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Abstract. This paper analyses the Continuum Hypothesis, that the cardi-
nality of a set of real numbers is either finite, countably infinite or the same
as the cardinality of the set of all real numbers. It argues that the Continuum
Hypothesis makes sense as a very strong choice principle that is a maximally
efficient as a principle for deciding whether a real number is in a set of real
numbers, in the sense that it is uniform in deciding membership for every real
number in a countable number of steps. The approach taken is to analyze the
intended meaning of the Continuum Hypothesis rather than to analyze models
of set theory in which CH is true or false and to use those models to support
or reject the Continuum Hypothesis.

1. Introduction

This short paper analyses the Continuum Hypothesis (CH), that the cardinality
of a set of real numbers is either finite, countably infinite or the same as the cardi-
nality of the set of all real numbers. The approach taken is to analyze the intended
meaning of CH rather than to analyze models of the real numbers in which CH is
true or false and to use those models to support or reject CH. The latter approach
has a complex and extensive literature (see Rittberg (2015), Schindler & Asperó
(2021) for accessible discussions), but will not be considered here since the set of
subsets of all real numbers is the only model that counts as far as determining
the truth value of CH is concerned. Historically the earliest approach to CH from
Cantor’s time has been to classify the topological complexity of sets, a subject
known as descriptive set theory (see (Hausdorff 1957, Martin 1977, Kechris 1995)
for example), which remains a powerful stimulus to the foundations of real analysis
and set theory to this day. But this approach has a huge literature and would
require a survey of descriptive set theory, and will therefore not be covered here. A
fourth approach is to find propositions equivalent to CH, which was originally due
to Sierpiński (see Sierpiński (1934), Martin & Solovay (1970) and Streprans (2012)
for a survey), in the hope that statements equivalent to CH or consequences of CH
will be more obviously true or false than CH itself. This approach will also not be
considered here.

The reason for the focus on meaning is that at minimum it will be possible to
understand the claim (or potentially claims) that CH represents. This is a “bot-
tom up” approach to understanding CH, which does not depend on whether some
powerful axiom of set theory is true or not. All of the other approaches mentioned
above lead to axioms that are not provable from the standard axiomatization of
the cumulative hierarchy of sets, Zermelo Fraenkel (ZF) set theory, see (Shoenfield
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1977). Of course, since CH is also independent of ZF (see (Gödel 1940, Cohen
1963)), CH itself or its negation could be taken to be axioms of set theory. The
question is: is CH or its negation a reasonable axiom to assert? It is this question
that this paper tries to address.

The intended meaning of CH goes back to Cantor and Zermelo (see Dauben (1979),
Hallett (1986), Kanamori (1996)) and is based on the view that all infinite sets are
like the set of natural numbers to the extent that they are definite and can be
enumerated (albeit in general by infinitary functions, i.e. functions which cannot
be represented by a finite algorithm).1 In addition to the focus on the meaning of
CH and the use of infinitary methods, this paper combines algorithms and ideas
from computability complexity theory with the theory of sets of real numbers.

This paper considers some principles that relate to CH and argues that CH is
a very strong choice principle that is equivalent to the ability to decide membership
of a set of real numbers uniformly (that is, which does not depend on the nature
of the putative member of the set) in a countable number of steps. It is argued
on the grounds of analogy with the natural numbers and the countable amount of
information in each real number that CH is a reasonable principle to assert.

2. Some Definitions

Definition. A set X is linearly ordered by linear ordering < if (∀x ∈ X)(∀y ∈
X)(x < y ∨ x = y ∨ y > x), where x ≮ x, x < y ∧ y < z → x < z for all x, y, z.

Definition. X is well-ordered by well-ordering < if it is linearly ordered by < and
for all Y ⊆ X (∃z ∈ Y )(∀y ∈ Y )(z < y ∨ z = y).

Definition. Well-orders have an order type or ordinal which is the type of the
isomorphism class of well-orderings <.

