
Preprint.

AERO: SOFTMAX-ONLY LLMS FOR EFFICIENT
PRIVATE INFERENCE

Nandan Kumar Jha & Brandon Reagen
New York University
{nj2049, bjr5}@nyu.edu

ABSTRACT

The pervasiveness of proprietary language models has raised privacy concerns
for users’ sensitive data, emphasizing the need for private inference (PI), where
inference is performed directly on encrypted inputs. However, current PI methods
face prohibitively higher communication and latency overheads, primarily due
to nonlinear operations. In this paper, we present a comprehensive analysis to
understand the role of nonlinearities in transformer-based decoder-only language
models. We introduce AERO, a four-step architectural optimization framework that
refines the existing LLM architecture for efficient PI by systematically removing
nonlinearities such as LayerNorm and GELU and reducing FLOPs counts. For the
first time, we propose a Softmax-only architecture with significantly fewer FLOPs
tailored for efficient PI. Furthermore, we devise a novel entropy regularization tech-
nique to improve the performance of Softmax-only models. AERO achieves up to
4.23× communication and 1.94× latency reduction. We validate the effectiveness
of AERO by benchmarking it against the state-of-the-art.

1 INTRODUCTION

Motivation. The widespread adoption of proprietary models like ChatGPT Achiam et al. (2023)
significantly raised the privacy concerns to protect the users’ sensitive (prompt) data Staab et al.
(2024); Mireshghallah et al. (2024); Priyanshu et al. (2023); Lauren & Knight (2023), while also
preventing the attacks aimed at extracting model weights Carlini et al. (2024); Jovanović et al. (2024).

This emphasizes the need for private inference (PI) where a user sends the encrypted queries to the
service provider without revealing their actual inputs, and the inference is performed directly on
encrypted inputs, assuring the privacy of input and protection of the model’s weight.

Despite their promises, current PI methods remain impractical due to their prohibitive latency and
communication overheads—generating a single output token with GPT-2 model (125M parameters)
on 128 input tokens takes 8.2 minutes and requires 25.3 GBs communication (Figure 1), scaling to
30.7 minutes and 145.2 GBs for context size of 512 (Table 7). These overheads stem largely from the
nonlinear operations, crucial for model performance, in a transformer-based large language model
(LLM), such as GELU, LayerNorm, and Softmax Hou et al. (2023); Lu et al. (2025).

Challenges. Current PI solutions for transformer-based models (e.g., ViT, BERT) either neglect the
cost of LayerNorm (Li et al., 2023a; Zeng et al., 2023; Zhang et al., 2023; Chen et al., 2023) or
approximate nonlinear operations using polynomial functions Zimerman et al. (2024); Dhyani et al.
(2024). Nonetheless, polynomial approximation methods have their limitations: their accuracy is
highly sensitive to data-specific initial guesses Knott et al. (2021), and their effectiveness is confined
to narrow input ranges Zimerman et al. (2024). Moreover, networks employing higher-degree
polynomials for improved approximation precision are notoriously difficult to train and optimize.

Meanwhile, the nonlinearity reduction methods, used for improving plaintext speed, offer very-limited
potential to improve the PI efficiency. For instance, (He et al., 2023; Noci et al., 2023; He & Hofmann,
2024) has explored architectural heuristics to design LayerNorm-free LLMs; however, their broader
implications on the choices of activation function, a key bottleneck in PI, remains largely unexamined.

1

ar
X

iv
:2

41
0.

13
06

0v
1

 [
cs

.L
G

]
 1

6
O

ct
 2

02
4

https://doi.org/10.32388/WWLT24

Preprint.

SM+LN+G SM+LN+R SM+R SM+ScFFN +ScFuFFN +ScFuFFNi6 +EntReg +EntReg0

2

4

6

8

La
te

nc
y

(m
in

) 1.35x 1.42x 1.45x
1.72x

1.94x
1.72x

1.94x

Nonlinearity Reduction FLOPs Reduction Entropy RegularizationBaseline

0

10

20

Co
m

m
 (G

B)

2.68x
3.41x 3.64x 3.94x 4.03x 3.94x 4.03x2.69 2.76
2.94

3.50 3.48 3.54

3.21 3.25

3.97 4.00

PPL(Ours)
PPL(SOTA)

Figure 1: Latency and communication savings through nonlinearity and FLOPs reduction steps when
AERO is applied on GPT-2, and trained from scratch on CodeParrot dataset. Further, we benchmark
AERO against the SOTA He & Hofmann (2024) at iso-latency points. See Table 4 for a detail analysis.

Our techniques and insights. We conducted an in-depth analysis of the role of non-linearities, specif-
ically GELU and LayerNorm, in transformer-based LLMs. Our key findings are: (1) LayerNorm-free
models exhibit a preference for ReLU over GELU in FFN, making them more PI-friendly; and (2)
training instability, as entropy collapse in deeper layers, in the Softmax-only model can be prevented
by normalizing FFN weights, avoiding the nonlinear computations (unlike LayerNorm) at inference.

We observed a phenomenon we term entropic overload, where a disproportionately larger fraction
of attention heads stuck at higher, close to their maximum, entropy values in LN-free with GELU,
and Softmax-only models. We hypothesize that the entropic overload causes a lack of diversity and
specialization in attention heads, squandering the representational capacity of attention heads. This
leads to performance degradation, indicated by a higher perplexity.

To mitigate the entropic overload, we propose a novel entropy regularization technique that penalizes
the extreme entropy values at training and avoids the deviation from well-behaved entropy distribution.

Results and implications. As shown in Figure 1, substituting GELU with ReLUs in the baseline GPT-
2 model alone reduces the communication and latency overheads by 2.68× and 1.35×, respectively.
Eliminating LayerNroms further improves these savings to 3.41× and 1.42×. Similar improvements
are observed with the Pythia model (see Figure15).

Since the FFN in the Softmax-only model is performing only the linear transformations, merging the
linear layers into a single linear layer reduces the FFN FLOPs by 8× and gains significant speedup
without increasing the perplexity (see Figure 1). Furthermore, our analysis reveals that the linear
transformations performed by early FFNs are crucial for training stability in the Softmax-only model,
while deeper FFNs can be pruned. This provides additional opportunities for FLOPs reduction.

Contributions. Our key contributions are follows:
1. We thoroughly characterize the role of GELU and LayerNorm nonlinearities in transformer-based

LLMs by examining their impact on the attention score distribution using Shannon’s entropy,
offering insights for tailoring existing LLM architectures for efficient PI.

2. We introduced AERO, a four-stage optimization framework, and designed a Softmax-only model
with fewer FLOPs, achieving up to 1.94× speedup and 4.23× communication reduction.

3. We introduce a novel entropy regularization technique to boost the performance of the Softmax-
only model, which achieves 6% - 8% improvement in perplexity.

4. We conducted extensive experiments across various context sizes (128, 256, 512) and model
depths (12L and 18L) on a wide range of training tokens (1.2B to 4.8B) from the CodeParrot Face
and Languini dataset Stanić et al. (2023) on GPT-2 and Pythia Biderman et al. (2023) models.

2 PRELIMINARIES

Notations. We denote the number of layers as L, number of heads as H , model dimensionality as d,
head dimension as dk (where dk = d

H), and context length as T . Table 1 illustrates the abbreviations
for architectural configurations with simplified nonlinearities in a transformer-based LLM.

An overview of transformer-based decoder-only architecture. A transformer-based LLM is
constructed by sequentially stacking L transformer blocks, where each block is composed of two

2

Preprint.

sub-blocks: an attention mechanism and a feed-forward network (FFN), both having their own
residual connections and normalization layers, positioned in the Pre-LN order to improves training
stability (Xiong et al., 2020). Formally, transformer blocks take an input sequence Xin ∈ RT×d,
consisting of T tokens of dimension d, and transform it into Xout as follows:

Xout = X̂SA+FFNGELU(LayerNorm2(X̂SA)), where X̂SA = Xin+MHA(LayerNorm1(Xin)). (1)

The Multi-Head Attention (MHA) sub-block enables input contextualization by sharing information
between individual tokens. MHA employs the self-attention mechanism to compute the similarity
score of each token with respect to all other tokens in the sequence. In particular, self-attention
mechanism transform the input sequence X into Attn(X) as follows:

Attn(X) =
(

Softmax
(1√

dk
(XWQ)(XWK)⊤ +M

))
XWV . (2)

Here, each token generates query(Q), key(K), and value(V) vectors through the linear transformations
WQ,WK , and WV ∈ Rd×d, respectively. Then, similarity scores are computed by taking the dot
product of the Q and K vectors, scaled by the inverse square root of the K dimension, and passed
through a softmax function to obtain the attention weights. These weights are then used to compute
a weighted sum of the V vectors, producing the output for each token. For auto-regressive models
(e.g., GPT), mask M ∈ RT×T , which has values in {0,−∞} with Mi,j = 0 iff i ≥ j, is deployed to
prevent the tokens from obtaining information from future tokens.

The MHA sub-block employs a self-attention mechanism across all the heads, each with its own
sets of Q, K, and V . This allows the attention heads to focus on different parts of the input
sequence, capturing various aspects of the input data simultaneously. The outputs from all heads are
concatenated and linearly transformed (WO ∈ Rd×d) to produce the final MHA output as follows:

MHA(X) = Concat
(
Attn1(X), Attn2(X), Attn3(X), . . . ,AttnH(X)

)
WO. (3)

Following the MHA sub-block, the FFN sub-block transforms each token independently. The FFN
sub-blocks have a single hidden layer whose dimension is a multiple of d (e.g., 4d in GPT (Radford
et al., 2019) models). Specifically, the FFN sub-block first applies a linear transformation to the input
X using Wffn

in ∈ Rd×4d, followed by a non-linear transformation using an activation function such as
GELU. This is then followed by another linear transformation using Wffn

out ∈ R4d×d, as follows:
FFN(X) = (GELU(XWffn

in))Wffn
out (4)

The combination of MHA and FFN sub-blocks, along with residual connections and normalization
layers, allows transformer models to learn the contextual relationships between tokens effectively.

Threat model for private inference. We consider the standard two-party (2PC) client-server setting
used in PPML, which provides security against semi-honest (honest-but-curious) adversaries bounded
by probabilistic polynomial time Zhang et al. (2025); Lu et al. (2025); Pang et al. (2024); Hou et al.
(2023). Both parties follow protocol specifications but may attempt to gain additional information
from their outputs about the other party’s input. In this 2PC setting, the server holds the propriety
GPT model (e.g., ChatGPT), and the client queries the model with a piece of text (prompt). The
protocols ensure that the server does not know anything about the client’s input and the output of
their queries, and the client does not know anything about the server’s model except its architecture.

Input Output

Proprietary model
Server

Client

Private Inference
(PI)

Input prompt

Tokenization

Embedding

Positional
encoding

Outputs
(Next Words)

Head

MHA
FFN

PI Protocols

Figure 2: An illustration of threat model and cryptographic protocols used for LLM private inference.

3 REMOVING NONLINEARITY IN TRANSFORMER-BASED LLMS

In this section, we investigate the role of non-linearities in the learning dynamics and internal
representations of a transformer-based autoregressive decoder-only LLM. We design a controlled

3

Preprint.

experimental framework that systematically removes non-linear components from the architecture
(see Table 1), and trains models from scratch.

Table 1: Architectural configurations of nonlinearities in LLMs, illustrating the combinations of
Softmax (SM), LayerNorm (LN), GELU (G), and ReLU (R) functions (see Eq. 1, 2, 3 and 4).

Abbreviation Architectural configuration
SM + LN + G Xout = FFNGELU(LayerNorm2(MHA(AttnSoftmax(LayerNorm1(Xin)))))
SM + LN + R Xout = FFNReLU(LayerNorm2(MHA(AttnSoftmax(LayerNorm1(Xin)))))
SM + LN Xout = FFNIdentity(LayerNorm2(MHA(AttnSoftmax(LayerNorm1(Xin)))))
SM + G Xout = FFNGELU(MHA(AttnSoftmax(Xin)))
SM + R Xout = FFNReLU(MHA(AttnSoftmax(Xin)))
SM Xout = FFNIdentity(MHA(AttnSoftmax(Xin)))

To analyze internal representations, we use Shannon’s entropy to examine the impacts of nonlinearities
on the attention score distribution (see Appendix A.1 for its justification). We highlight key insights
and findings, offering practical guidelines for tailoring LLM architectures for efficient PI.

[0, Max
4) [Max

4 , Max
2) [Max

2 , 3Max
4) [3Max

4 , Max]0%
10%
20%
30%
40%
50%
60%
70%

Pe
rc

en
ta

ge
 o

f H
ea

ds

4%

14%

74%

8%6%

16%

74%

3%
8%

37%

48%

7%
1%

18%
23%

58%

3%

20%

54%

23%

33%

10%
12%

45%

SM + LN + G
SM + LN + R
SM + LN
SM + G
SM + R
SM

(a) Headwise entropy distribution

0.0 0.2 0.4 0.6 0.8 1.0
Epoch

1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ev
al

 C
ro

ss
-e

nt
ro

py
 L

os
s

SM+LN+G
SM+LN+R
SM+LN
SM+G
SM+R
SM

(b) Loss curve
Figure 3: (a) The fraction of attention heads distributed across different
entropy ranges, and (b) evaluation loss for GPT-2 (small) models with
fewer nonlinearities, when trained from scratch on CodeParrot dataset.

Configurations PPL +∆(%)
SM + LN + G 2.69 0.00
SM + LN + R 2.76 2.53
SM + LN 3.38 25.58
SM + G 3.20 18.92
SM + R 2.94 9.20
SM NaNs -

Table 2: Evaluation per-
plexity for GPT-2 (small)
models with fewer nonlin-
earities, corresponding to
Figure 3b. ∆ is increase in
PPL over baseline network.

Well-behaved entropy distribution We begin by analyzing the headwise entropy distribution
of baseline architecture with GELU and ReLU in the FFN, i.e., configurations SM+ LN+ G and
SM+ LN+ R respectively. We find that the majority of heads (≈90%) possess entropy values between
max
4 and 3max

4 , where max is maximum observed entropy value among all heads (see Figure 3a). This
concentration in the middle entropy range, while avoiding extremes, demonstrates a well-behaved
distribution, providing a benchmark for assessing the impact of nonlinearities on model behavior.

Entropic overload We observed that in certain nonlinearity configurations, a disproportionately large
fraction of the attention heads exhibit higher entropy values (between 3max

4 and max). We term this
phenomenon as entropic overload and hypothesize that this imbalance results in under-utilization
of the network’s representational capacity, as too many heads engaged in exploration, hindering the
model from effectively leveraging the diversity of attention heads.

To investigate further, we examined how entropy values evolve during training. Typically, all heads
start with higher entropy values, indicating an initial exploration phase, and gradually adapt to balance
exploration and exploitation in baseline networks (see Figure 12). However, in the absence of certain
nonlinearities, this balance is disrupted, preventing attention heads from specializing and refining
their focus on critical aspects of the input, thereby diminishing overall performance.

3.1 DESIRABLE ACTIVATION FUNCTION IN LAYERNORM-FREE LLMS

We first remove LayerNorm from the LLM architecture and study the desirable activation function in
this design, as the absence of LayerNorm can destabilize activation statistics.

