ectiveness

of CAT. We include more visualization and comparison with LDM VAEs in Appendix 9.4.

r

f

= 32512
16
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Figure 4. We highlight the compression ratio selected by our proposed caption complexity in red. On simpler images (top two

rows), adjusting the CAT compression ratio does not signi�cantly a�ect quality. On more complex images (bottom three

rows), the impact is substantial. Also note that CAT’s text reconstruction is comparable with �xed 8x baseline and better

than pretrained LDM VAE. Images shown in the �gure are taken from COCO 2014[11] and ChartQA[14].

4.3. Ablation Studies

We explore several design choices for our tokenizer. First, we study how the distribution of compression ratios a�ects

overall reconstruction. To achieve an average compression ratio of 16, we consider setting the thresholds    to

either    or  . As shown in Table  3, the con�guration    yields a more diverse distribution, whereas 

  results in a distribution that is more concentrated and similar to a �xed 16x tokenizer—making it a less

interesting setting. Table 3 also compares the reconstruction performance of these con�gurations. The thresholds 

  produce better reconstruction metrics across all datasets, possibly because the diversity in compression ratios

ensures that all parts of the model are fully trained. Consequently, we adopt   as the thresholds for CAT.

(a, b)

(4, 7) (2, 8) (4, 7)

(2, 8)

(4, 7)

(4, 7)
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Training Distribution Reconstruction FID 

8x 16x 32x Average COCO ImageNet CelebA ChartQA

10% 48% 42% 16.0x 0.65 0.46 1.97 5.27

0.5% 89.5% 10% 16.5x 0.67 0.43 2.58 7.70

Table 3. Compression ratio distribution a�ects learning outcomes. Both settings have an average compression of  16x, but 

 leads to better distribution diversity and empirical results.

DiT-XL/2+Tokenizer FID sFID IS Precision Recall Eval rFLOPs

Fixed

LDM VAE 10.03 16.88 114.84 0.65 0.50 1

Fixed 16x 4.78 11.81 187.47 0.72 0.49 1

Adaptive CAT 4.56 10.55 191.09 0.75 0.49 0.82

Table 4. 512 512 class-conditional ImageNet generation results after 400K training steps (cfg=1.5). All tokenizers have

average compression ratio   and latent channel  . “rFLOPs” means relative FLOPs.

We also vary the latent channel dimension   to study its e�ect on tokenizer performance. As shown in Table 5, a larger 

  leads to better reconstruction metrics. However, consistent with previous studies[10][43], we observe a

reconstruction-generation trade-o�: while increasing   improves reconstruction quality of the tokenizer, it does not

necessarily result in better second-stage generative performance. We elaborate on this trade-o� in the next section.

(a,

b

)

↓

(4,

7
)

(2,

8
)

∼

(4, 7)

↓ ↓ ↑ ↑ ↑ ↓

×

×

×

×

= 16f
¯¯̄

c = 16

c

c

c
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rFID COCO ImageNet CelebA ChartQA

Fixed 16x

4 1.25 1.32 5.89 9.45

8 1.10 0.61 4.99 8.19

16 0.66 0.38 2.25 8.67

CAT

4 1.66 1.10 5.83 9.13

8 1.03 0.60 4.54 7.95

16 0.65 0.46 1.97 5.27

Table 5. Larger latent channel   generally improves rFID.

5. Image Generation

In this section, we use CAT to develop image generation models for ImageNet dataset. Given the continuous and

adaptive nature of CAT, we use the di�usion transformer (DiT)[15]  as the second-stage model, which is capable of

handling variable-length token sequences. DiT takes the noised latent features as input, applies patching to further

downsample the input, and uses a transformer architecture to predict the added noise.

5.1. Setup

Following[15], we utilize DiT-XL with 431M parameters and a patch size of 2. We work with images of input resolution

512. With a 16x compression during tokenization and an additional 2x compression during patching, the number of

patches (referred to as “tokens” hereafter) representing each image is  .

Since the ImageNet dataset does not naturally include text captions, we employ InstructBlip to generate captions for

the images individually during training. For inference, we use the caption “this is an image of [label]”. We follow our

scoring system to determine the target number of tokens to generate—speci�cally, 64 for 32x decoder, 256 for 16x

decoder, and 1024 for 8x decoder.

As for baselines, we consider DiT-XL paired with the open-source 16x LDM VAE and the �xed 16x tokenizer trained in

the previous section. We train all models with the same global token batch size of 262,144, which is equivalent to 1,024

images at a 16x compression ratio, and for 400,000 steps on 16 NVIDIA H100 GPUs. Following the original DiT work,

we report FID[44], Sliding FID[45], Inception Score[46], precision and recall[47]  on 50K images generated with 250

DDPM sampling steps and classi�er-free guidance[48]. See Appendix 9 for details.