Definition. There is a natural lexicographical linear ordering on the real numbers
given by ⟨xi<ω⟩ < ⟨yi<ω⟩ if (∃k < ω)[(∀l < k)(xl = yl)∧(xk < yk)], ⟨xi<ω⟩ = ⟨yi<ω⟩
if (∀l < ω)(xl = yl) and ⟨yi<ω⟩ < ⟨xi<ω⟩ otherwise.

Definition. We can identify a real number as a binary ω-sequence, written as
⟨fi<ω⟩, that is to say a function f : N → 2 where N is the type of the natural
numbers, ω is the order type of the natural numbers in their standard strictly
increasing ordering 0, 1, 2, . . . and 2 := {0, 1}.

Definition. A set of real numbers is identified with a binary tree, where a binary
tree T comprises a set of branches or binary ω-sequences.

Definition. We denote the cardinality or size of a countable infinite set as ℵ0, and
call ℵ0 a cardinal, in fact the smallest infinite cardinal. ℵ1 is the least cardinal
greater than ℵ0, which is equivalent to saying that ℵ1 is the least uncountable
cardinal. The only theorem we assume is 2ℵ0 ≥ ℵ1 due to Cantor (see (Dauben
1979) for example).

1The number of enumerations (well-orderings) of any infinite set is uncountable, and thus
the notion of an arbitrary enumeration of an infinite set cannot be specified in a finite way.
Any enumeration of an uncountable set cannot be performed by a finitely computable function
with finite inputs, because only a countable infinity of outputs will result, see Kleene (1938) for
characterization of the first non-computable ordinal as a countable ordinal.
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Definition. The number of bits of information in a real number is the length in
bits of a binary sequence which cannot be compressed any further losslessly (see
Li & Vitanyi (1997) for example). Here lossless compression (of a sequence of bits
q to a sequence of bits p) means that p can be encoded from q where the length
of p |p| ≤ |q| and q can be decoded from p. A set of binary sequences S can be
encoded as a set of binary sequences T if every binary sequence in S can be mapped
one-to-one to a binary sequence in T by a computable function e that is onto T , i.e.
e(S) = T , and a binary sequence s ∈ S is encoded as e(s). S can be then decoded
from T as e−1(T ) and a binary sequence t ∈ T can be decoded as e−1(t). Since it is
always possible to choose a short length code for a particular binary sequence, the
encoding function should not be defined by cases but must act uniformly on each
member of S.

Example. Lossless compression on sets of sequences of bits exist, for example the
set of all rational numbers expressed as infinite binary sequences. Any rational
number corresponds to an initial finite sequence, init, and a repetition of a finite
binary sequence seq 0 ≤ α ≤ ω times; so we can losslessly compress a binary
sequence representing a rational number by auto-encoding init, seq and α as a
finite sequence of bits if α is sufficiently large. In case of rational numbers treated
as binary ω-sequences, we take α = ω. For example, we can represent the binary
sequence ⟨1, 0, 1⟩ followed by ⟨0, 1⟩ repeated ω times as ⟨1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1⟩,
where 0 is used as an inter-bit marker for a sequence and an inter-bit 1 indicates
a boundary to the next element of the code, whether to a finite sequence or to the
code for the number of repetitions. For the number of repetitions, 1 indicates an
infinite number of repetitions and 1 is the code for ω1 (whereas natural number n
would be represented by n 0s). Binary representations of finite binary sequences
and of binary sequences that allow infinite repetitions for larger ordinals than ω
using ordinal notations for infinite ordinals (see (Rathjen 2006)) are clearly possible
using the same encoding function, but are not the subject of this paper.

3. Principles relating to the Continuum Hypothesis

CH can be expressed as follows as a statement about well-orderings of a set of real
numbers (compare Koellner (2019), which allows well-orderings of order type < ω2):

CH=: For all linear orderings of a set of real numbers, X, there is a well-ordering
of X of order type ≤ ω1.

Proposition 1. CH= is equivalent to CH.