Observation 1: ReLU significantly outperforms GELU in LayerNorm-Free LLMs. While GELU
is typically preferred over ReLU in conventional transformer-based models due to its smooth and
differentiable properties that improve performance and optimization, our empirical findings indicate
the opposite trend for LayerNorm-free models— using ReLU in the FFN exhibit better learning

4

Preprint.

dynamics than their GELU counterpart. This leads to an 8.2% improvement in perplexity for GPT-2
(see Figure 3 and Table 2). A similar trend has been observed on the LN-free Pythia-70M model
across various context lengths (see Table 8).

0K 5K 10K 15K 20K 25K 30K
Steps

0.5

0.0

0.5

1.0

Le
ar

na
bl

e
Ne

ga
tiv

e
Sl

op
e

×10 1

Layer 0
Layer 1
Layer 2
Layer 3

Layer 4
Layer 5
Layer 6
Layer 7

Layer 8
Layer 9
Layer 10
Layer 11

(a) Layerwise learnable slope

0K 5K 10K 15K 20K 25K 30K
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

na
bl

e
Gl

ob
al

 S
lo

pe

×10 1

(b) Global learnable slope
Figure 4: Learnable negative slope for leaky ReLU in the FFN of
LN-free GPT-2. (a) Layerwise slopes and (b) global slope, both
converge toward zero during training, indicating a preference for
zero negative slope in LN-free architectures.

To further strengthen our findings,
we conducted experiments with
a learnable negative slope in the
leaky ReLU activation function
with two configurations: 1) layer-
wise, where each layer has its in-
dependent learnable slope, and 2)
global, where a single learnable
slope is shared across all layers.
Results are shown in Figure 4. In-
terestingly, in the layerwise set-
ting, the early layers initially learn
a positive slope while the deeper layers learn a negative slope. However, as training progresses, all
layers converge to a near-zero slope. In the global setting, the slope first shifts to positive before
converging to near zero. Refer to Figure 13 for their layerwise entropy dynamics.

This highlights the distinct learning dynamics of nonlinearity choices, and a natural preference for
zero negative slope, similar to ReLU, in the FFN activation function of the LN-free model.

Observation 2: Early layers in the LayerNorm-Free model with GELU in FFN experience
entropic overload. To understand the zero negative slope preference for the FFN activation function
in LN-free architecture, we analyzed the headwise entropy values of LN-free models with GELU and
ReLU, when trained from scratch, and compared them to their baseline counterparts. Our analysis
revealed a significant divergence in the headwise entropy distributions of the LN-free GELU model
(see Figure 5). While baseline models with GELU and ReLU exhibit a balanced entropy distribution,
by avoiding the extreme values, the LN-free GELU model shows entropic overload in early layers.

Specifically, 58% of heads in the LN-free GELU model have entropy values between 3max
4 and max,

compared to only 23% in the LN-free ReLU model (Figure 3a). More importantly, very few heads
in the latter approach maximum entropy compared to the former (see yellow regions in Figure 5c),
indicating more severe entropic overload in the LN-free model with GELU.

0 1 2 3 4 5 6 7 8 9 10 11
Head index

0
1

2
3

4
5

6
7

8
9

10
11

La
ye

r i
nd

ex

2.16 2.91 3.83 3.33 3.55 3.12 3.00 3.20 2.68 2.87 3.04 3.04

3.46 0.77 0.73 1.00 0.93 1.13 0.95 1.48 1.38 1.56 1.10 0.61

1.64 1.92 1.71 1.01 1.57 1.06 2.11 1.43 1.70 1.83 1.35 2.40

3.18 2.33 2.04 2.31 2.45 2.32 2.20 1.94 2.44 2.40 2.84 2.17

2.58 2.52 2.27 1.88 2.24 2.61 2.63 2.14 2.50 3.07 2.41 2.76

2.09 0.64 2.71 1.39 2.17 2.30 2.77 1.64 2.46 2.43 2.77 1.78

2.38 2.72 2.50 2.27 2.55 2.37 2.34 2.79 2.57 2.35 2.78 2.37

2.56 2.79 2.31 2.60 2.51 2.51 2.58 2.49 2.33 2.60 2.57 1.98

2.72 2.43 2.30 2.61 2.26 2.36 2.65 2.72 2.70 2.62 2.84 2.65

2.78 2.73 2.66 2.68 2.67 2.55 2.70 2.66 2.62 2.51 2.71 2.81

2.69 2.72 2.90 2.71 2.70 2.60 2.83 2.71 2.57 2.48 2.57 2.71

2.75 2.75 2.69 2.88 2.70 2.66 2.73 2.60 2.70 2.68 2.62 2.62

(a) SM + LN + G

0 1 2 3 4 5 6 7 8 9 10 11
Head index

0
1

2
3

4
5

6
7

8
9

10
11

La
ye

r i
nd

ex

1.50 2.46 3.39 2.86 3.67 2.80 2.62 1.66 2.05 2.57 2.77 1.77

3.35 0.59 0.88 0.96 0.78 1.50 0.93 1.53 0.97 2.03 0.60 0.57

1.70 1.86 1.63 1.03 1.48 0.84 3.27 2.01 1.62 2.06 1.46 2.15

2.48 2.27 2.37 2.10 1.82 2.26 1.73 1.82 1.92 2.14 2.53 2.36

2.65 2.45 2.35 2.91 2.30 2.43 2.53 1.02 1.99 2.75 2.55 2.60

2.41 2.74 2.56 1.70 1.89 2.27 2.58 2.20 2.53 2.24 2.58 1.38

2.33 2.37 2.63 2.38 1.75 2.45 2.44 2.72 2.46 2.51 2.62 2.26

2.52 2.63 2.21 2.25 2.51 2.52 2.44 2.38 1.58 2.22 2.15 1.76

2.59 2.45 2.19 2.69 2.20 2.30 2.55 2.54 2.71 2.62 2.52 2.55

2.83 2.69 2.65 2.62 2.65 2.60 2.49 2.57 2.50 2.50 2.53 2.54

2.63 2.55 2.75 2.65 2.66 2.40 2.78 2.70 2.42 2.50 2.55 2.57

2.65 2.60 2.80 2.73 2.59 2.67 2.65 2.50 2.62 2.67 2.57 2.62

(b) SM + LN + R

0 1 2 3 4 5 6 7 8 9 10 11
Head index

0
1

2
3

4
5

6
7

8
9

10
11

La
ye

r i
nd

ex

2.72 3.45 3.20 2.85 3.55 3.53 3.37 2.31 3.73 2.58 3.32 3.36

3.61 2.56 3.40 3.33 3.19 3.42 2.96 3.23 3.21 3.34 3.37 3.29

3.24 3.57 3.27 3.66 3.39 3.06 2.74 3.46 3.48 3.57 2.67 2.67

2.71 3.53 3.38 3.33 3.68 3.08 3.22 3.36 3.38 3.29 3.55 3.60

3.40 3.62 3.69 3.34 3.55 3.52 3.59 3.63 3.49 2.99 3.69 3.45

3.25 3.68 3.69 3.22 3.57 3.59 3.60 3.67 3.53 3.33 3.40 3.44

1.40 3.48 3.66 3.69 3.80 3.66 3.20 2.87 3.77 3.70 3.18 3.48

3.19 2.98 3.17 2.92 3.24 3.47 1.95 2.34 2.94 2.56 2.94 3.17

2.92 2.73 1.45 2.05 1.28 1.37 1.60 2.06 1.69 1.82 1.36 1.36

1.40 1.76 2.08 1.39 1.31 2.90 0.95 2.30 2.81 2.30 2.33 1.02

1.74 2.83 1.98 2.15 0.16 2.41 1.94 2.16 1.78 2.14 1.70 2.53

1.93 1.74 1.59 2.23 1.70 1.60 1.78 1.31 2.80 1.82 2.13 1.84

(c) SM + G

0 1 2 3 4 5 6 7 8 9 10 11
Head index

0
1

2
3

4
5

6
7

8
9

10
11

La
ye

r i
nd

ex

2.70 2.30 2.65 3.77 3.87 2.78 2.66 3.01 3.24 1.94 2.67 2.60

2.04 2.91 2.01 2.22 2.31 3.40 3.26 2.12 2.44 2.11 3.04 3.05

3.20 2.40 2.89 1.74 2.75 2.84 3.50 3.29 3.03 2.84 2.91 2.53

3.58 2.14 3.53 2.84 2.96 3.21 2.01 2.74 3.42 2.65 3.17 2.51

2.04 2.68 3.25 3.15 3.66 2.46 2.73 3.23 2.91 3.81 3.14 3.12

2.38 2.17 2.21 2.46 3.53 2.75 3.12 2.26 2.64 2.90 2.92 2.64

1.78 1.71 2.27 1.70 2.93 2.90 1.38 2.21 2.90 1.89 1.33 1.83

2.14 1.72 1.97 2.15 1.61 1.59 2.75 1.44 1.92 2.27 1.88 2.01

2.18 1.80 1.45 0.34 0.99 0.78 1.45 2.00 1.72 1.50 1.65 2.21

2.43 2.25 2.23 2.01 2.06 1.88 2.20 2.73 2.02 2.16 1.81 1.98

2.43 1.21 2.35 2.12 2.14 0.91 2.00 1.56 1.92 1.72 0.75 2.10

2.66 1.93 2.19 2.40 2.39 2.56 2.21 2.34 2.55 2.41 2.25 1.82 0.5

1.0

1.5

2.0

2.5

3.0

3.5

(d) SM + R
Figure 5: Entropy heatmaps of attention for baseline GPT-2 models with GELU and ReLU in the FFN
(a and b), compared to their LayerNorm-free counterparts (c and d). In the absence of LayerNorm,
using GELU in the FFN results in significantly higher entropic overload than using ReLU.

These observations align with the geometrical properties of ReLUs: they preserve more information
about the structure of the raw input, encouraging neurons to specialize in different regions of the
input space, leading to a higher intra-class selectivity and specialization (Alleman et al., 2024). Thus,
the lack of LayerNorm makes the geometry and specialization effects of ReLU more beneficial.

3.2 APPROACHES TO PREVENT TRAINING COLLAPSE IN SOFTMAX-ONLY LLMS

Now, we eliminate the ReLU layer in FFN of LN-free design, resulting in a Softmax-only architecture
where FFN is fully linear, and the softmax operation becomes the only source of nonlinearity in the
model. We outline the key challenges in training this model and explore their potential solutions.

Observation 3: The softmax-only model exhibits severe entropic overload in the early layers
and entropy collapse in the deeper layers. When we train the softmax-only model from scratch, the
loss values quickly reach NaN and training collapses. Analyzing the layer-by-layer activation values

5

Preprint.

reveals that activations of the last few layers reach NaN very early in the training phase (Figure 6a).
Further investigation into headwise entropy distribution shows that the early layers experience severe
entropic overload (Figure 6b), as most of the heads in these layers are stuck at maximum entropy
levels (the yellow regions). Conversely, the deeper layers suffer from entropy collapse, characterized
by very low entropy values (the blue regions).

0K 5K 10K 15K 20K 25K 30K
Steps

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Na
N

Co
un

t

1e6

L9
L1

0
L1

1

L0
L1
L2

L3
L4
L5

L6
L7
L8

L9
L10
L11

(a) Layerwise NaNs

0 1 2 3 4 5 6 7 8 9 10 11
Head index

0
1

2
3

4
5

6
7

8
9

10
11

La
ye

r i
nd

ex

3.57 3.63 3.67 3.55 3.65 3.65 3.59 3.41 3.75 3.47 3.54 3.56

3.84 3.85 3.85 3.83 3.84 3.83 3.85 3.85 3.86 3.86 3.83 3.87

3.82 3.77 3.86 3.74 3.75 3.85 3.85 3.83 3.86 3.86 3.83 3.83

3.69 3.76 3.75 3.83 3.78 3.83 3.83 3.84 3.75 3.83 3.73 3.82

3.69 3.81 3.73 3.81 3.80 3.75 3.85 3.66 3.70 3.48 3.83 3.78

2.73 2.22 2.59 2.86 3.41 3.06 3.27 1.19 3.02 2.40 1.31 3.15

2.19 1.77 1.64 2.55 2.38 1.90 1.84 2.52 2.07 2.31 1.57 2.80

1.88 2.12 2.68 2.90 1.09 2.87 1.61 1.33 2.07 2.09 1.73 1.32

0.99 0.36 0.54 0.50 0.78 0.33 0.22 0.36 0.36 0.49 0.44 0.88

0.15 0.25 0.27 0.25 0.17 0.17 0.18 0.15 0.17 0.19 0.12 0.14

0.06 0.15 0.07 0.06 0.03 0.06 0.05 0.04 0.08 0.05 0.05 0.05

0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.04
0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) Entropy heatmap
Figure 6: Training collapses in softmax-only GPT-2 model.

Quantitatively, 45% of total heads
have entropy values in the range
of 3max

4 to max, with most close
to the maximum value (Figure
3a), indicating severe entropic over-
load. Whereas, 33% of heads ex-
hibit values in the entropy range
of 0 to max

4 , with most close to
zero, indicating entropy collapse,
a known indicator of training insta-
bility in transformer-based models
(Zhai et al., 2023; He et al., 2024).

Observation 4: Normalizing the weights in FFN linear layers or appropriately scaling FFN
outputs effectively prevents training collapse in softmax-only models. To prevent training collapse
while maintaining PI efficiency, we shift from activation normalization to weight normalization
techniques that avoid nonlinear computations at inference. While LayerNorm requires expensive
inverse-square-root operations during inference, weight normalization (Salimans & Kingma, 2016)
and spectral normalization (Miyato et al., 2018) offer static alternatives. These normalization methods,
normalize the weights rather than the activations, incurring no additional cost at inference.

Weight normalization reparameterizes the weight vectors as Wnormalized = V
∥V∥2

g, where V is
reparameterized weight vector, ∥V∥2 is Euclidean norm and g is a learnable scaling factor. Whereas,
spectral normalization normalizes the weight matrix W by its largest singular value σ(W), yielding
Wnormalized = W

σ(W) . The former uses the Euclidean norm to control the magnitude of the weights
during the training while the latter uses the largest singular value to constrain the Lipschitz constant
of the linear layers. We employed these normalizations in the FFN of the softmax-only model which
transform FFNSM(X) = (XWffn

in)Wffn
out as follows:

FFNSM
WNorm(X) =

(
X

Vffn
in

∥Vin∥2
gin

)
Vffn

out

∥Vout∥2
gout and FFNSM

SNorm(X) =

(
X

Wffn
in

σ(Wffn
in)

)
Wffn

out

σ(Wffn
out)

(5)

Furthermore, we employ a simpler technique to scale the outputs of the FFN sub-block by having
learnable scaling factors for the FFN output and their residual output as follows (see Eq. 1):

Xout = βX̂SA +
1

α
(FFNSM(XSA)) where α, β ∈ RL (6)

WNorm SNorm Scaled
Eval PPL 3.640 3.624 3.478

Table 3: Perplexity comparison of weight
normalization, spectral normalization, and
learnable scaling employed in FFN of
softmax-only GPT-2 model.

Figure 7 demonstrates the effectiveness of these nor-
malization techniques in stabilizing the training of
softmax-only GPT-2 models by preventing entropy
collapse in deeper layers. When comparing perfor-
mance, we find that weight and spectral normalization
led to similar performance while the learnable scaling
method outperformed them with a lower perplexity
(Table 3).