5.2. Results

Table 4 summarizes the results, showing that CAT achieves the best FID, sFID, IS, and precision among all baselines

trained with the same computational resources. We attribute this strong performance to two factors. First, adaptively

↓ c

c

= 256( )512
16⋅2

2
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allocating representation capacity enables more e�ective modeling of complex images while reducing noise in simpler

ones. Second, using fewer tokens for simpler images improves processing e�ciency, allowing for more extensive and

diverse training within the same computational budget. Speci�cally, since ImageNet primarily consists of natural

images, only a few classes featuring people or �ne-grained text receive high complexity scores. On the training

dataset, the average token count per image for DiT-CAT is 197.44, which is 23% lower than the 256 tokens used by DiT

with �xed 16x tokenizers. During inference, this average increases to 216, leading to an 18.5% increase in inference

throughput (samples per second).

Figure 5. Increasing token count (left right) for CAT leads to better image quality and higher complexity.

We study the e�ect of manually increasing the number of tokens for DiT-CAT during generation. Table 6 shows that

FID score is signi�cantly improved when using more tokens during image generation. We further provide qualitative

examples. As Figure 5 shows, utilizing more tokens leads to more complex images, such as featuring more objects and

more intricate texture. This highlights a side bene�t of adaptive tokenization: it enables complexity-controllable

generation at no additional training cost.

→
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Lastly, recall that we trained tokenizers with di�erent latent channels in Section 4.3. Table 7 shows the generation

performance. While larger   is better for reconstruction, it is not the case for generation. In fact,   leads to better

average results for both �xed and adaptive settings, and CAT with   obtains the best FID across all experiments we

perform. This observation agrees with existing work [10] and underscores the importance of choosing an appropriate  .

We leave diving into the dynamic of latent channel dimension and downstream performance as future work.

  CAT 8x CAT 16x CAT 32x

FID-50K 4.12 5.02 5.83

Table 6. We manually adjust the inference token count for CAT with   to control the complexity of the generated

images.

  FID sFID IS Precision Recall

Fixed 16x

4 5.11 10.84 158.80 0.75 0.49

8 4.96 10.39 221.85 0.76 0.51

16 4.78 11.81 187.47 0.72 0.49

CAT

4 5.12 11.12 152.39 0.72 0.48

8 4.38 10.31 181.03 0.76 0.48

16 4.56 10.55 191.09 0.75 0.49

Table 7. Larger channel   is not always better for generation. Contrary to Table 5, we �nd that increasing channel dimension

does not always result in generation gains.

6. Discussion and Conclusion

In this work, we propose an adaptive image tokenizer, CAT, which allocates di�erent number of tokens to represent

images based on content complexity derived from the text description of the image. Our experiments show that CAT

improves both the quality and e�ciency of image reconstruction and generation. We identify several future directions

to work on. First, we can apply complexity-driven compression to developing discrete tokenizers and combine CAT

with quantization techniques. Besides, experimenting with more downstream tasks beyond class-conditional

generation[49][50] and integrating CAT to multi-modal models, such as Chameleon[51] and Transfusion[52], can help

strengthen this work. Lastly, extending CAT to video tokenization could be a promising future direction due to the

higher inherent redundancies in video clips, especially along the temporal dimension.

c c = 8

c = 8

c

c = 8

c ↓ ↓ ↑ ↑ ↑

c
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Supplementary Material

7. Prompt for LLM Scorer

Our caption complexity pipeline works as follows:

Step 1: Use Salesforce/instructblip-vicuna-7b to generate caption, with the following prompts:

What’s in the image?   Caption

Are there text or numbers in the image?   Yes/No.

Are there faces in the image?   Yes/No.

Step 2: Use meta-llama/Meta-Llama-3-70B-Instruct to generate the complexity score with the prompt:

8. Reconstruction Experiments

8.1. Architecture

We implement the nested VAE similar to the AutoencoderKL implementation of the diffusers library. The network

con�guration is:

sample_size: 512

→

→

→
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in_channels: 3

out_channels: 3

down_block_types: [DownEncoderBlock2D]   6

up_block_types: [UpDecoderBlock2D]   6

block_out_channels: [64, 128, 256, 256, 512, 512]

layers_per_block: 2

act_fn: silu

latent_channels: 4/8/16

norm_num_groups: 32

mid_block_attention_head_dim: 1

num_layers: 8

The model sizes for di�erent latent channels are shown below. As for the discriminator, we use the pretrained

StyleGAN[53] architecture.

