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Abstract. This paper presents a novel computational approach to solve fully implicit singular nonlinear systems
of ordinary differential equations. These systems have a two fold difficulty: being fully implicit and singular at the
same time. Such systems cannot be solved in general by software packages such as Maple due to their fully implicit
structure. Furthermore, numerical methods like Runge-Kutta cannot be applied. The proposed method here is based
on the idea of applying the differential transform method (DTM) directly to these systems while exploiting an impor-
tant property of Adomian polynomials. This new idea has led to a general and efficient algorithm that can be easily
implemented using Maple, Mathematica or Matlab. We stress here that our technique does not require transforming
the implicit system in hands to an explicit differential system. Also our technique equips the DTM with a powerful
tool to solve other fully implicit differential systems. To illustrate the capability and efficiency of the proposed method,
four numerical examples that are not solvable by software packages like Maple are given. Numerical results show that
our method has successfully solved these examples by providing the exact solutions in a convergent power series form.

Keywords: Fully implicit systems of ordinary differential equations; differential transform method; singular ordi-
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1 Introduction

Systems of differential equations are used to model many important problems in different fields of science and en-
gineering. One can find applications in unmanned aerial vehicles (UAVs) [1, 2], robotics [3], aircraft landing gears
[4] and vehicle industry [5, 6]. One can find also applications in other fields such as chemistry and biology. Explicit
systems of ordinary differential equations can be easily solved by several methods such as Runge-Kutta method [7, 8],
the residual power series method [9], Adomian decomposition method [10, 11, 12, 13], the homotopy perturbation
method [14], the differential transform method (DTM) [15, 16]. A comprehensive review of the DTM is given in [17].
All these approximation methods were limited to solving explicit ordinary differential equations and their systems.
Furthermore, there are many software packages such as Maple, Mathematica or Matlab which can easily solve explicit
equations or systems. By contrast, fully implicit systems of ordinary differential equations that cannot be written in
an explicit form, have received less focus [18]. To our knowledge, implicit ordinary differential equations were discussed
only in [18]. These systems are difficult to solve both analytically and numerically due to their implicit structure.
Many integration methods, like Runge-Kutta method, do not apply to these systems as these methods require the
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system in hands to be in an explicit form. This forms a strong restriction that limits the use of these methods to
fully implicit systems of ordinary differential equations. Furthermore, some software packages like Maple cannot deal,
in general, with implicit systems. Implicit ordinary differential equations and their systems can arise from the semi-
analytical transformations of partial differential equations to ordinary differential equations. They can also arise from
the application of the method of lines to implicit partial differential equations. There are many works on existence
and uniqueness for fractional implicit differential equations [19, 20, 21, 22]. However, a literature review revealed that
no previous attempts were made to solve fully implicit ordinary differential systems using of semi-analytical methods
in general and the DTM in particular. The DTM was recently used to solve implicit differential algebraic systems [28].
The DTM has found a large application in solving explicit differential equations [15, 16, 17]. The method yields
analytical solutions in form of power series in a straightforward manner by constructing a recursion for the series
expansion coefficients. The method was also successfully used to solve explicit nonlinear singular ordinary differential
equations and their systems [23, 24, 25, 26, 27].
The goal of this paper is to present a novel technique using the DTM and Adomian polynomials [29, 30, 31, 32, 33, 34]
to solve fully implicit nonlinear singular systems of ordinary differential equations. These systems have a two fold
difficulty: being fully implicit and singular at the same time. To illustrate the proposed method, two nonlinear classes
of implicit first and second order singular systems of ordinary differential equations are considered. Two simple and
efficient algorithms that can be easily implemented using software packages such Maple, Mathematica or Matlab are
given.
The first class consists of the following fully implicit singular nonlinear first order systems of ordinary differential
equations

F (x′,x/t,x, t) = 0, (1)

where t > 0. Here x := x(t) ∈ Rn is the sought solution, the dash denotes the derivative of x with respect to t and

the function F is such that F : (Rn)
3 × (0,+∞) −→ Rn. This system is subject to the initial condition

x(0) = 0. (2)