Note that the efficacy of weight or spectral normalization hinges on selecting the appropriate linear
layers, as applying them to the linear layers in attention sub-block diminishes overall performance
(see Table 9). Refer to Appendix D.1 to understand the effectiveness of the learnable scaling method.

4 AERO

We propose an AERO framework that tailors the existing LLM architecture by removing nonlinearity
and reducing FLOPs count through targeted architectural refinements. Further, we introduce our
entropy regularization technique to improve the performance of the Softmax-only model.

6

Preprint.

0K 5K 10K 15K 20K 25K 30K
Steps

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

La
ye

rw
ise

 M
ea

n
En

tro
py

Re
co

ve
re

d

(SM-only) L8
(SM-only) L9
(SM-only) L10
(SM-only) L11

(WNorm) L8
(WNorm) L9
(WNorm) L10
(WNorm) L11

(a) Weight normalization in FFN

0K 5K 10K 15K 20K 25K 30K
Steps

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

La
ye

rw
ise

 M
ea

n
En

tro
py

Re
co

ve
re

d

(SM-only) L8
(SM-only) L9
(SM-only) L10
(SM-only) L11

(SNorm) L8
(SNorm) L9
(SNorm) L10
(SNorm) L11

(b) Spectral normalization in FFN

0K 5K 10K 15K 20K 25K 30K
Steps

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

La
ye

rw
ise

 M
ea

n
En

tro
py

Re
co

ve
re

d

(SM-only) L8
(SM-only) L9
(SM-only) L10
(SM-only) L11

(ScaledFFN) L8
(ScaledFFN) L9
(ScaledFFN) L10
(ScaledFFN) L11

(c) Learnable scaling of FFN outputs
Figure 7: Mitigating entropy collapse in the deeper layers of a softmax-only GPT-2 model by
employing weight or spectral normalization in FFN, or by appropriately scaling FFN block outputs.

4.1 DESIGNING SOFTMAX-ONLY ARCHITECTURE

To eliminate nonlinearities in existing LLM architectures, we first remove normalization layers,
creating an LN-free design. Our approach extends previous work on LN-free design (He et al., 2023;
Noci et al., 2023; He & Hofmann, 2024) by also carefully selecting FFN activation functions, opting
for ReLU due to its superior PI efficiency and ability to mitigate entropic overload in LN-free models.

We then remove ReLU, leading to a full normalization and activation-free, or Softmax-only, archi-
tecture. Training this architecture, however, poses challenges, such as entropy collapse in deeper
layers. To address this, we introduce learnable scaling factors, α and β, in the FFN sub-block, which
stabilize training more effectively than weight or spectral normalization.

4.2 FLOPS REDUCTION IN SOFTMAX-ONLY ARCHITECTURE

To develop an effective FLOPs reduction strategy, we begin by analyzing the distribution of FLOPs
between the attention and FFN sub-blocks across varying context lengths.

FFN FLOPs dominates in shorter context length regimes (T < 8
3d). While prior work on LN-free

architectures (He & Hofmann, 2024) has emphasized reducing attention FLOPs, we find that the
network’s FLOPs are dominated by FFN FLOPs during inference with shorter context lengths (when
T < 8

3d, Eq. 13). For instance, when T ≤1K, FFN FLOPs constitute 60%-65% of the total FLOPs
in models like GPT-2 (Figure 20) and Pythia (Figure 21) variants.

Given that current research on 2PC PI primarily focuses on smaller context lengths (Zhang et al.,
2025; Lu et al., 2025; Zimerman et al., 2024; Pang et al., 2024; Gupta et al., 2024; Hou et al., 2023),
we strategically target reducing FFN FLOPs. First, we merge the two linear layers in FFN of Softmax-
only architecture—Wffn

in ∈ Rd×4d and Wffn
out ∈ R4d×d—into a single linear layer, Wffn ∈ Rd×d, as

they effectively perform linear transformation in the absence of intervening nonlinearity. This reduces
FFN FLOPs by a 8× without any performance degradation, which is not achievable in polynomial
transformers, where GELU is approximated by polynomials (Zimerman et al., 2024; Li et al., 2023a).

To reduce FFN FLOPs even further, we ask the following questions: What functional role do FFNs
serve when they are purely linear? Do all FFNs contribute equally, or can some of them be pruned?

Early FFNs in Softmax-only architecture are critical, while deeper ones can be pruned. We
observe that early FFNs, despite being purely linear, are crucial for training stability, as their removal
leads to entropy collapses (Fig. 16 and Fig. 17). Deeper FFNs, however, exhibit redundancy, allowing
additional FLOPs reduction without degrading performance. This observation resonates with findings
on the significance of early-to-mid (conventional non-linear) FFNs (Nanda et al., 2023; Sharma et al.,
2024; Jin et al., 2024; Hu et al., 2024; Stolfo et al., 2023; Wang et al., 2023; Haviv et al., 2023; Meng
et al., 2022) and the redundant FFN computations (Kobayashi et al., 2024; Pires et al., 2023).

This enables an additional opportunity to reduce FFN FLOPs by selectively removing deeper FFNs.
In Softmax-only GPT-2-small architecture, we successfully remove up to six deeper FFNs, achieving
an additional 6× FLOPs reduction in FFN. We refer to this simplified model as SM+ ScFuFFNix,
where x represents the number of deeper FFNs that are replaced with identity functions, while the
remaining FFNs have one (fused) linear layer. When x=0, we represent the model as SM+ ScFuFFN.

7

Preprint.

Mask

LayerNorm

Softmax

LayerNorm

GELUFF
N

M
H

A Mask

Softmax

ReLUFF
N

M
H

A
Mask

Softmax

IdentityFF
N

M
H

A

Mask

Softmax

Identity

FF
N

M
H

A

Mask

Identity

FF
N

M
H

A

LN-free
network

 Softmax-only
network

Step1 Step2 Step3 Step4

 FLOPs
reduction

 Entropy
regularization

Entropy distribution

1 1 2 3 4432

Inputs

Embedding
Entropy of attention weights

Figure 8: Overview of the proposed AERO method for reducing nonlinearities and FLOPs in
transformer-based LLMs for efficient PI. The bottom of the figure shows the evolution of entropy in
the attention mechanism and its distribution across attention heads.

4.3 ENTROPY REGULARIZATION

Challenges in designing entropy regularization schemes to prevent entropic overload. Previous
entropy regularization approaches have primarily aimed at penalizing low-entropy predictions (Setlur
et al., 2022; Pereyra et al., 2017), based on the principle of maximum entropy (Jaynes, 1982). Recently,
(He et al., 2024) introduced entropy regularization to prevent entropy collapses, by addressing
extremely low entropy values, in LLMs.

However, our goal is to regularize higher entropy values, which presents two-fold challenges: (1) Head
specialization: Since each attention head captures different aspects of the input, the regularization
strength needs to be adjusted for each head individually. (2) Preventing over-regularization: Some
heads naturally exhibit higher entropy even in well-behaved entropy distributions, thus, penalizing all
high-entropy values without distinction could be harmful, requiring a more flexible approach.

Key design principles for entropy regularization. Followings are the key design principles for our
entropy regularization scheme (see Algorithm 1), addressing the aforementioned challenges:
• Balanced entropy distribution with parameterized attention matrix: Inspired by Miller et al. (1996),

which used temperature parameter as a Lagrangian multiplier to control the entropy of a stochastic
system, we parameterized the attention matrix by a learnable temperature t ∈ RH×T for each
softmax operation, allowing the model to adjust the sharpness of the attention scores (see Appendix
A.3). A higher temperature value (t > 1) diffuses the attention scores and increases the entropy,
while a lower temperature value (t < 1) sharpens the attention scores and reduces the entropy.

• Dynamic thresholds with head-specific adaptation: To adapt the regularization strength based
on the characteristics of each attention head (Voita et al., 2019), we use headwise learnable
threshold parameter reg_threshold_weights ∈ RH . Consequently, the threshold for each head
is computed as a learnable fraction of the maximum value of entropy (reg_threshold_weights×
Emax), providing the fine-grained control (see Algorithm 1, line #11).

• Tolerance margin to prevent over-regularization: To prevent over-regularization, we allow small
deviations from the respective thresholds. Thus, a penalty is imposed only if the deviation from the
threshold exceeds the tolerance margin, which is set as a fraction of Emax using the hyper-parameter
γ (see Algorithm1, line #3).

penalty(l,h) =

{(
deviation(l,h)

)2
if
∣∣deviation(l,h)

∣∣ > γEmax

0 otherwise

The deviation from threshold is computed as deviation(l,h) = E(l,h)(t)− θ(l,h)Emax, where θ(l,h)

is reg_threshold_weights. The hyper-parameter γ ensures that the model is not excessively

8

Preprint.

penalized for minor deviations from the desired entropy threshold, which could impede its capacity
to learn effectively. This careful calibration between stringent regularization and desired flexibility
improves the model’s robustness while maintaining its adaptability to various input distributions.

• Maximum entropy reference: We set Emax = log(T) as a reference point for computing thresholds
and tolerance margins to ensure consistency across different layers and heads for regularization.
Additionally, it enhances interpretability by providing a quantifiable reference for measuring
deviations in entropy, making the regularization process more understandable.

4.4 PUTTING IT ALL TOGETHER

We developed the AERO framework (Figure 8) to systematically eliminate non-linearities and reduce
FFN FLOPs from the existing transformer-based LLMs. Given an input baseline LLM, the first two
steps, Step1 and Step2, attempt to address the overheads associated with non-linear operations in
PI, resulting in a softmax-only architecture. The next step, Step3, aims at reducing FFN FLOPs by
fusing the adjacent linear layers, and then selectively pruning deeper FFNs by replacing them with
identity functions, resulting in a substantial reduction in FLOPs without destabilizing the model.

Further, to mitigate the entropic overload, and improve the utilization of attention heads, Step4
introduces entropy regularization, keeping the balanced attention distributions by penalizing extreme
entropy values. This step plays a crucial role in boosting the performance of the softmax-only model.

5 RESULTS

We conducted experiments with GPT-2 (12 and 18 layers) and Pythia-70M models on the CodeParrot
and Languini book datasets, which are standard benchmarks for LLMs (He & Hofmann, 2024; He
et al., 2024). Detailed experimental setup can be found in Appendix C.

Entropy regularization prevents entropic overload in Softmax-only models

[0, Max
4) [Max

4 , Max
2) [Max

2 , 3Max
4) [3Max

4 , Max]0%

10%

20%

30%

40%

50%

Pe
rc

en
ta

ge
 o

f H
ea

ds

33%

10%
12%

45%

2%

22%

30%

47%

1%

24%

36%
40%

3%

22%

37% 38%

1%

44%

54%

1%

Preventing
entropy
collapse

Preventing
entropic
overload

SM-Only
SM+WNorm(FFN)
SM+SNorm(FFN)
SM+ScaledFFN
EReg(SM+ScaledFFN)

Figure 9: While normalizing weights or scaling out-
puts in the FFN of Softmax-only (GPT-2) model pre-
vents entropy collapse, our proposed entropy regular-
ization effectively mitigates entropic overload.

While both weight and spectral normaliza-
tion, and scaling methods effectively prevent
entropy collapse in the deeper layers and sta-
bilize the training of Softmax-only models,
they fail to address the issue of entropic over-
load, (see Figure 9). In contrast, the entropy
regularization scheme penalizes the model to
avoid extreme entropy values during training,
resulting in a more balanced distribution. As a
result, it complements the training stabilizing
methods by further mitigating entropic over-
load in the early layers (see Figure 14), im-
proving the utilization of attention heads and
leading to improved performance, as demon-
strated by lower perplexity.

Comparison of AERO vs SOTA. We apply AERO to GPT-2, with results for each step shown
in Figure 1 and a detailed analysis in Table 4. Our approach achieves up to a 4× reduction in
communication overhead and a 1.94× speedup in end-to-end PI latency.

We also applied AERO optimizations to the LayerNorm-free design proposed in (He & Hofmann,
2024), referred to as SOTA, as they preserve model performance in their normalization-free archi-
tecture. While SOTA saves additional attention FLOPs, by introducing one extra LayerNorm layer,
compared to AERO, it offers a slight speedup at the cost of significantly worse model performance, as
indicated by higher perplexity. Similar observations hold for the Pythia-70M model (see Figure 15).

In terms of scalability, AERO efficiently scales to deeper models (see Table 6) and larger context
lengths (see Table 5 and Table 7), whereas SOTA often suffers from training instability under these
conditions. Since the contribution of MHA to the model’s pre-training performance becomes more
critical in the absence of FFN operations (Lu et al., 2024), we suspect that the aggressive optimization
of attention FLOPs in SOTA, unlike AERO, results in inferior performance and training instability.

9

Preprint.

Table 4: Results, and comparison against SOTA (He & Hofmann, 2024), when GPT-2 (L=12, H=12,
d=768) model is trained from scratch on CodeParrot (Face) dataset with context length 128.

Network Arch. PPL #Nonlinear Ops
#FLOPs

Comm.
(GB)

Lat.
(min.)

Savings

FFN Attn. Comm. Lat.
B

as
el

in
e SM+ LN+ G 2.69

SM:144× R128×128

14.5B 7.7B 25.32 8.21 1× 1×LN:24× R128×768

G:12× R128×3072

SM+ LN+ R 2.76
SM:144× R128×128

14.5B 7.7B 9.44 6.06 2.68× 1.35×LN:24× R128×768

R:12× R128×3072

SO
TA

SM+ ScFFN 4.00 SM:144× R128×128

14.5B 3.9B 6.83 5.31 3.71× 1.55×LN: 1× R128×768

SM+ ScFuFFN 3.97 SM:144× R128×128

1.8B 3.9B 6.31 4.50 4.00× 1.82×LN: 1× R128×768

SM+ ScFuFFNi1 4.00 SM:144× R128×128

1.2B 3.9B 6.30 4.44 4.00× 1.85×LN: 1× R128×768

A
E

R
O

SM+ ScFFN 3.50 SM:144× R128×128 14.5B 7.7B 6.95 5.68 3.64× 1.45×
SM+ ScFuFFN 3.48 SM:144× R128×128 1.8B 7.7B 6.43 4.76 3.94× 1.72×
SM+ ScFuFFNi6 3.54 SM:144× R128×128 0.9B 7.7B 6.29 4.23 4.00× 1.94×
EReg(SM(t) + ScFuFFN) 3.21 SM:144× R128×128 1.8B 7.7B 6.43 4.76 3.94× 1.72×
EReg(SM(t) + ScFuFFNi6) 3.25 SM:144× R128×128 0.9B 7.7B 6.29 4.23 4.00× 1.94×

Significance of learnable thresholds in entropy regularization Figure 10 depicts the learnable
threshold parameters (reg_threshold_weights) applied in the entropy regularization scheme after
the model has been fully trained from scratch. They exhibit significant variability, both across layers
and within individual heads of each layers, which reflects the model’s ability to dynamically adjust the
regularization strength in response to the specific roles of different attention heads. Such flexibility is
essential for tailoring the regularization process to the distinct requirements of each head.