Nested VAE

# Params (M) 187.45 187.50 187.61

8.2. Training

We use the following training con�guration:

GPU: 64 NVIDIA A100

Per-GPU batch size: 8

Global batch size: 512

Training steps: 1,000,000

Optimizer: AdamW

lr: 0.0001

beta1: 0.9

beta2: 0.95

weight_decay: 0.1

epsilon: 1e-8

gradient_clip: 5.0

Scheduler: constant with 10,000 warmup steps

Loss:

recon_loss_weight: 1.0

kl_loss_weight: 1e-6

×

×

c = 4 c = 8 c = 16
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perceptual_loss_weight: 1.0

moco_loss_weight: 0.2

gan_loss_weight: 0.5

gan_loss_starting_step: 50,000

The discriminator is trained with the standard GAN loss.

8.3. Baselines

We train �xed compression baselines using the same data, training con�guration, and VAE backbone. For smaller

compression ratios, e.g., �xed 8x, the last two downsampling blocks and �rst two upsampling blocks are not used.

For the adaptive JPEG baseline, we use torchvision.io.encode_jpeg to transform the images into JPEG �le and

compute the number of bytes as the complexity metric. Smaller �les correspond to larger complexity. To provide a

better understanding of this metric, we show in Figure 6 the distribution of JPEG sizes on the COCO 2014 test set, with

relevant statistics included in the caption. Then, based on the JPEG sizes of all images in the Shutterstock training

dataset, we set the thresholds   to   to categorize the �le sizes into three compression ratios. This set

of thresholds ensure that the JPEG baseline has the same training compression ratio distribution as CAT.

Figure 6. On COCO 2014 test set, the minimum JPEG size is 6128; maximum is

118428; mean is 45474.29; standard deviation is 15037.07.

For LDM VAEs, we follow the instructions in their original repository to use the model checkpoints. Note that LDM

VAEs are trained on OpenImages dataset[54], which is di�erent from our training data, so it is hard to fairly compare

the reconstruction performance. Nonetheless, we present their rFIDs on the evaluation datasets in Table 8.

(a, b) (38761, 65837)
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  COCO ImageNet CelebA ChartQA

CAT 0.65 0.46 1.97 5.27

LDM 8x 0.51 0.33 2.83 8.32

LDM 16x 0.53 0.37 3.07 8.49

LDM 32x 0.90 0.62 5.54 10.35

Table 8. rFIDs for CAT and LDM VAEs.

8.4. More Reconstruction Visualization

See Figure 7 in the end.

9. Generation Experiments

9.1. Architecture

We use DiT-XL architecture with a patchify downsampler and patch size of 2. The model size depends on the latent

channel, but is generally around 431M parameters. The model T�ops is 22.0.

9.2. Training & Inference

The training con�guration for DiT is as follows:

GPU: 16 NVIDIA H100

Per-GPU token batch size: 4096   4 (equivalent to 64 images for 16x compression ratio)

Global token batch size: 4096   64

Training steps: 400,000

Optimizer: AdamW

lr: 0.0001

beta1: 0.9

beta2: 0.95

weight_decay: 0.1

epsilon: 1e-8

gradient_clip: 1.0

Scheduler: Cosine

warmup: 4000

cosine_theta: 1.0

×

×
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cycle_length: 1.0

lr_min_ratio: 0.05

DDPM scheduler (diffusers implementation):

num_train_timesteps: 1000

beta_start: 0.0001

beta_end: 0.02

beta_schedule: squaredcos_cap_v2

prediction_type: epsilon

timestep_spacing: leading

num_inference_steps: 250

For 10 % of the time, we remove the image class label from the input and train unconditional image generation. All

FID-50K and images generated in this paper are using cfg=1.5.

9.3. Baselines

To ensure we train the baseline with the same compute FLOPs, we �x the token batch size and number of training steps

for all settings. For pretrained LDM VAE, we use the scaling factor speci�ed in the model con�guration to ensure the

input scale and noise scale are similar. For CAT, we use a scaling factor of 1.
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Figure 7. More CAT reconstruction examples. We highlight the compression ratio selected by our proposed caption

complexity in red. Images shown in the �gure are taken from COCO 2014[11] and ChartQA[14].

9.4. More Visualization

See Figure 8 in the end.
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Figure 8. More DiT-CAT generation examples. Increasing token count (left right) generally leads to better image quality

and higher complexity.

Notes
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→
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Footnotes

1 LDM released a series of VAE tokenizers with diverse compression ratios and trained in a controlled setting. Most

other tokenizers, such as stabilityai/sd-vae-ft-mse, only have one compressed ratio.

2 Note that the average MSE across all images for 8x LDM VAE is 0.0039, so a 0.0001 tolerance should be acceptable.

3 We use stabilityai/sd-vae-ft-mse for this analysis.
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