Proof. Assume CH=. Since any set of real numbers can be well-ordered with order
type ≤ ω1, the cardinality of X, |X| ≤ ℵ1. The set of all real numbers, R, has
cardinality ℵ1 because it is uncountable by Cantor’s theorem that 2ℵ0 ≥ ℵ1. It
follows that every subset of the real numbers is countable or has the cardinality of
R, which is CH. Conversely, assume CH. Then take any set of real numbers, X.
By CH, if X is countable then it has cardinality ≤ ℵ0 and if X is uncountable
it has cardinality ℵ1. Well-order X by applying the Axiom of Choice (AC), that
is xα := f(X −

⋃
β<α{xβ}), where 0 ≤ α < ∥X∥ for choice function f , where

∥X∥ = |X| for finite X, ∥X∥ = γ for ω ≤ γ < ω1 if X is countably infinite and
∥X∥ = ω1 if X is uncountable. The linear ordering of X is not used, but can be
added as a premiss. Thus CH follows. □
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Proposition 2. Each real number contains ≤ ω bits of information, with almost
all real numbers having exactly ω bits of information. All objects with a countable
number of bits have ≤ ω bits of information.

Proof. Each real number contains ≤ ω bits of information, with almost all real
numbers having exactly ω bits of information, as otherwise there would be a lossless
compression, i.e. a one-to-one and onto function, from the set of all real numbers to
the set of natural numbers (where each natural number contains < ω bits), which
would violate Cantor’s theorem that 2ℵ0 ≥ ℵ1. Let us assume that x is an object
with a countable number of bits of information. Then either x has a finite number
of bits of information or x has countably infinitely many bits of information. In the
first case, x can be encoded as a natural number and therefore as a real number. In
the second case, there is a lossless compression of a binary α-sequence representation
of x for ω ≤ α < ω1 to a binary ω-sequence representation of x by definition of
countability. Since a real number is identified with a binary ω-sequence, x is a real
number. Seen in this way, a real number can be identified with a mathematical
object with a countable number of bits. □

We can generalize CH as follows:

CH*: For all linear orderings of a set of mathematical objects which contain a
countable number of bits of information, X, there is a well-ordering of X of order
type ≤ ω1.

Proposition 3. CH* is equivalent to CH.

Proof. This follows from Proposition 1 and Proposition 2. □

Remark. We hold CH* in reserve until the next section, but it will come in useful
when we examine arguments for CH. We can compare CH with AC. AC says that
there is a choice function that for a set of non-empty sets chooses a member of
each set and collects them in a set. As we have seen in Proposition 1, repeated
application of AC will generate a well-ordering of a non-empty set (known as the
well-ordering principle). In particular we have:2

Consequence of AC: For all linear orderings of a set of real numbers, X, there is
a well-ordering of X.

Remark. Both AC and the well-ordering principle for sets of real numbers are a
consequence of CH, because CH says that each member of a set of real numbers,
X, can be indexed with a countable ordinal, which means that there is a method
for choosing a member of any subset of X by taking the member with the least
ordinal index (see (Stillwell 2002)). At minimum we can say that CH is a choice
principle that is as at least as strong as AC. The fact that AC for sets in general
follows from the Generalized Continuum Hypothesis is due to (Sierpiński 1947).

2It should not be thought that the function that maps a linear ordering to a well-ordering will
preserve the linear ordering. The choice function that operates on b > a after a is chosen will in
general select a different linear order of the set to form a well-ordering.
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4. CH as a Uniform Infinite Binary Search

Definition. According to principle CH*, CH translates the countability of the
number of bits in any member x of a linear ordering of a set of real numbers X to
the countability of a (single) enumeration up to and including x in a well-ordering
of X. One problem is that this form of CH does not correspond in logical form
to a standard search algorithm such as binary search, which is a very efficient way
to decide membership of a set of real numbers (linear in the length of the real
numbers and logarithmic in the size of the set of real numbers, see Horowitz &
Sahni (1978) for example for the finite case of binary search). Binary search of a
set of real numbers, X, is the process where, given a real number to be searched
for, x, a linear ordering < of X is continually divided into two contiguous linear
sub-orderings Ai+1 = ⟨y ∈ Xi : y ≤ ai⟩ and Bi+1 = ⟨y ∈ Xi : y > ai⟩ for some
ai ∈ Xi where X0 := X and Xi+1 := Ai+1 if x ≤ ai and Xi+1 := Bi+1 if x > ai
and i is a natural number index of the subdivision process. The process will stop
if x = ai for some i < ω, otherwise in the limit we have Xω = {x} if x ∈ X and
Xω = ∅ if x /∈ X.