0 1 2 3 4 5 6 7 8 9 10 11
Head index

0
1

2
3

4
5

6
7

8
9

10
11

La
ye

r i
nd

ex

0.43 0.44 0.42 0.45 0.44 0.49 0.43 0.46 0.43 0.43 0.43 0.40

0.42 0.36 0.35 0.38 0.41 0.39 0.31 0.36 0.43 0.38 0.39 0.46

0.33 0.52 0.34 0.41 0.33 0.35 0.38 0.40 0.43 0.37 0.34 0.42

0.31 0.32 0.31 0.31 0.34 0.45 0.40 0.35 0.29 0.37 0.32 0.52

0.30 0.29 0.30 0.28 0.27 0.32 0.30 0.32 0.34 0.33 0.34 0.42

0.33 0.28 0.36 0.35 0.32 0.26 0.37 0.39 0.30 0.34 0.47 0.36

0.31 0.33 0.26 0.30 0.20 0.28 0.32 0.30 0.31 0.31 0.26 0.34

0.32 0.30 0.28 0.34 0.39 0.33 0.23 0.35 0.32 0.29 0.34 0.35

0.36 0.29 0.35 0.30 0.35 0.34 0.33 0.34 0.34 0.28 0.35 0.34

0.49 0.36 0.34 0.33 0.35 0.39 0.38 0.37 0.35 0.34 0.33 0.35

0.37 0.36 0.38 0.49 0.40 0.46 0.48 0.38 0.33 0.41 0.48 0.45

0.51 0.43 0.40 0.42 0.34 0.45 0.41 0.41 0.44 0.42 0.51 0.47
0.20

0.25

0.30

0.35

0.40

0.45

0.50

(a) Values of learned threshold weights

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
Layer index

0

1

2

3

4

La
ye

rw
ise

 v
ar

ia
nc

e

×10 3

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
Layer index

0

1

2

3

4

La
ye

rw
ise

 m
ea

n

×10 1

(b) Layerwise mean and variance of threshold weights

Figure 10: Analysis of learned threshold weights (reg_threshold_weights, see Eq. 4.3) in
entropy regularization for softmax-only GPT-2 model: (a) Attention heads adaptively learn non-
uniform threshold weights across different heads, setting individualized thresholds for entropy
regularization; (b) The non-uniform means and non-zero variances across layers highlight the
necessity and effectiveness of headwise learnable thresholds in adapting regularization strength.

6 CONCLUSION

In this work, we introduce AERO, a four-stage design framework to streamline the existing LLM
architecture for efficient private inference. We design Softmax-only architecture with significantly
lower FLOPs and propose entropy regularization to boost their performance.

Limitations. This study mainly focuses on pre-training performance, with perplexity as the primary
metric, and does not include experiments to evaluate other capabilities such as transfer learning or
few-shot learning. Additionally, the efficacy of the proposed Softmax-only models has been validated
on models with fewer than 1B parameters. Future work will explore broader experimental evaluations,
including the adaption of AERO for large-scale models (see Appendix H).

10

Preprint.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding
the impact of entropy on policy optimization. In International conference on machine learning
(ICML), 2019.

Matteo Alleman, Jack Lindsey, and Stefano Fusi. Task structure and nonlinearity jointly deter-
mine learned representational geometry. In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

John C. Baez. What is entropy? arXiv preprint arXiv:2409.09232, 2024. https://arxiv.org/
abs/2409.09232.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning (ICML), 2023.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Removing
outliers by helping attention heads do nothing. In Advances in Neural Information Processing
Systems, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 2020.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan Hayase,
A Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, et al. Stealing part
of a production language model. In International Conference on Machine Learning (ICML), 2024.

Dake Chen, Yuke Zhang, Souvik Kundu, Chenghao Li, and Peter A Beerel. Rna-vit: Reduced-
dimension approximate normalized attention vision transformers for latency efficient private
inference. In IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2023.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
learn non-linear functions in context. In Forty-first International Conference on Machine Learning
(ICML), 2024.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning (ICML), 2023.

Naren Dhyani, Jianqiao Mo, Patrick Yubeaton, Minsu Cho, Ameya Joshi, Siddharth Garg, Brandon
Reagen, and Chinmay Hegde. Privit: Vision transformers for fast private inference. In Transactions
on Machine Learning Research (TMLR), 2024.

Nelson Elhage, Robert Lasenby, and Christopher Olah. Privileged bases in the transformer residual
stream. Transformer Circuits Thread, 2023.

Hugging Face. Codeparrot. https://huggingface.co/learn/nlp-course/
chapter7/6.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R Costa-jussà. A primer on the inner
workings of transformer-based language models. arXiv preprint arXiv:2405.00208, 2024.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu in one day.
In International Conference on Machine Learning (ICML), 2023.

Hamidreza Ghader and Christof Monz. What does attention in neural machine translation pay
attention to? In Proceedings of the The 8th International Joint Conference on Natural Language
Processing, 2017.

11

https://arxiv.org/abs/2409.09232
https://arxiv.org/abs/2409.09232
https://huggingface.co/learn/nlp-course/chapter7/6
https://huggingface.co/learn/nlp-course/chapter7/6

Preprint.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large language
models. In The Twelfth International Conference on Learning Representations (ICLR), 2023.

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya Gupta, Ashish Panwar,
and Rahul Sharma. SIGMA: secure GPT inference with function secret sharing. In Proceedings
on Privacy Enhancing Technologies (PETs), 2024.

Adi Haviv, Ido Cohen, Jacob Gidron, Roei Schuster, Yoav Goldberg, and Mor Geva. Understanding
transformer memorization recall through idioms. In Proceedings of the 17th Conference of the
European Chapter of the Association for Computational Linguistics (EACL), 2023.

Bobby He and Thomas Hofmann. Simplifying transformer blocks. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L Smith, and
Yee Whye Teh. Deep transformers without shortcuts: Modifying self-attention for faithful signal
propagation. In The Eleventh International Conference on Learning Representations (ICLR), 2023.

Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol Schlag, and Thomas Hofmann. Understanding
and minimising outlier features in neural network training. In Advances in Neural Information
Processing Systems (NeurIPS), 2024.

Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen-jie Lu, Cheng Hong, and Kui Ren. Ciphergpt:
Secure two-party gpt inference. Cryptology ePrint Archive, 2023.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. In Annual Meeting of the
Association for Computational Linguistics (ACL), 2023.

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Wilke: Wise-layer knowledge
editor for lifelong knowledge editing. In Findings of the Association for Computational Linguistics
(ACL), 2024.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-recurrent
transformers. In Advances in neural information processing systems (NeurIPS), 2022.

Gauri Jagatap, Ameya Joshi, Animesh Basak Chowdhury, Siddharth Garg, and Chinmay Hegde.
Adversarially robust learning via entropic regularization. In Frontiers in artificial intelligence,
2022.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 1957.

Edwin T Jaynes. On the rationale of maximum-entropy methods. In Proceedings of the IEEE, 1982.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of the Acoustical Society of America, 1977.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Zhuoran Jin, Pengfei Cao, Hongbang Yuan, Yubo Chen, Jiexin Xu, Huaijun Li, Xiaojian Jiang,
Kang Liu, and Jun Zhao. Cutting off the head ends the conflict: A mechanism for interpreting
and mitigating knowledge conflicts in language models. In Findings of the Association for
Computational Linguistics (ACL), 2024.

Jae-young Jo and Sung-Hyon Myaeng. Roles and utilization of attention heads in transformer-
based neural language models. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020.

Amir Joudaki, Hadi Daneshmand, and Francis Bach. On the impact of activation and normalization
in obtaining isometric embeddings at initialization. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

12

Preprint.

Nikola Jovanović, Robin Staab, and Martin Vechev. Watermark stealing in large language models. In
International Conference on Machine Learning (ICML), 2024.

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Laurens
van der Maaten. Crypten: Secure multi-party computation meets machine learning. Advances in
Neural Information Processing Systems, 2021.

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. Distillm: Towards streamlined
distillation for large language models. In International Conference on Machine Learning (ICML),
2024.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. Analyzing feed-forward blocks
in transformers through the lens of attention map. In The Twelfth International Conference on
Learning Representations (ICLR), 2024.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. Bert busters: Outlier
dimensions that disrupt transformers. In Findings of the Association for Computational Linguistics
(ACL-IJCNLP), 2021.

Goode Lauren and Will Knight. Chatgpt can now talk to
you—and look into your life. https://www.wired.com/story/
chatgpt-can-now-talk-to-you-and-look-into-your-life/, 2023.

Dacheng Li, Hongyi Wang, Rulin Shao, Han Guo, Eric Xing, and Hao Zhang. MPCFORMER: FAST,
PERFORMANT AND PRIVATE TRANSFORMER INFERENCE WITH MPC. In The Eleventh
International Conference on Learning Representations (ICLR), 2023a.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear
transformers learn and generalize in in-context learning? In Forty-first International Conference
on Machine Learning (ICML), 2024.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Symbolic
chain-of-thought distillation: Small models can also" think" step-by-step. In Annual Meeting of
the Association for Computational Linguistics (ACL), 2023b.

Zheng Li, Soroush Ghodrati, Amir Yazdanbakhsh, Hadi Esmaeilzadeh, and Mingu Kang. Accelerating
attention through gradient-based learned runtime pruning. In Proceedings of the 49th Annual
International Symposium on Computer Architecture (ISCA), 2022.

Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He, Weizhu Chen, and Tuo Zhao. Less is more:
Task-aware layer-wise distillation for language model compression. In International Conference
on Machine Learning (ICML), 2023.

Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Kui Ren, Cheng Hong, Tao Wei, and
WenGuang Chen. Bumblebee: Secure two-party inference framework for large transformers. In
Annual Network and Distributed System Security Symposium (NDSS), 2025.

Xin Lu, Yanyan Zhao, and Bing Qin. How does architecture influence the base capabilities of
pre-trained language models? a case study based on ffn-wider transformer models. In Advances in
Neural Information Processing Systems (NeurIPS), 2024.

Xiuyuan Lu and Benjamin Van Roy. Information-theoretic confidence bounds for reinforcement
learning. In Advances in Neural Information Processing Systems, 2019.

Weicheng Ma, Kai Zhang, Renze Lou, Lili Wang, and Soroush Vosoughi. Contributions of transformer
attention heads in multi- and cross-lingual tasks. In Annual Meeting of the Association for
Computational Linguistics (ACL), 2021.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In International Conference on Machine Learning (ICML), 2013.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

13

https://www.wired.com/story/chatgpt-can-now-talk-to-you-and-look-into-your-life/
https://www.wired.com/story/chatgpt-can-now-talk-to-you-and-look-into-your-life/

Preprint.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In Advances
in neural information processing systems, 2019.

David Miller, Ajit V Rao, Kenneth Rose, and Allen Gersho. A global optimization technique for
statistical classifier design. IEEE transactions on signal processing, 1996.

Niloofar Mireshghallah, Hyunwoo Kim, Xuhui Zhou, Yulia Tsvetkov, Maarten Sap, Reza Shokri,
and Yejin Choi. Can LLMs keep a secret? testing privacy implications of language models via
contextual integrity theory. In The Twelfth International Conference on Learning Representations,
2024.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations (ICLR),
2018.

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. In Proceedings of The
33rd International Conference on Machine Learning (ICML), 2016.

Yury Nahshan, Joseph Kampeas, and Emir Haleva. Linear log-normal attention with unbiased
concentration. In The Twelfth International Conference on Learning Representations (ICLR), 2024.

Neel Nanda. Attribution patching: Activation patching at industrial scale. URL: https://www.
neelnanda. io/mechanistic-interpretability/attribution-patching, 2023.

Neel Nanda, Senthooran Rajamanoharan, Janos Kramar, and Rohin Shah. Fact finding: Trying
to mechanistically understanding early MLPs. https://www.alignmentforum.org/s/
hpWHhjvjn67LJ4xXX/p/CW5onXm6uZxpbpsRk, December 2023.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes. arXiv preprint arXiv:1705.07798, 2017.

Yunhao Ni, Yuxin Guo, Junlong Jia, and Lei Huang. On the nonlinearity of layer normalization. In
Forty-first International Conference on Machine Learning (ICML), 2024.

Lorenzo Noci, Chuning Li, Mufan Li, Bobby He, Thomas Hofmann, Chris J Maddison, and Dan
Roy. The shaped transformer: Attention models in the infinite depth-and-width limit. Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas Schneider. Bolt: Privacy-
preserving, accurate and efficient inference for transformers. In IEEE Symposium on Security and
Privacy (SP), 2024.

David Peer, Bart Keulen, Sebastian Stabinger, Justus Piater, and Antonio Rodriguez-sanchez. Im-
proving the trainability of deep neural networks through layerwise batch-entropy regularization. In
Transactions on Machine Learning Research (TMLR), 2022.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548,
2017.

NVIDIA Deep Learning Performance. Matrix multiplication background user’s
guide. https://docs.nvidia.com/deeplearning/performance/
dl-performance-matrix-multiplication/index.html, 2023.

Telmo Pessoa Pires, António V Lopes, Yannick Assogba, and Hendra Setiawan. One wide feedforward
is all you need. In Proceedings of the Eighth Conference on Machine Translation, 2023.

Aman Priyanshu, Supriti Vijay, Ayush Kumar, Rakshit Naidu, and Fatemehsadat Mireshghallah. Are
chatbots ready for privacy-sensitive applications? an investigation into input regurgitation and
prompt-induced sanitization. arXiv preprint arXiv:2305.15008, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

14

https://www.alignmentforum.org/s/hpWHhjvjn67LJ4xXX/p/CW5onXm6uZxpbpsRk
https://www.alignmentforum.org/s/hpWHhjvjn67LJ4xXX/p/CW5onXm6uZxpbpsRk
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Preprint.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in neural information processing systems, 2016.

Amrith Setlur, Benjamin Eysenbach, Virginia Smith, and Sergey Levine. Maximizing entropy on
adversarial examples can improve generalization. In ICLR 2022 Workshop on PAIR^2Struct:
Privacy, Accountability, Interpretability, Robustness, Reasoning on Structured Data, 2022.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 1948.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The truth is in there: Improving reason-
ing with layer-selective rank reduction. In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

Robin Staab, Mark Vero, Mislav Balunovic, and Martin Vechev. Beyond memorization: Violating
privacy via inference with large language models. In The Twelfth International Conference on
Learning Representations (ICLR), 2024.

Aleksandar Stanić, Dylan Ashley, Oleg Serikov, Louis Kirsch, Francesco Faccio, Jürgen Schmidhuber,
Thomas Hofmann, and Imanol Schlag. The languini kitchen: Enabling language modelling research
at different scales of compute. arXiv preprint arXiv:2309.11197, 2023.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of
arithmetic reasoning in language models using causal mediation analysis. In Empirical Methods in
Natural Language Processing (EMNLP), 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, 2019.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In The
Eleventh International Conference on Learning Representations (ICLR), 2023.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator. In
Advances in Neural Information Processing Systems (NeurIPS), 2024.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei
Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language
models. In Advances in Neural Information Processing Systems, 2022.

Xiaoxia Wu, Cheng Li, Reza Yazdani Aminabadi, Zhewei Yao, and Yuxiong He. Understanding
int4 quantization for language models: latency speedup, composability, and failure cases. In
International Conference on Machine Learning (ICML), 2023.

Xinyi Wu, Amir Ajorlou, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the role of attention
masks and layernorm in transformers. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

15

Preprint.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning (ICML), 2023.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning (ICML), 2020.

Wenxuan Zeng, Meng Li, Wenjie Xiong, Wenjie Lu, Jin Tan, Runsheng Wang, and Ru Huang. Mpcvit:
Searching for mpc-friendly vision transformer with heterogeneous attention. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention
entropy collapse. In International Conference on Machine Learning (ICML), 2023.