For system (1), we assume that the matrix Mk := kFx′ + Fx/t ∈ Rn×n is nonsingular for all k ≥ 1, where Fx′ and
Fx/t are the Jacobians of F with respect to x′ and x/t respectively.
The second class consists of the following fully implicit singular nonlinear second order systems of ordinary differential
equations

F (x′′,x′/t,x′,x, t) = 0, (3)

where t > 0. Here the function F is such that F : (Rn)
4 × (0,+∞) −→ Rn. This system is subject to the initial

conditions
x(0) = x0, x

′(0) = 0, (4)

where x0 ∈ Rn is a given vector.
For this second system, we assume that the matrix Nk := kFx′′ + Fx′/t ∈ Rn×n is nonsingular for all k ≥ 1, where
Fx′′ and Fx′/t are the Jacobians of F with respect to x′′ and x′/t respectively. Throughout this paper, we assume the
function F to be analytical with respect to its variables and that the initial values problems (1)-(2) and (3)-(4) have
unique solutions. The method we present in this paper can be easily extended to fully implicit nonlinear systems of
ordinary differential equations with orders higher than two.
Two algorithms to solve the implicit singular systems (1) and (3) are given. These algorithms are based on an effective
combination of the DTM and the Adomian polynomials. The main idea behind our technique is to apply the DTM
directly to systems (1) and (3) without transforming them to a semi-explicit form. Then use an important property
of the Adomian polynomials to derive two simple and efficient algorithms for the DTM. Furthermore, it is worth
pointing out that our technique can provide the exact solution in a convergent power series if all computations were
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performed exactly. The algorithms of our technique can be easily implemented using Maple, Mathematica or Matlab.
To demonstrate the effectiveness and accuracy of the DTM algorithms, four numerical examples of nonlinear implicit
singular systems are solved by the new technique. Here we should emphasise that all the numerical examples solved
in this paper are not solvable by software packages like Maple. Also the Runge-Kutta method cannot be applied to
these examples. The numerical results show that our technique is successful in solving all these examples by providing
the solutions in convergent power series form.

This manuscript is organised as follows: in Section 2, we review the Adomian polynomials and the DTM to solve
explicit ordinary differential equations. Next, in Section 3, we give two theorems that provide the new algorithms to
solve the fully implicit singular first and second order initial-value problems (1)-(2) and (3)-(4). Then, in Section 4,
four fully implicit singular nonlinear systems of ordinary differential equations are solved to illustrate the efficiency
and accuracy of this new method. Finally, we give a conclusion in the Section 5.

2 Adomian polynomials and the differential transform method

In this section we give a brief review to the Adomian polynomials [29, 30, 31, 32, 33, 34] which are useful for the
expansion of a nonlinear function F , then we review the differential transform method. Usually, a nonlinear function
F (x,y) is decomposed as

F (x,y) =

∞∑
k=0

Fk, (5)

where the Adomian polynomials Fk are computed, for all nonlinearities, from

Fk := Fk (x0, x1, . . . , xk; y0, y1, . . . , yk) =
1

k!

dk

dξk

(
F

( ∞∑
i=0

ξixi,

∞∑
i=0

ξiyi

))
ξ=0

, k ≥ 0. (6)

Here xk, yk, k ≥ 0 are the terms used in the expansions

x(t) =

∞∑
k=0

xk, y(t) =

∞∑
k=0

yk. (7)
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Making use of (6), for a function F (x,y) with two variables, we can calculate the following first few Adomian polyno-
mials:

F0 = F (x0, y0),

F1 = x1F
(1,0) + y1F

(0,1),

F2 = x2F
(1,0) + y2F

(0,1) +
x2
1

2
F (2,0) +

y21
2
F (0,2) + x1y1F

(1,1),

F3 = x3F
(1,0) + y3F

(0,1) + x1x2F
(2,0) + y1y2F

(0,2) + (x1y2 + x2y1)F
(1,1)

+
x3
1

6
F (3,0) +

y31
6
F (0,3) +

x2
1y1
2

F (2,1) +
x1y

2
1

2
F (1,2),

F4 = x4F
(1,0) + y4F

(0,1) +

(
x1x3 +

x2
2

2

)
F (2,0) +

(
y1y3 +

y22
2

)
F (0,2) + (x1y3 + x2y2 + x3y1)F

(1,1)