Proposition 4. We can write binary search in the form (∀X ⊆ R)(∀x ∈ X)(∃F :
ω1 → X)(∃β < ℵ1)(F (β) = x) for R the set of all real numbers and F is a function.
CH is the stronger statement (∀X ⊆ R)(∃F : ω1 → X)(∀x ∈ X)(∃β < ω1)(F (β) =
x), as in CH F does not depend on x.

Proof. We can allow x ∈ X to be represented by a binary sequence of countably
infinite length ω1 > β ≥ ω rather than by a binary ω-sequence. Then we can
adapt the infinite binary search algorithm outlined in the definition above by setting
Xλ =

⋂
i<λ Xi for limit ordinal λ, choosing ai ∈ Xi, setting F (i) = ai and F (γ) = ∅

and Xγ = ∅ for i < γ < ω1 if i < β and x = ai, otherwise setting F (β) = x and
F (γ) = ∅ and Xγ = ∅ for β < γ < ω1. The statement of CH is a formalization of
CH as a search algorithm. □

Remark. CH can thus be thought of as a uniformization condition on individual
countable binary searches for x ∈ X to produce a single countable search that can
find every x ∈ X. Besides having a different logical form to binary search, it is
possible that an enumeration of a set C of size 2ℵ0 is such that every countable
ordinal label for a real number is re-used 2ℵ0 times or otherwise that almost all
ordinal labels used for members of a well-ordering are ≥ ω1. There is nothing
in Zermelo Fraenkel set theory that prevents a mapping 2ℵ0 → ℵ1 from being
many-to-one. In fact Cohen in Cohen (1963) showed that it is possible to force
a mapping from 2ℵ0 → ℵ1 to be many-to-one in a countably infinite model of set
theory by adding a countably infinite set of computably decidable conditions using
a knowledge-based semantics (see Burgess (1977) for an accessible treatment and
Kunen (1980) for a comprehensive account of ways of understanding forcing). The
knowledge-based semantics was set out in Kripke (1965) from Cohen (1963) and is
based on the view that knowledge forms a tree (a partial ordering) of cumulative
conditions where a condition and its negation will appear in separate branches.

Corollary 5.
⋂

i<ω1
Xi = ∅ and

⋂
i<β Xi = {x} for any given countably infinite

ordinal β and given x ∈ X for uncountable set of real numbers X and Xi and β
are as defined in Proposition 4, while

⋂
i<ω Gi = ∅ and

⋂
i<n Gi = {x} for G a
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non-empty set of finite binary sequences such that x ∈ G has length m and n ≥ m
for some natural number n, G0 = G and Gi+1 represents a subdivision of Gi.

Proof. The first part is a restatement of Proposition 4, while G can be searched
using finite binary search once it has been ordered lexicographically. The construc-
tion of Gi follows Xi for finite ordinals with G0 = G and Gi≥n = ∅. n = m can be
achieved if the midpoint, midi = (si + fi)/2 in binary, of Gi := [si, fi], the set of
all finite binary sequences between and including si and fi, is chosen as ai (which
always exists for sets of binary sequences), where midi does not have to be member
of G. Note that all binary sequences start with ordinal index 0. □

Remark. Corollary 5 shows that there may be an analogy between the cardinality
of the set of all finite binary sequences, which is ℵ0, and the finiteness of individual
binary sequences and the cardinality of an uncountable set of real numbers and the
countability of each real number. A similar analogy appears in the next section.