Jiawen Zhang, Jian Liu, Xinpeng Yang, Yinghao Wang, Kejia Chen, Xiaoyang Hou, Kui Ren,
and Xiaohu Yang. Secure transformer inference made non-interactive. In Annual Network and
Distributed System Security Symposium (NDSS), 2025.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Re. The hedgehog & the
porcupine: Expressive linear attentions with softmax mimicry. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

Yuke Zhang, Dake Chen, Souvik Kundu, Chenghao Li, and Peter A. Beerel. Sal-vit: Towards
latency efficient private inference on vit using selective attention search with a learnable softmax
approximation. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2023.

Bingchen Zhao, Haoqin Tu, Chen Wei, Jieru Mei, and Cihang Xie. Tuning LayerNorm in atten-
tion: Towards efficient multi-modal llm finetuning. In International Conference on Learning
Representations (ICLR), 2024.

Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain generalization
via entropy regularization. In Advances in neural information processing systems (NeurIPS), 2020.

Itamar Zimerman, Moran Baruch, Nir Drucker, Gilad Ezov, Omri Soceanu, and Lior Wolf. Con-
verting transformers to polynomial form for secure inference over homomorphic encryption. In
International Conference on Machine Learning (ICML), 2024.

16

Preprint.

Appendix

Table of Contents
A Shannon Entropy and Its Application in Transformer LLMs 18

A.1 Why Use Entropy to Evaluate the Impact of Nonlinearities? 18
A.2 Evaluating the Sharpness of Attention Score Distributions Using Entropy 18
A.3 Relationship Between Temperature and Shannon Entropy 19

B Integrations of Entropy Regularization in Loss Function 19
B.1 Entropy Regularization Algorithm . 19
B.2 PyTorch Implementation of Entropy Regularization 20

C Design of Experiments 21
C.1 Perplexity as a Reliable Metric to Evaluate the LLMs’ Performance 22
C.2 Why Training from Scratch to Study Nonlinearities? 22

D Additional Results 23
D.1 Learnable Scaling Factors in Scaled-FFN of Softmax-only Architecture 23
D.2 Entropy Dynamics in LLM Architecture with Fewer Nonlinearity 23
D.3 Additional Results for Latency and Communication Savings using AERO 26
D.4 Results on Languini Dataset . 26
D.5 Results on Pythia-70M . 27
D.6 Performance Comparison of Weight and Spectral Normalization 28
D.7 Training Dynamics in Softmax-only Models with Fewer FFNs 28
D.8 Mitigating Over-Regularization with an Appropriate Threshold Margin 28

E FLOPs Computation for Inference 31
E.1 Distribution of FLOPs in GPT-2 Models . 32
E.2 Distribution of FLOPs in Pythia Models . 32

F Additional Related Work 34

G Discussion 34
G.1 Linear vs. Non-linear FFNs: Privileged Basis and Rotational Invariance 34
G.2 Early vs. Deeper FFNs . 35

H Future Work 35

17

Preprint.

A SHANNON ENTROPY AND ITS APPLICATION IN TRANSFORMER LLMS

A.1 WHY USE ENTROPY TO EVALUATE THE IMPACT OF NONLINEARITIES?

We use entropy as a metric to study the impact of nonlinearities on the transformer-based LLMs for
the following reasons:

• Quantifying attention distribution: The attention mechanism lies at the core of transformer ar-
chitectures, and by computing the entropy of attention score distributions, we can observe how
nonlinearities influence the spread (or the concentration) of attention scores. Higher entropy implies
a more exploratory behavior, while lower entropy suggests a more focused attention distribution.

• Feature selection: Nonlinearities, such as ReLU, enhance feature selectivity by amplifying im-
portant features and suppressing less relevant ones (Alleman et al., 2024; Maas et al., 2013).
Entropy can measure this selectivity across layers and heads, providing insights into the model’s
prioritization of information. Previous studies have used entropy to capture layer-wise information
flow in neural networks (Peer et al., 2022).

• Exploration vs. exploitation: Nonlinear operators like the self-attention mechanism, LayerNorm,
and GELU balance exploration and exploitation by selecting relevant features while considering
a broader context. For instance, heads in the first layer focus on exploration, while those in the
second layer focus on exploitation. (see Figures 5a, 5b, 12a and 12b).

• Systematic assessment: Prior work Zhang et al. (2024); Nahshan et al. (2024); Zhai et al. (2023);
Vig & Belinkov (2019); Ghader & Monz (2017) also used entropy to analyze the behavior of
transformer-based models; thus, enhancing validity and comparability of our findings.

A.2 EVALUATING THE SHARPNESS OF ATTENTION SCORE DISTRIBUTIONS USING ENTROPY

Shannon’s entropy quantifies the uncertainty in a probability distribution, measuring the amount of
information needed to describe the state of a stochastic system (Shannon, 1948; Jaynes, 1957). For
a probability distribution P (x), the entropy is defined as E(P) = −

∑
i P (xi) logP (xi). Refer to

(Baez, 2024) for details on entropy.

In a softmax-based attention mechanism, each softmax operation yields an entropy value representing
the sharpness or spread of the attention scores for each query position (Ghader & Monz, 2017; Vig
& Belinkov, 2019). Higher entropy indicates a more uniform distribution of softmax scores, while
lower entropy signifies a more focused distribution on certain features (Nahshan et al., 2024).

Let A(h,l) ∈ RT×T be the attention matrix of h-th head in l-th layer, and each element in the attention
matrix, a(l,h)ij , are attention weights for the i-th query and j-th key, which are non-negative and sum
to one for a query:

A(l,h) =
[
a
(l,h)
ij

]
T×T

, where a
(l,h)
ij ≥ 0 and

T∑
j=1

a
(l,h)
ij = 1 (7)

This square matrix is generated by applying the softmax operation over the key length for each query
position as follows (i.e., X ∈ RT×T Xi ∈ R1×T):

A(h,l)(X) = Softmax
(1√

dk
(XWQ)(XWK)⊤

)
, where Softmax(Xi) =

exp (xi)∑T
j=1 exp (xj)

(8)

Thus, each element a(l,h)ij of the attention matrix can be represented as follows:

a
(l,h)
ij =

exp
(

1√
dk
(XiW

Q)(XjW
K)⊤

)
∑T

k=1 exp
(

1√
dk
(XiWQ)(XkWK)⊤

)
.

(9)

Following (Zhai et al., 2023), we compute the mean of entropy values across all query positions to
obtain a single entropy value for each head. The entropy E(l,h) for the h-th head in the l-th layer of
an attention matrix is given by:

E(l,h) = − 1

T

T∑
i=1

T∑
j=1

a
(l,h)
ij log

(
a
(l,h)
ij + ϵ

)
(10)

18

Preprint.

where ϵ is a small constant added for numerical stability to prevent taking the log of zero.

A.3 RELATIONSHIP BETWEEN TEMPERATURE AND SHANNON ENTROPY

With the learnable temperature parameters (t), the attention matrix can be expressed as follows:

A(l,h)(t) =
[
a
(l,h)
ij (t)

]
T×T

, where a
(l,h)
ij (t) =

exp
(

1
ti
√
dk
(XiW

Q)(XjW
K)⊤

)
∑T

k=1 exp
(

1
ti
√
dk
(XiWQ)(XkWK)⊤

)
.

(11)

Let zij =
(
XiW

Q
) (

XjW
K
)⊤

represents the logits (attention scores before applying softmax).

Now, substituting a
(l,h)
ij (t) into the entropy formula:

E(l,h)(t) = − 1

T

T∑
i=1

T∑
j=1

exp
(

1
t
√
dk
zij

)
∑T

k=1 exp
(

1
t
√
dk
zik

) log

 exp
(

1
t
√
dk
zij

)
∑T

k=1 exp
(

1
t
√
dk
zik

)
 .

Simplifying the logarithmic term:

log

 exp
(

1
t
√
dk
zij

)
∑T

k=1 exp
(

1
t
√
dk
zik

)
 =

1

t
√
dk

zij − log

(
T∑

k=1

exp

(
1

t
√
dk

zik

))
.

Thus, the entropy simplifies to:

E(l,h)(t) =
1

T

T∑
i=1

log

(
T∑

k=1

exp

(
1

t
√
dk

zik

))
− 1

t
√
dk

T∑
j=1

a
(l,h)
ij (t)zij

 .

Further, it can be simplified as a function of expected value of zij under the attention distribution:

E(l,h)(t) =
1

T

T∑
i=1

(
log

(
T∑

k=1

exp

(
zik

t
√
dk

))
− 1

t
√
dk

E
j∼a

(l,h)
ij (t)

[zij]

)
(12)

In the above expression (Eq. 12), the first term (log
∑

) represents the overall spread of the logits
when scaled by t, and the second term

(
1
tE[zij]

)
represents the expected value of the scaled logits

under the attention distribution.

Temperature cases when:

1. t > 1: The scaling factor 1
t reduces the influence of the logits zij , making the softmax distribution

more uniform. Consequently, the entropy increases.
2. t < 1: The scaling factor 1

t increases the influence of the logits zij , making the softmax
distribution more peaked. Consequently, the entropy decreases.

3. t→∞: The logits are scaled down to zero, and the softmax becomes a uniform distribution. The
entropy reaches its maximum value of log T .

4. t → 0: The logits dominate the softmax, and it becomes a one-hot distribution. The entropy
approaches zero.

B INTEGRATIONS OF ENTROPY REGULARIZATION IN LOSS FUNCTION

B.1 ENTROPY REGULARIZATION ALGORITHM

19

Preprint.

Algorithm 1 Entropy Regularization Loss Computation
Inputs: attentions: List of attention matrices, Θ(L,H)= reg_threshold_weights, T : Sequence length,
λ: Regularization loss weightage, γ: Hyper-parameter for Tolerance margin
Output: Ltotal: Total loss including entropy regularization

1: Lentropy ← 0
2: Emax ← log(T) ▷ Theoretical maximum value of entropy
3: Tolmargin ← γEmax ▷ Tolerance margin is set as a small fraction of Emax
4: for each layer l in layers do
5: Llayer ← 0
6: A(t)← attentions[l] ▷ Attention matrix with learnable temperature for each query position
7: E(t)← − 1

T

∑T
i=1

∑T
j=1 Aij(t) log(Aij(t)) ▷ Compute entropy, averaged over query length

8: for each head h in heads do
9: E(l,h) ← Slice(E(t), h) ▷ Entropy for head h

10: θ(l,h) ← Slice(Θ(L,H), h) ▷ Learnable threshold weight head h

11: δ(l,h) ← E(l,h)(t)− θ(l,h)Emax ▷ Deviation from head-specific threshold
12: penalty(l,h) ← (δ(l,h))21(|δ(l,h)| > Tolmargin) ▷ Penalize iff deviation exceeds Tolerance
13: Llayer ← Llayer + penalty(l,h)

14: end for
15: Llayer ← Llayer

num_heads ▷ Average over heads
16: Lentropy ← Lentropy + Llayer
17: end for
18: Lentropy ← Lentropy

len(attentions) ▷ Average over layers
19: Ltotal ← LCE + λLentropy
20: return Ltotal

B.2 PYTORCH IMPLEMENTATION OF ENTROPY REGULARIZATION

20

Preprint.

The PyTorch implementation below computes the entropy regularization loss for attention weights in
a transformer model. This regularization ensures a balanced attention distribution, preventing it from
becoming overly concentrated or too diffuse.

PyTorch Implementation 1: Entropy Regularization Loss Calculation
1 import torch
2

3 def calculate_entropy_reg_loss(attentions, blocks, seq_len):
4 """
5 Calculate the entropy regularization loss.
6

7 Parameters:
8 attentions (list): A list of attention matrices from different layers.
9 blocks (list): A list of transformer blocks.

10 seq_len (int): The length of the sequence (context length).
11

12 Returns:
13 float: The entropy regularization loss.
14 """
15 entropy_reg_loss = 0
16 max_entropy = torch.log(torch.tensor(seq_len)) # Theoretical maximum

entropy
17 fraction = 0.10 # Design hyper-parameter for tolerance margin
18 tolerance_margin = fraction * max_entropy # Set tolerance margin as

fraction of the maximum entropy
19

20 for layer_idx, (block, attn_mat) in enumerate(zip(blocks, attentions)):

21 reg_threshold_weights = block.attn.reg_threshold_weights # Head-
wise learnable parameters to set head-specific threshold

22 ent_val = -torch.sum(attn_mat * torch.log(attn_mat + 1e-9), dim=-1)
Compute entropy averaged over sequence length

23 layer_entropy_reg_loss = 0
24

25 for head_idx in range(block.attn.num_heads):
26 head_entropy = ent_val[:, head_idx, :] # Get head-specific

entropy
27 threshold = reg_threshold_weights[head_idx] * max_entropy
28 deviation = torch.abs(head_entropy - threshold)
29 penalty = torch.square(torch.where(deviation > tolerance_margin,

deviation, torch.zeros_like(deviation)))
30 layer_entropy_reg_loss += penalty.sum()
31

32 layer_entropy_reg_loss /= block.attn.num_heads
33 entropy_reg_loss += layer_entropy_reg_loss
34

35 entropy_reg_loss /= len(attentions)
36 return entropy_reg_loss
37

38 # Calculate the total loss including entropy regularization
39 lambda_reg = 1e-5 # Hyperparameter for entropy regularization weight
40 entropy_regularization = calculate_entropy_reg_loss(attentions, blocks,

seq_len)
41 total_loss = ce_loss + lambda_reg * entropy_regularization

C DESIGN OF EXPERIMENTS

System setup We use a SecretFlow setup (Lu et al., 2025) with the client and server simulated on two
physically separate machines, each equipped with an AMD EPYC 7502 server with specifications
of 2.5 GHz, 32 cores, and 256 GB RAM. We measure the end-to-end PI latency, including input
embeddings and final output (vocabulary projection) layers, in WAN setting (bandwidth:100Mbps,
latency:80ms), simulated using Linux Traffic Control (tc) commands. The number of threads is set

21

Preprint.

to 32. Following He & Hofmann (2024); Stanić et al. (2023); Geiping & Goldstein (2023), all the
models are trained on a single RTX 3090 GPU.

Datasets We train models from scratch using the CodeParrot Face and Languini book Stanić et al.
(2023) datasets. The CodeParrot dataset, sourced from 20 million Python files on GitHub, contains 8
GB of files with 16.7 million examples, each with 128 tokens, totaling 2.1 billion training tokens.
We use a tokenizer with a vocabulary of 50K and train with context lengths of 128 and 256. The
Languini book dataset includes 84.5 GB of text from 158,577 books, totaling 23.9 billion tokens with
a WikiText-trained vocabulary of 16,384, and train with context length of 512. Each book averages
559 KB of text or about 150K tokens, with a median size of 476 KB or 128K tokens.

Training Hyperparameters For pre-training on the CodeParrot dataset, we adopt the training settings
from (He & Hofmann, 2024). Similarly, for training on the Languini dataset, we follow the settings
from (Stanić et al., 2023). These settings remain consistent across all architectural variations to
accurately reflect the impact of the architectural changes. When applying entropy regularization on
the CodeParrot dataset, we initialize the learnable temperature to 1e-2 and set λ to 1e-5. For the
Languini dataset, the temperature is initialized to 1e-1, and λ is set to 5e-5.