5. A Choice-Based Argument for CH

Remark. The choice-based argument for CH below is based on an analogy between
ℵ0 and ℵ1. That is, we know that to decide whether x ∈ X for X ⊆ N , where
N is the set of natural numbers, requires no more than finitely many steps, and
to find x by enumeration of X when interleaved one-to-one with an enumeration
of the complement of X, N − X, takes < ω steps. Replacing N by R, ℵ0 by ℵ1

and “finitely” by “countably many” we get: to decide whether x ∈ X for X ⊆ R
requires no more than countably many steps and to find x by enumeration of X
when interleaved one-to-one with an enumeration of R−X takes < ω1 steps.

Proposition 6. CH is equivalent to the statement that any enumeration of any
X ⊆ R to find any x ∈ R when interleaved one-to-one with an enumeration of
R−X, takes < ω1 steps.

Proof. If CH, then since X and X−R can be linearly ordered by the lexicographical
ordering, they can be enumerated in ≤ ω1 steps by a well-order. Since either x ∈ X
or x ∈ R − X then x will be enumerated in < ω1 steps. Conversely, if x ∈ X
then x can be found by an enumeration of X in < ω1 steps by assumption, and
if x ∈ R −X then x can be found by an enumeration of R −X in < ω1 steps by
assumption. If X is empty, R−X can be enumerated in ≤ ω1 steps since all x ∈ R
can be enumerated in < ω1 steps by assumption; if R − X is empty, X can be
enumerated in ≤ ω1 steps by the same argument; otherwise both X and R−X can
be enumerated in ≤ ω1 steps, again by the same argument. Since X is an arbitrary
set of real numbers which is assumed to be linearly ordered, we have shown that X
is well-ordered (by enumeration) with an order type ≤ ω1. CH follows. □

Remark 7. While an analogy is a weak argument, there is reason why the analogy
may hold. That is, if CH is false then it follows that there would be no uniform
method (such as enumeration) for deciding whether any x ∈ X in countably many
steps. Thus CH is false would imply that these countable decision computations of
x ∈ X could not be well-ordered in a way that any one such computation is acces-
sible in countably many steps, or, more starkly, that almost all countable decision
computations of x ∈ X require uncountably many steps to complete if the set of
decision computations is well-ordered. Given that CH is a strong choice function,
and CH* applies to all mathematical objects with a countable number of bits of



AN ANALYSIS OF THE CONTINUUM HYPOTHESIS 7

information, it is plausible to believe that a choice function could be selected to min-
imize the total number of steps in the uniform method (i.e. to ≤ ω1 steps) and to
avoid having almost all countable content being decided in uncountably many steps.

To emphasize this point consider the following principle:

CH*-: For all linear orderings of a set of mathematical objects which contain a
strictly increasing countable number of bits of information, X, there is a well-
ordering of X of order type ≤ ω1.

Remark. CH*- is a consequence of AC since any strictly increasing linear order with
a countable infinity of information can be mapped to a strictly increasing linear
order of countable ordinals. CH* is stronger than CH*- because it is possible that
at an uncountable limit ordinal the increasing number of bits becomes uncountable.
Thus with CH* there is no natural way to map the countable content of real numbers
to ordinals. The choice function in AC may provide such a mapping. In fact we can
say that CH* is really a claim that CH* is the same as CH*-. That is to say, CH*
not only has a choice function to well-order any set of mathematical objects with
a countably infinite number of bits of information, but that same choice function
can also re-order the objects in an increasing countable number of bits. Thus CH
is a natural strong choice principle (based on CH* and CH*-).

6. Conclusions

This paper concludes that CH is a very strong choice principle that is a maximally
efficient as a principle for deciding whether a real number is in a set of real numbers,
in the sense that it is uniform in deciding membership for every real number in a
countable number of steps. Moreover, if CH is false it follows that almost all
membership decisions that require countably many bits of information are decided
by enumeration in uncountably many steps. That this last assertion is counter-
intuitive leads to CH being a reasonable principle to adopt. This is supported by
the fact that CH reflects the analogy between the finiteness of computation of the
number of steps to check membership of a set of natural numbers by enumeration
with the countability of computation of the number of steps to check membership
of a set of real numbers by enumeration.
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