C.1 PERPLEXITY AS A RELIABLE METRIC TO EVALUATE THE LLMS’ PERFORMANCE

Perplexity (Jelinek et al., 1977) is a widely adopted metric to evaluate the predictive performance of
auto-regressive language models, reflecting the model’s ability to predict the next token in a sequence.
However, for perplexity to serve as a meaningful comparative metric across different architectures,
it is critical to ensure consistency in the tokenizer, and vocabulary size and quality (Hutchins et al.,
2022). Any variation in these components can potentially skew the results by inflating or deflating
perplexity scores; thus, obfuscating the true effects of architectural changes.

In our work, we maintain tokenization schemes and vocabulary attributes as invariant factors across all
experiments within a dataset. This isolation of architectural modifications ensures that any observed
variations in perplexity are directly attributable to changes in the model design. Thus, by enforcing a
consistent tokenization scheme and vocabulary within a dataset, we ensure that perplexity remains a
reliable metric for comparing model architectures. Consequently, lower perplexity in our evaluations
reliably reflects improved token-level predictions.

C.2 WHY TRAINING FROM SCRATCH TO STUDY NONLINEARITIES?

Understanding the intricate roles of architectural components and nonlinearities—such as activation
functions (e.g., GELU, ReLU) in FFN, normalization layers (e.g., LayerNorm), etc.—in transformer-
based language models necessitates a methodical and detailed investigative approach. Training
models from scratch is essential for this purpose, as it allows us to delve into the internal mechanisms
of the model using quantitative measures like entropy. Below, we present a justification for our
methodology:

• Nonlinearities’ impact on the fundamental learning dynamics: Nonlinearities significantly influ-
ence the optimization landscape by affecting gradient flow and the model’s ability to navigate
non-convex loss surfaces. Training models from scratch allow us to observe the fundamental
learning dynamics that emerge during the initial stages of training. Thus, constructing models
with controlled variations, such as substituting or excluding specific nonlinearities, enables us to
isolate their direct effects impact on convergence behavior and training stability.

• Understanding internal mechanisms through entropy analysis: Training from scratch enables
us to navigate the evolution of entropy values across the layers and assess how architectural
components influence information flow within the model. This analysis provides deep insights
into the internal workings of models that may not be accessible when starting from pre-trained
checkpoints.

• Limitations of fine-tuning approaches: The aforementioned granular level of analysis is unattain-
able when starting from pre-trained models, where the optimization trajectory has already been
largely determined. In contrast, training models from scratch eliminates confounding variables
that could arise from pre-existing weights and learned representations, ensuring that any observed
effects are solely due to the architectural modifications introduced.

22

Preprint.

D ADDITIONAL RESULTS

D.1 LEARNABLE SCALING FACTORS IN SCALED-FFN OF SOFTMAX-ONLY ARCHITECTURE

We plot the values of FFN scaling factors α and β (see Eq. 6) learned across the layers in the
full-trained softmax-only GPT-2 model, and made the following observations from the Figure 11:

• Significant increase in α with layer depth: The scaling factor α increases substantially in the
deeper layers of the model, with particularly high values observed in L10. This indicates that as
the network goes deeper, the FFN outputs are heavily scaled down by α. This downscaling is
essential to prevent the FFN outputs from dominating the activations, which could otherwise lead
to numerical instability, as evidenced by the NaNs observed early in training in Figure 6a. The
large α values in deeper layers suggest that this downscaling becomes increasingly critical as the
model progresses through its layers, effectively stabilizing the training process by keeping the
FFN outputs in check.

• Balancing β values across layers: The β scaling factors, which modulate the residual connections
within the FFN sub-block by up-scaling their output, start higher in the earlier layers and gradually
decrease, with some fluctuation, as the layers deepen. The moderate up-scaling provided by
β helps to ensure that the residual connections are not overshadowed by the scaled-down FFN
outputs. This balance between the strong downscaling by α and the corresponding upscaling by
β is crucial for maintaining stable activations across layers, particularly in deeper layers where
instability is most likely to occur.

0 1 2 3 4 5 6 7 8 9 10 11
Layer Index

0

10

20

30

40

50

FF
N

ou
tp

ut
 sc

al
in

g
fa

ct
or

3.5 5.2
9.4

16.6
20.3

10.1 10.2 11.8

31.6

13.6

48.9

1.4

(a) FFN output scaling factor α

0 1 2 3 4 5 6 7 8 9 10 11
Layer Index

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

FF
N

bl
oc

k
re

sid
ua

l s
ca

lin
g

fa
ct

or 2.1
1.9

1.6

1.3
1.2

0.9 1.0
1.1 1.0 1.0

0.8

1.2

(b) FFN-block’s residual scaling factor β

Figure 11: Learned scaling factors α and β in Eq. 6 across different layers in the Softmax-only
GPT-2 model (L=12, H=12, d=768). The values were plotted after full model training to observe the
modulation of FFN outputs and residual connections in each layer.

These observations underscore the critical role that the learnable scaling factors α and β play in
stabilizing the training of softmax-only GPT-2 models. By dynamically adjusting the contributions of
the FFN sub-block outputs, α and β prevent the numerical issues that arise in deeper layers, ensuring
stable and effective training. This fine-tuned balance is key to avoiding entropy collapse and other
forms of instability that would otherwise derail the training process.

D.2 ENTROPY DYNAMICS IN LLM ARCHITECTURE WITH FEWER NONLINEARITY

Figure 12 presents the entropy dynamics of the GPT-2 model as nonlinearities are progressively
removed, with the models trained from scratch. In Figure 13, the entropy dynamics are shown for a
normalization-free GPT-2 model with a learnable negative slope in leaky ReLU of FFN. Figure 14
represents the entropy dynamics when various methods of mitigating the training instability (weight
and spectral normalization in FFN, and learnable scaling factors for FFN outputs) in Softmax-only
GPT-2 modes are applied, and also for entropy-regularization which is applied to overcome the
entropic overload.

23

Preprint.

0K 5K 10K 15K 20K 25K 30K
Steps

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
En

tro
py

Layer 0

Layer 1

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(a) SM + LN + G

0K 5K 10K 15K 20K 25K 30K
Steps

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
En

tro
py

Layer 0

Layer 1

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(b) SM + LN + R

0K 5K 10K 15K 20K 25K 30K
Steps

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
En

tro
py

Layer 0

Layer 1

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(c) SM + LN

0K 5K 10K 15K 20K 25K 30K
Steps

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
En

tro
py

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(d) SM + G

0K 5K 10K 15K 20K 25K 30K
Steps

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
En

tro
py

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(e) SM + R

0K 5K 10K 15K 20K 25K 30K
Steps

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
ea

n
En

tro
py

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(f) SM

Figure 12: Evolution of Layerwise entropy when GPT-2 (L=12, H=12, d=768) models with various
nonlinearity configurations are trained from scratch on CodeParrot dataset.

24

Preprint.

0K 5K 10K 15K 20K 25K 30K
Steps

1.0

1.5

2.0

2.5

3.0

3.5

4.0
M

ea
n

En
tro

py
Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(a) Layerwise learnable slope

0K 5K 10K 15K 20K 25K 30K
Steps

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
En

tro
py

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(b) Global slope

Figure 13: Evolution of layerwise entropy in LayerNorm-free GPT-2 models (L = 12, H = 12, d =
768) with a learnable negative slope in the leaky ReLU activation function, trained from scratch on
the CodeParrot dataset

0K 5K 10K 15K 20K 25K 30K
Steps

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
En

tro
py

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(a) Weight normalization in FFN

0K 5K 10K 15K 20K 25K 30K
Steps

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
En

tro
py

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(b) Spectral normalization in FFN

0K 5K 10K 15K 20K 25K 30K
Steps

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
En

tro
py

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(c) Scaled-FFN

0K 5K 10K 15K 20K 25K 30K
Steps

1.5

2.0

2.5

3.0

3.5

M
ea

n
En

tro
py

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(d) Entropy regularization

Figure 14: "Layerwise entropy evolution in Softmax-only GPT-2 models (L = 12, H = 12, d = 768),
trained from scratch on the CodeParrot dataset. Weight and spectral normalization techniques, along
with learnable scaling factors (scaled-FFN), are applied in the FFN. In the final configuration (d),
entropy regularization is used within the scaled-FFN to address the entropic overload observed in
early layers. Notably, the entropy in early layers of (d) is lower compared to (a), (b), and (c).

25

Preprint.

D.3 ADDITIONAL RESULTS FOR LATENCY AND COMMUNICATION SAVINGS USING AERO

GPT-2 Model with 256 tokens as input context Table 5 provides an analysis of the latency and
communication savings achieved by applying AERO to the GPT-2 model with 256 context length,
along with a detailed breakdown of the nonlinear operations and FLOPs. The performance of AERO
is also compared against SOTA.

Table 5: Results, and comparison against SOTA (He & Hofmann, 2024), when GPT-2 (L=12, H=12,
d=768) model is trained from scratch on CodeParrot (Face) dataset with context length 256. NaNs
indicate training instability in SOTA.

Network Arch. PPL #Nonlinear Ops
#FLOPs

Comm.
(GB)

Lat.
(min.)

Savings

FFN Attn. Comm. Lat.

B
as

el
in

e SM+ LN+ G 2.35
SM:144× R256×256

29.0B 16.3B 58.51 16.57 1× 1×LN:24× R256×768

G:12× R256×3072

SM+ LN+ R 2.41
SM:144× R256×256

29.0B 16.3B 26.73 12.59 2.19× 1.32×LN:24× R256×768

R:12× R256×3072

SO
TA

SM+ ScFFN 3.47 SM:144× R256×256

29.0B 8.5B 21.52 11.42 2.72× 1.45×LN: 1× R256×768

SM+ ScFuFFN NaNs SM:144× R256×256

3.6B 8.5B 20.48 10.14 2.86× 1.63×LN: 1× R256×768

A
E

R
O

SM+ ScFFN 3.04 SM:144× R256×256 29.0B 16.3B 21.77 11.91 2.69× 1.39×
SM+ ScFuFFN 3.03 SM:144× R256×256 3.6B 16.3B 20.72 10.45 2.82× 1.59×
SM+ ScFuFFNi6 3.08 SM:144× R256×256 1.8B 16.3B 20.59 10.32 2.84× 1.61×
EReg(SM(t) + ScFuFFN) 2.92 SM:144× R256×256 3.6B 16.3B 20.72 10.45 2.82× 1.59×
EReg(SM(t) + ScFuFFNi6) 2.97 SM:144× R256×256 1.8B 16.3B 20.59 10.32 2.84× 1.61×

GPT-2 Model with 18 Layers Table 6 provides an analysis of the latency and communication savings
achieved by applying AERO to the 18-layer GPT-2 model, along with a detailed breakdown of the
nonlinear operations and FLOPs. The performance of AERO is also compared against SOTA.

Table 6: Results, and comparison against SOTA (He & Hofmann, 2024), when GPT-2 (L=18, H=12,
d=768) model is trained from scratch on CodeParrot (Face) dataset with context length 128. NaNs
indicate training instability in SOTA.

Network Arch. PPL #Nonlinear Ops
#FLOPs

Comm.
(GB)

Lat.
(min.)

Savings

FFN Attn. Comm. Lat.

B
as

el
in

e SM+ LN+ G 2.56
SM:216× R128×128

21.7B 11.6B 37.17 10.77 1× 1×LN:36× R128×768

G:18× R128×3072

SM+ LN+ R 2.63
SM:216× R128×128

21.7B 11.6B 13.34 8.04 2.79× 1.34×LN:36× R128×768

R:18× R128×3072

SO
TA SM+ ScFFN NaNs SM:216× R128×128

21.7B 5.9B 9.39 6.75 3.96× 1.60×LN: 1× R128×768

A
E

R
O

SM+ ScFFN 3.26 SM:216× R128×128 21.7B 11.6B 9.62 7.23 3.86× 1.49×
SM+ ScFuFFN 3.24 SM:216× R128×128 2.7B 11.6B 8.83 6.07 4.21× 1.77×
SM+ ScFuFFNi4 3.27 SM:216× R128×128 2.1B 11.6B 8.79 5.85 4.23× 1.84×
EReg(SM(t) + ScFuFFN) 3.13 SM:216× R128×128 2.7B 11.6B 8.83 6.07 4.21× 1.77×
EReg(SM(t) + ScFuFFNi4) 3.17 SM:216× R128×128 2.1B 11.6B 8.79 5.85 4.23× 1.84×

D.4 RESULTS ON LANGUINI DATASET

Table 7 provides an analysis of the latency and communication savings achieved by applying AERO
to the GPT-2 model on Languini dataset, trained on 1.2B, 2.4B, and 4.8B tokens. We also provides a
detailed breakdown of the nonlinear operations and FLOPs.

26

Preprint.

Table 7: Results, and comparison against SOTA (He & Hofmann, 2024), when GPT-2 (L=12, H=12,
d=768) model is trained from scratch on Languini (Stanić et al., 2023) dataset with context length
512. NaNs indicate training instability in SOTA.

Network Arch.
Eval PPL

#Nonlinear Ops
#FLOPs

Comm.
(GB)

Lat.
(min.)1.2B 2.4B 4.8B FFN Attn.

B
as

el
in

e SM+ LN+ G 25.71 23.32 21.29
SM:144× R512×512

58.0B 36.2B 145.24 30.74LN:24× R512×768

G:12× R512×3072

SM+ LN+ R 26.06 23.55 21.58
SM:144× R512×512

58.0B 36.2B 81.71 23.54LN:24× R512×768

R:12× R512×3072

SO
TA SM+ ScFFN NaNs NaNs NaNs SM:144× R512×512

58.0B 19.3B 72.10 21.56LN: 1× R512×768

A
E

R
O

SM+ ScFFN 33.91 31.12 28.89 SM:144× R512×512 58.0B 36.2B 71.76 21.51
SM+ ScFuFFN 33.77 30.82 28.59 SM:144× R512×512 7.3B 36.2B 69.68 19.44
SM+ ScFuFFNi1 34.16 31.23 29.69 SM:144× R512×512 6.6B 36.2B 69.64 19.11
EReg(SM(t) + ScFuFFN) 31.54 28.70 26.55 SM:144× R512×512 7.3B 36.2B 69.68 19.44
EReg(SM(t) + ScFuFFNi1) 31.75 28.93 26.74 SM:144× R512×512 6.6B 36.2B 69.64 19.11

D.5 RESULTS ON PYTHIA-70M

Table 8 presents the pre-training performance, measured in terms of perplexity, for input context
lengths of 128 and 256. The results show the impact of progressively removing nonlinearities from
the Pythia-70M model.

Table 8: Results for nonlinearity reduction in Pythia-70M (L=6, H=8, d=512) on CodeParrot dataset.
LN-free architecture with ReLU activations in FFN (i.e., SM+ R) significantly outperform their
GELU counterpart (i.e., SM+ G) across various content length (T).

T=128 T=256

Eval PPL +∆(%) Eval PPL +∆(%)
SM+LN+G 3.512 0.00 3.054 0.00
SM+LN+R 3.590 2.22 3.107 1.73
SM+LN 4.445 26.56 3.836 25.60
SM+G 4.086 16.35 3.570 16.87
SM+R 3.736 6.36 3.273 7.17

Figure 15 illustrates the step-wise latency and communication savings achieved by applying AERO, as
well as its impact on perplexity, on Pythia-70M models, also, compares with the SOTA at iso-latencies.

SM+LN+G SM+LN+R SM+R SM+ScFFN +ScFuFFN +ScFuFFNi5 +EntReg +EntReg0

2

4

6

La
te

nc
y

(m
in

) 1.24x 1.31x 1.30x
1.44x 1.48x 1.44x 1.48x

Nonlinearity Reduction FLOPs Reduction Entropy RegularizationBaseline

0

5

10

15

20

Co
m

m
 (G

B)

2.01x
2.31x 2.39x 2.49x

4.18x

2.49x

4.18x3.05 3.12
3.27

4.18 4.18 4.26
4.11 4.15

4.58 4.56

PPL(Ours)
PPL(SOTA)

Figure 15: Latency and communication savings through nonlinearity and FLOPs reduction steps
when AERO is applied on Pythia-70M, and model is trained from scratch on CodeParrot dataset
with context length 256. Further, we benchmark AERO against the SOTA He & Hofmann (2024) at
iso-latency points.

27

Preprint.

D.6 PERFORMANCE COMPARISON OF WEIGHT AND SPECTRAL NORMALIZATION

Table 9 compares the performance of weight and spectral normalization applied in various linear
layers within the attention and FFN sub-blocks. The results show that applying these techniques to
the attention blocks yields diminishing returns compared to their application in the FFN.

Table 9: Comparison of weight normalization Salimans & Kingma (2016) and spectral normalization
Miyato et al. (2018) when employed in Softmax-only GPT-2 (L=12, H=12, d=768) models, and
trained from scratch on CodeParrot dataset with 128 input context length. FFN weight normalization
yield the similar results; whereas, weight normalization works better in other linear layers.

Linear layers Eval PPL(WNorm) Eval PPL(SNorm)
QK 3.89 4.25
FFN 3.64 3.63
QK+FFN 3.88 4.23
QKV+FFN 3.93 4.26
QKVO+FFN 3.98 4.34

D.7 TRAINING DYNAMICS IN SOFTMAX-ONLY MODELS WITH FEWER FFNS

[0, Max
4) [Max

4 , Max
2) [Max

2 , 3Max
4) [3Max

4 , Max]0%
10%
20%
30%
40%
50%
60%
70%

Pe
rc

en
ta

ge
 o

f H
ea

ds

0%

8%
3% 1%

6%
1%

4% 3%

24%

33%

22%

37%
Entropy

collapses

SM + ScFuFFNi10
SM + ScFuFFNi9
SM + ScFuFFNi8
SM + ScFuFFNi7
SM + ScFuFFNi6
SM + ScFuFFN

Figure 16: Head-wise entropy distribution in the Softmax-only
GPT-2 model (L=12, H=12, d=768) with earlier FFNs intact
and deeper FFNs pruned, trained from scratch on the CodePar-
rot dataset.

To further reduce the FLOPs in the
SM+ ScFuFFN model, where each
FFN is simplified to a single fused
linear layer, we experimented with
gradually pruning the deeper FFNs
by replacing them with identity con-
nections and monitoring training
stability. Figure 16 presents a com-
parison of headwise entropy distri-
butions between the pruned and un-
pruned models, both trained from
scratch. Instability emerged when
more than 6 deeper FFNs were
pruned, as indicated by a signifi-
cant shift in the headwise entropy
distribution. Specifically, we ob-
served entropy collapse, where a
disproportionate number of atten-
tion heads exhibited extremely low entropy values, ranging from 0 to Max

4 , with most values near zero.
Less than 10% of the attention heads maintained entropy values in the balanced range of Max

4 to 3Max
4 .

This highlights the critical role of earlier FFNs in stabilizing the training of the model, even when
reduced to linear transformations.

To investigate this instability further, Figure 17 provides a detailed analysis. Training stability
is maintained when up to 6 FFNs are pruned, as shown by the layer-wise entropy dynamics and
heatmaps, which resembles the behavior of the unpruned SM+ ScFuFFN model. In particular, both
models have approximately 55% to 60% of attention heads exhibiting entropy values in the balanced
range, with negligible attention heads falling within the 0 to Max

4 range. However, pruning the 7th FFN
(SM+ ScFuFFNi7) leads to a sudden shift, resulting in NaNs and entropy collapse, particularly in the
deeper layers. The similarity in entropy dynamics and heatmaps between the stable configurations
suggests that the model remains robust as long as no more than 6 FFNs are pruned.

Nonetheless, all the pruned and unpruned models exhibit entropic overload, where a significant
fraction of attention heads possess high entropy values in the range 3Max

4 to Max, stable models
exhibiting this overload to a lesser extent.

D.8 MITIGATING OVER-REGULARIZATION WITH AN APPROPRIATE THRESHOLD MARGIN

28

Preprint.

0K 5K 10K 15K 20K 25K 30K
Steps

0
20
40
60
80

100
120
140
160

Na
N

Co
un

t

La
ye

r1
1

(a) Training instability (NaNs) in SM+ ScFuFFNi7

0K 5K 10K 15K 20K 25K 30K
Steps

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
ea

n
En

tro
py

Layer10 Layer11

Layer0
Layer1
Layer2

Layer3
Layer4
Layer5

Layer6
Layer7
Layer8

Layer9
Layer10
Layer11

(b) Entropy collapses in SM+ ScFuFFNi7

0K 5K 10K 15K 20K 25K 30K
Steps

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
ea

n
En

tro
py

Layer11

Layer0
Layer1
Layer2

Layer3
Layer4
Layer5

Layer6
Layer7
Layer8

Layer9
Layer10
Layer11

(c) Entropy dynamics in SM+ ScFuFFNi6

0K 5K 10K 15K 20K 25K 30K
Steps

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
En

tro
py

Layer 11

Layer 0
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

Layer 6
Layer 7
Layer 8

Layer 9
Layer 10
Layer 11

(d) Entropy dynamics in SM+ ScFuFFN

0 1 2 3 4 5 6 7 8 9 10 11
Head index

0
1

2
3

4
5

6
7

8
9

10
11

La
ye

r i
nd

ex

3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88

3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88

3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88

3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88

3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88

3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88

3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88 3.88

3.86 3.86 3.84 3.83 3.87 3.87 3.88 3.87 3.87 3.87 3.88 3.87

0.92 2.92 2.55 1.54 3.79 3.35 1.89 3.77 1.15 1.66 3.11 3.56

0.06 2.96 2.65 0.99 0.65 0.19 1.14 0.62 2.67 2.56 2.11 0.13

0.12 0.16 0.00 0.07 0.11 0.42 0.03 0.07 0.00 0.07 0.10 0.00

0.01 0.01 0.00 0.00 0.01 0.03 0.00 0.00 0.01 0.03 0.00 0.01
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(e) SM+ ScFuFFNi7

0 1 2 3 4 5 6 7 8 9 10 11
Head index

0
1

2
3

4
5

6
7

8
9

10
11

La
ye

r i
nd

ex

2.99 3.34 3.17 3.32 3.15 3.34 3.26 3.21 3.43 3.17 2.92 3.02

3.33 3.13 3.41 3.12 3.24 3.31 3.59 3.29 3.12 3.54 3.22 3.49

2.97 2.97 2.94 2.94 3.03 2.86 3.06 2.93 2.96 2.80 3.13 3.35

2.76 2.86 2.73 2.68 3.01 2.51 2.71 2.93 2.53 2.86 3.03 2.88

3.39 2.73 3.27 3.41 2.80 2.89 3.09 2.67 2.32 2.85 3.23 2.86

2.95 3.01 3.18 3.00 2.71 3.22 2.57 2.81 2.89 2.62 2.99 2.92

3.21 3.73 3.49 2.62 3.59 2.62 3.26 3.68 3.66 3.01 3.12 3.65

1.82 2.85 2.23 2.63 2.43 1.92 2.58 2.42 1.57 2.56 2.28 1.98

1.40 1.95 1.29 2.24 1.75 1.15 1.60 2.37 2.12 2.07 1.46 1.21

1.66 1.14 1.56 1.95 1.37 1.86 0.61 1.92 1.46 1.04 1.05 0.68

1.67 1.62 1.89 1.33 1.36 1.96 1.88 1.22 1.49 2.21 2.70 1.93

1.59 2.76 1.83 2.52 1.11 1.58 2.86 1.73 1.52 2.32 2.10 1.15

(f) SM+ ScFuFFNi6

0 1 2 3 4 5 6 7 8 9 10 11
Head index

0
1

2
3

4
5

6
7

8
9

10
11

La
ye

r i
nd

ex

3.12 3.42 3.32 3.18 3.39 3.37 3.45 3.16 3.59 3.25 3.09 3.40

3.34 3.15 3.65 3.48 3.42 3.21 3.36 3.22 3.41 2.49 3.15 3.33

3.06 3.06 3.10 2.98 3.08 3.03 3.18 2.98 2.99 3.27 3.13 2.77

2.73 2.73 2.74 2.89 2.94 2.88 2.90 2.88 2.82 2.81 3.09 2.71

3.34 2.77 2.68 2.86 2.84 2.87 2.93 2.92 2.79 2.74 2.79 2.80

3.02 3.20 3.00 2.65 3.16 2.99 3.12 2.83 2.92 2.71 3.10 2.92

3.44 3.20 2.31 3.03 3.09 2.82 3.83 3.54 2.77 2.87 2.59 2.98

2.57 2.04 2.22 2.31 2.21 2.41 2.08 2.43 2.38 2.77 2.60 2.16

1.85 1.60 1.65 1.58 1.76 1.39 1.50 1.93 1.36 1.58 2.04 2.39

1.96 0.98 1.59 1.17 1.89 1.24 1.29 1.23 1.67 0.86 1.23 0.62

0.96 0.74 1.64 2.26 1.05 2.69 1.88 1.48 2.19 0.21 1.21 1.58

2.53 1.64 2.03 1.76 2.15 1.39 1.64 2.47 2.39 1.99 1.45 1.93

(g) SM+ ScFuFFN

Figure 17: Training instability is evident with NaNs in the final layers (a) and entropy collapse in
the last two layers (b) of the SM+ ScFuFFNi7 configuration, where 7 deeper FFNs are pruned in the
Softmax-only GPT-2 model (L = 12, H = 12, d = 768), trained from scratch on the CodeParrot dataset.
In contrast, stable training is observed in (c) with no entropy collapse when only 6 deeper FFNs are
pruned (SM+ ScFuFFNi6), and further validated against the unpruned configuration (SM+ ScFuFFN)
in (d). The last row (e, f, g) shows entropy heatmaps for each configuration.

29

Preprint.

[0, Max
4) [Max

4 , Max
2) [Max

2 , 3Max
4) [3Max

4 , Max]0%
10%
20%
30%
40%
50%
60%
70%

Pe
rc

en
ta

ge
 o

f H
ea

ds

0.7%2%3%
6%

Preventing
over-

regularization

= 0
= 0.05
= 0.10
= 0.15
= 0.20
= 0.25
= 0.30

Figure 18: Headwise entropy distribution in the
SM(t) + ScFuFFN GPT-2 model (L=12, H=12, d=768)
when entropy regularization is applied with varying threshold
margin, controlled by hyperparameter γ.

Figure 18 illustrates the effect of
γ on the headwise entropy distri-
bution. The hyperparameter γ em-
ployed to adjust the threshold mar-
gin in entropy regularization, de-
fined as Tolmargin = γEmax (Algo-
rithm1, line #3), effectively pre-
venting over-regularization by en-
suring that a sufficient fraction of
heads maintains entropy values in
the upper range 3Max

4 to Max. As
γ increases from 0 to 0.15, only a
small proportion of attention heads
(0.7%) are situated in the highest
entropy range. However, as γ is in-
creased beyond 0.15, the fraction
of heads in this upper range starts
increasing, reaching 2.08%, 3.47%,
and 6.25% at γ=0.20, 0.25, and 0.30, respectively. This fine-grained control on the population of
attention heads in the higher entropy range highlights the ability of entropy regularization to prevent
over-regularization and maintain the attention heads’ diversity. We find that γ=0.2 yields slightly
better performance in terms of lower perplexity compared to higher γ values, and thus, we adopt this
value in the final entropy regularization scheme.

To better understand the increase in the fraction of attention heads with higher γ, Figure 19 illustrates
the layerwise entropy dynamics during training. Notably, at higher γ, the fraction of attention heads
with higher entropy values increases, as indicated by the increases in the mean entropy of the early
layers, which helps to prevent over-regularization and maintain heads’ diversity.

0K 5K 10K 15K 20K 25K 30K
Steps

1.5

2.0

2.5

3.0

3.5

M
ea

n
En

tro
py

Layer0
Layer1
Layer2

Layer3
Layer4
Layer5

Layer6
Layer7
Layer8

Layer9
Layer10
Layer11

(a) Tolmargin = 0.15Emax

0K 5K 10K 15K 20K 25K 30K
Steps

1.5

2.0

2.5

3.0

3.5

M
ea

n
En

tro
py

Layer0
Layer1
Layer2

Layer3
Layer4
Layer5

Layer6
Layer7
Layer8

Layer9
Layer10
Layer11

(b) Tolmargin = 0.20Emax

0K 5K 10K 15K 20K 25K 30K
Steps

1.5

2.0

2.5

3.0

3.5

M
ea

n
En

tro
py

Layer0
Layer1
Layer2

Layer3
Layer4
Layer5

Layer6
Layer7
Layer8

Layer9
Layer10
Layer11

(c) Tolmargin = 0.25Emax

0K 5K 10K 15K 20K 25K 30K
Steps

2.0

2.5

3.0

3.5

M
ea

n
En

tro
py

Layer0
Layer1
Layer2

Layer3
Layer4
Layer5

Layer6
Layer7
Layer8

Layer9
Layer10
Layer11

(d) Tolmargin = 0.30Emax

Figure 19: Layerwise entropy dynamics when entropy regularization is employed with increasing
threshold margin, defined as Tolmargin = γEmax (see Algorithm1, line #3). At higher γ, the mean
entropy of the early layers increases.

30

Preprint.

E FLOPS COMPUTATION FOR INFERENCE

To generate one output token during inference, the model performs a forward pass over a sequence of
length L (the context size). Below, we detail the FLOPs required for both the feed-forward (FFN)
and self-attention sub-blocks. We compute the FLOPs per token per layer as follows:

• FFN FLOPs: The FFN sub-block consists of two linear transformations, parameterized by
Wffn

in ∈ Rd×4d and Wffn
out ∈ R4d×d. Each layer contributes equally to the FLOPs count. The total

FLOPs for the FFN can be expressed as:

FFN FLOPs = 2× 2× (d× 4d) = 16d2

- The first factor of 2 accounts for the two linear layers, while the second factor of 2 arises because
each dot product in a matrix-matrix multiplication involves two floating point operations—one
multiplication and one addition (Performance, 2023).

• Self-Attention FLOPs: The breakdown for attention FLOPs is presented as follows:
1. Linear projections (WQ, WK , WV , and WO) FLOPs: The input sequence of shape RT×d

is linearly transformed using weights of shape Rd×d across four linear layers (for queries,
keys, values, and output projection). Thus, the total FLOPs for these operations are:

4× 2× T × (d× d) = 8Td2

Since we are interested in FLOPs per token, this simplifies to 8d2

2. Attention Matrix (QKT) Computation: The attention mechanism involves computing
the dot product between the query matrix Q ∈ RT×dk and the transposed key matrix
KT ∈ Rdk×T . For each attention head, this operation results in:

2× T × dk × T

With H heads, the total FLOPs for this step are:

2×H × (T × dk × T) = 2dT 2

Hence, FLOPs per token simplifies to 2dT .
3. Dot Product with V: After calculating the attention weights, the values matrix V ∈ RT×dk

is multiplied by the attention scores. Due to the masking in the upper triangular attention
matrix (to enforce causality), only the lower triangular part of the matrix is involved in the
computation. The number of FLOPs per head is:

2× dk ×
T (T + 1)

2

For H heads, this totals to:

2× d× T (T + 1)

2
Thus, the FLOPs per token for this step are:

d× (T + 1)

Combining all components, the total FLOPs for self-attention per token is:

Self-attention FLOPs = 8d2 + 2Td+ d(T + 1)

In summary, the FLOPs computation for one layer includes both the FFN and self-attention sub-blocks,
yielding the following total per token:

Total FLOPs per token per layer = 16d2︸︷︷︸
FFN

+(8d2 + 3Td+ d)︸ ︷︷ ︸
Self-attention

Total FLOPs with L layers and T tokens (context length) = L× T × (24d2 + 3Td+ d)

Note that the FFN FLOPs depend on the hidden dimension, a design hyperparameter typically set as a
multiple of the model dimension d, which varies across LLM architectures, for example, 4d in GPT-2

31

Preprint.

(Radford et al., 2019; Brown et al., 2020) and Pythia(Biderman et al., 2023), 8d
3 in LLaMA(Touvron

et al., 2023), 3.5d in Mistral Jiang et al. (2023), and 8d in Gemma Team et al. (2024).

Now, we want to analyze which component, FFN or self-attention, dominates the total FLOPs count
of a given architecture. For this, we solve the following inequality:

16d2 > 8d2 + 3dT + d =⇒ 8d2 > d(3T + 1) =⇒ 8d− 1 > 3T =⇒ T <
8d− 1

3

=⇒ T <
8d

3
(To simplify, we approximate 8d− 1 ≈ 8d) (13)

It is evident that in the shorter context length regime, where T < 8d
3 , the FFN FLOPs dominate the

total FLOPs. Thus, for tasks with smaller context lengths, optimizing the FFN sub-block can lead to
efficiency gains, while for larger contexts, self-attention FLOPs become more significant. Therefore,
understanding this FLOPs distribution can guide efficient architectural design for private inference,
depending on the expected context size.

E.1 DISTRIBUTION OF FLOPS IN GPT-2 MODELS

Figure 20 illustrates the distribution of FLOPs between the attention and FFN sub-blocks across
different context sizes for GPT-2 models, ranging from 128 to 8K tokens.

128 256 512 1K 2K 4K 8K
T (Context Length)

0

1

2

3

FL
OP

s

1e12

65.3% 64.0% 61.5% 57.1%
50.0%

40.0%

28.6%
L=12, d=768

FFN FLOPs
Attention FLOPs

(a) GPT-2 small

128 256 512 1K 2K 4K 8K
T (Context Length)

0.0

0.2

0.4

0.6

0.8

1.0

FL
OP

s

1e13

65.6% 64.6% 62.7% 59.3%
53.3%

44.4%

33.3%
L=24, d=1024

FFN FLOPs
Attention FLOPs

(b) GPT-2 medium

128 256 512 1K 2K 4K 8K
T (Context Length)

0.0

0.5

1.0

1.5

2.0

FL
OP

s

1e13

65.8% 65.0% 63.5% 60.6%
55.6%

47.6%

37.0%
L=36, d=1280

FFN FLOPs
Attention FLOPs

(c) GPT-2 large

128 256 512 1K 2K 4K 8K
T (Context Length)

0

1

2

3

4

FL
OP

s

1e13

66.0% 65.4% 64.1% 61.7%
57.5%

50.5%

40.6%
L=48, d=1600

FFN FLOPs
Attention FLOPs

(d) GPT-2 XL

Figure 20: FLOPs breakdown in GPT-2 models for a single forward pass: Up to a context length of
2K, FFN operations are the primary contributors to FLOPs. Beyond 8K, attention operations start to
dominate (Percentage on top of each bar represents the proportion of FFN FLOPs)

E.2 DISTRIBUTION OF FLOPS IN PYTHIA MODELS

Figure 21 illustrates the distribution of FLOPs between the attention and FFN sub-blocks across
different context sizes for Pythia models, ranging from 128 to 8K tokens.

32

Preprint.

128 256 512 1K 2K 4K 8K
T (Context Length)

0.0

0.2

0.4

0.6

0.8

1.0
FL

OP
s

1e12

64.6% 62.7% 59.3% 53.3%
44.4%

33.3%

22.2%
L=6, d=512

FFN FLOPs
Attention FLOPs

(a) Pythia-70M

128 256 512 1K 2K 4K 8K
T (Context Length)

0

1

2

3

FL
OP

s

1e12

65.3% 64.0% 61.5% 57.1%
50.0%

40.0%

28.6%
L=12, d=768

FFN FLOPs
Attention FLOPs

(b) Pythia-160M

128 256 512 1K 2K 4K 8K
T (Context Length)

0.0

0.2

0.4

0.6

0.8

1.0

FL
OP

s

1e13

65.6% 64.6% 62.7% 59.3%
53.3%

44.4%

33.3%
L=24, d=1024

FFN FLOPs
Attention FLOPs

(c) Pythia-410M

128 256 512 1K 2K 4K 8K
T (Context Length)

0.0

0.5

1.0

1.5

2.0

FL
OP

s

1e13

66.1% 65.6% 64.6% 62.7%
59.3%

53.3%

44.4%
L=16, d=2048

FFN FLOPs
Attention FLOPs

(d) Pythia-1B

128 256 512 1K 2K 4K 8K
T (Context Length)

0

1

2

3

FL
OP

s

1e13

66.1% 65.6% 64.6% 62.7%
59.3%

53.3%

44.4%
L=24, d=2048

FFN FLOPs
Attention FLOPs

(e) Pythia-1.4B

128 256 512 1K 2K 4K 8K
T (Context Length)

0

2

4

6

FL
OP

s

1e13

66.3% 65.8% 65.0% 63.5%
60.6%

55.6%

47.6%
L=32, d=2560

FFN FLOPs
Attention FLOPs

(f) Pythia-2.8B

128 256 512 1K 2K 4K 8K
T (Context Length)

0.00

0.25

0.50

0.75

1.00

1.25

FL
OP

s

1e14

66.4% 66.1% 65.6% 64.6%
62.7%

59.3%

53.3%
L=32, d=4096

FFN FLOPs
Attention FLOPs

(g) Pythia-6.9B

128 256 512 1K 2K 4K 8K
T (Context Length)

0.0

0.5

1.0

1.5

2.0

FL
OP

s

1e14

66.5% 66.3% 65.8%
65.0%

63.5%

60.6%

55.6%
L=36, d=5120

FFN FLOPs
Attention FLOPs

(h) Pythia-12B

Figure 21: FLOPs breakdown in Pythia models for a single forward pass: Similar to GPT-2 models
(see Figure 20), FLOPs are dominated by FFN operations up to a context length of 4K, except for
smaller models where FFN operations dominate up to 2K (Percentage on top of each bar represents
the proportion of FFN FLOPs).

33

Preprint.

F ADDITIONAL RELATED WORK

The Pitfalls of LayerNorm in LLM While LayerNorm is a critical source of non-linearity in both
CNNs (Ni et al., 2024) and transformer-based models (Wu et al., 2024; Zhao et al., 2024; Joudaki
et al., 2023), it causes several challenges in the transformer-based LLMs that extend well-beyond PI.

First, in PI with hybrid protocols, the inverse-square root computation poses significant challenges
for its precise computation. Also, in HE-only PI, the polynomial approximation of LayerNorm is
quite challenging because of the unusually wide range of its variance values Zimerman et al. (2024).

Furthermore, the trainable parameters in LayerNorm are shown to be associated with the outlier
features in LLMs He et al. (2024); Bondarenko et al. (2023); Wei et al. (2022); Kovaleva et al. (2021),
posing significant issues in LLM quantization. Specifically, the scaling parameters in LayerNorm
amplify outlier features, which in turn makes low-precision training challenging Wei et al. (2022).

Moreover, LayerNorm introduces difficulties in mechanistic interpretability, as it tends to make the
residual stream more complex and harder to analyze Nanda (2023).

Also, from the perspective of signal propagation theories, LayerNorm negatively impacts the train-
ability of LLMs He & Hofmann (2024); He et al. (2023).

Entropy Regularization Entropy regularization has been widely applied in various areas of machine
learning. It has been used to penalize low entropy predictions (Pereyra et al., 2017) and to maximize
predictions’ entropy (Setlur et al., 2022). It has also been used to improve adversarial robustness
(Jagatap et al., 2022), to avoid bad initializations and local minima (Miller et al., 1996), to optimize
the layer-wise flow of information in deeper networks (Peer et al., 2022), to balance exploration-
exploitation and promote action diversity in reinforcement learning (Wang et al., 2024; Ahmed et al.,
2019; Lu & Van Roy, 2019; Neu et al., 2017; Mnih, 2016), and for domain generalization (Zhao
et al., 2020).

The Role of Nonlinearity in LLM Understanding the role of nonlinearity in the transformer-based
models is an emerging research area. Li et al. (2024) offer a theoretical analysis on the role of attention
and FFN nonlinearity for in-context learning tasks. However, their work is limited to a simplified,
one-layer model consisting of a single softmax-based self-attention head and a ReLU-based FFN.
Nonetheless, Cheng et al. (2024) explore a broader range of nonlinear architectures and in-context
learning tasks, demonstrating that the optimal activation function can vary depending on the specific
function class the model is attempting to learn.

G DISCUSSION

G.1 LINEAR VS. NON-LINEAR FFNS: PRIVILEGED BASIS AND ROTATIONAL INVARIANCE

In transformer-based architectures, there is a crucial distinction between linear and non-linear
transformations, particularly when analyzing the privileged basis phenomenon (Elhage et al., 2023).

A privileged basis occurs when certain directions in the network’s activation space are favored due
to the network’s architecture. Specifically, non-linear activations (e.g., ReLU, GELU) encourage
features to align with specific directions in the hidden space, breaking the rotational invariance of the
network. This alignment forces neurons to prioritize specific directions or features, leading to a basis
that is more interpretable but inherently dependent on the chosen non-linear function.

Non-linear FFN In a conventional FFN, the architecture includes two linear transformations with a
non-linear activation between them. This non-linearity breaks the rotational invariance of the hidden
space, as the activation function behaves differently depending on the input direction. Mathematically,
this can be described as:

FFNnon-linear(x) = σ(xWffn
in + b1)W

ffn
out + b2

Where σ(·) represents the elementwise non-linearity, which restricts the model from treating all
directions in the hidden space equally, thereby establishing a privileged basis.

34

Preprint.

Linear FFN Removing the non-linearity from the FFN results in a purely linear transformation,
which preserves rotational invariance in the hidden space. The linear FFN operates as:

FFNlinear(x) = (xWffn
in)Wffn

out + b

Without the activation function, the representations remain invariant under rotations, meaning that no
specific direction is favored over others. In a linear FFN, the model retains its flexibility in how it
represents features, without forcing any particular alignment of neurons. In effect, the model operates
in a non-privileged basis, allowing the representation to rotate freely in the vector space.

G.2 EARLY VS. DEEPER FFNS

Early FFNs in transformer models are particularly critical due to the presence of polysemantic
neurons(Ferrando et al., 2024), which can respond to multiple, unrelated features simultaneously.
These neurons enable early layers to detect broad and diverse patterns, such as linguistic structures,
n-grams, and other foundational features of the input. This general-purpose functionality allows the
early FFNs to play a vital role in the initial stages of context formation, capturing a wide range of
information necessary for effective processing in later stages.

Additionally, research highlights that early layers play a pivotal role in the memorization and recall
of factual information (Haviv et al., 2023; Meng et al., 2022). These layers not only capture general
patterns but also store and retrieve memorized knowledge, promoting the predicted token to the
top of the output distribution. This suggests that early FFNs are integral for accessing learned
information, making them crucial for both context formation and recalling facts essential to the
model’s predictions.

In contrast, deeper FFNs become more specialized, focusing on refining the information extracted by
the earlier layers. They process the data with a narrower scope, tailoring it for task-specific outputs.
While these deeper layers are essential for fine-tuning the model’s predictions, the early FFNs are key
to generalizing over complex and varied input patterns, establishing the groundwork for the model’s
overall performance.

H FUTURE WORK

To further reduce non-linear operations in our Softmax-only architecture, off-the-shelf head pruning
techniques Voita et al. (2019); Michel et al. (2019); Jo & Myaeng (2020); Ma et al. (2021); Li et al.
(2022) can be applied on top of AERO. Another approach is to explore linear softmax operations.
However, these linear softmax operations sometimes introduce additional normalization layers or
complex activation functions in the FFN Zhang et al. (2024), which could increase the PI overheads,
counteracting the intended efficiency improvements.

Additionally, incorporating weight and activation quantization Wu et al. (2023); Xiao et al. (2023);
Dettmers & Zettlemoyer (2023) could further enhance the efficiency of private inference in our
architecture.

Orthogonally, performance improvement techniques such as knowledge distillation (KD) can be
employed to complement these optimizations Ko et al. (2024); Liang et al. (2023); Gu et al. (2023);
Hsieh et al. (2023); Li et al. (2023b).

Looking ahead, scaling AERO to more complex and deeper LLMs can be achieved by strategically
combining techniques such as weight normalization, spectral normalization, and FFN output scaling.
These methods can be applied selectively, with different layers using different techniques—for
instance, employing spectral normalization in early layers and FFN output scaling in deeper layers.
This tailored approach could lead to better stability and efficiency in larger models.

35

	
	Introduction
	Preliminaries
	Removing Nonlinearity in Transformer-based LLMs
	Desirable Activation Function in LayerNorm-Free LLMs
	Approaches to Prevent Training Collapse in Softmax-Only LLMs

	AERO
	Designing Softmax-only Architecture
	FLOPs Reduction in Softmax-only Architecture
	Entropy Regularization
	Putting it All Together

	Results
	Conclusion
	Appendix

	 Appendix
	Shannon Entropy and Its Application in Transformer LLMs
	Why Use Entropy to Evaluate the Impact of Nonlinearities?
	Evaluating the Sharpness of Attention Score Distributions Using Entropy
	Relationship Between Temperature and Shannon Entropy

	Integrations of Entropy Regularization in Loss Function
	Entropy Regularization Algorithm
	PyTorch Implementation of Entropy Regularization

	Design of Experiments
	Perplexity as a Reliable Metric to Evaluate the LLMs' Performance
	Why Training from Scratch to Study Nonlinearities?

	Additional Results
	Learnable Scaling Factors in Scaled-FFN of Softmax-only Architecture
	Entropy Dynamics in LLM Architecture with Fewer Nonlinearity
	Additional Results for Latency and Communication Savings using AERO
	Results on Languini Dataset
	Results on Pythia-70M
	Performance Comparison of Weight and Spectral Normalization
	Training Dynamics in Softmax-only Models with Fewer FFNs
	Mitigating Over-Regularization with an Appropriate Threshold Margin

	FLOPs Computation for Inference
	Distribution of FLOPs in GPT-2 Models
	Distribution of FLOPs in Pythia Models

	Additional Related Work
	Discussion
	Linear vs. Non-linear FFNs: Privileged Basis and Rotational Invariance
	Early vs. Deeper FFNs

	Future Work