+
x2
1x2

2
F (3,0) +

y21y2
2

F (0,3) +

(
x1x2y1 +

x2
1y2
2

)
F (2,1) +

(
x1y1y2 +

x2y
2
1

2

)
F (1,2) +

x4
1

4!
F (4,0)

+
x3
1y1
6

F (3,1) +
x2
1y

2
1

4
F (2,2) +

x1y
3
1

4
F (1,3) +

y41
4!
F (0,4),

where F (k,l) :=
∂k+lF (x0, y0)

∂xk
0∂y

l
0

, k ≥ 0, l ≥ 0.

The differential transform of a function x(t) and y(t) are defined by

xk =
1

k!

[
dkx(t)

dtk

]
t=0

, yk =
1

k!

[
dky(t)

dtk

]
t=0

, k ≥ 0, (8)

and the inverse differential transforms of xk, yk, k ≥ 1 are given by

x(t) =

∞∑
k=0

xkt
k, y(t) =

∞∑
k=0

ykt
k. (9)

From (8)-(9), we have

x(t) =

∞∑
k=0

1

k!

[
dkx(t)

dtk

]
t=0

tk, y(t) =

∞∑
k=0

1

k!

[
dky(t)

dtk

]
t=0

tk. (10)

An approximate solution is given by

x(t) =

K∑
k=0

xkt
k, y(t) =

K∑
k=0

ykt
k, (11)

where K is the number of terms in the approximation. If x(t) and y(t) are expanded as in (9), then the nonlinear
function F (x,y) can be expanded using the Adomian polynomials as

F
( ∞∑

k=0

xkt
k,

∞∑
k=0

ykt
k
)
=

∞∑
k=0

Fk (x0, x1, . . . , xk; y0, y1, . . . , yk) t
k, (12)

where now xk and yk, k ≥ 1 are the coefficients of expansion (11). One important property of the Adomian polynomials
which we will exploit to develop our algorithms is the fact that the Adomian polynomials Fk, k ≥ 1 are affine with
respect to xk and yk.
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3 Proposed approach for fully implicit singular ode systems

The proposed algorithms are based on an effective combination of the differential transform method (DTM) with the
Adomian polynomials [29, 30, 31, 32, 33, 34]. The main idea of our technique is to apply the DTM directly to the
classes (1)-(2) and (3)-(4), where the nonlinear vector functions are expanded in power series using the Adomian poly-
nomials [35]. Then, by using the fact that the Adomian polynomial Fk is affine with respect to xk and yk, an algebraic
recursion system for the differential transforms of the solution is obtained. The main advantage of our technique is
that it does not require transforming system (1) or (3) into an explicit first order system before applying the DTM.
This has considerably helped in simplifying the algorithms. The following new theorems are important for derivation
of our technique. These two theorems apply for the general fully implicit singular systems (1) and (3).

Theorem 1.
Consider the fully implicit singular nonlinear system of ordinary differential equations F (x′,x/t,x, t) = 0, where

F : (Rn)
3× (0,+∞) −→ Rn, with x(0) = 0 ∈ Rn. Assume that the function F is analytical and let x(t) =

∑∞
k=0 xkt

k,
where xk is the differential transform of the solution x(t).
Let Fk−1 := Fk−1 (x1, . . . , (k − 1)xk−1, kxk;x1, . . . , xk−1, xk;x1, . . . , xk−1), k ≥ 2 be the vector of (k − 1)-th Adomian
polynomials of the components of the vector F . Furthermore, assume that the matrix Mk := kFx′ + Fx/t ∈ Rn×n,
k ≥ 1 is nonsingular at (x1, x1, x0, 0). Then the differential transform xk of the solution x(t) of the above sys-
tem of ordinary differential equations is given by the recursion Mkxk = −rk−1 where rk−1 := Fk−1(x1, . . . , (k −
1)xk−1, 0;x1, . . . , xk−1, 0;x1, . . . , xk−1), k ≥ 2 and where the first recursion term x1 is uniquely determined from the
algebraic system F (x1, x1, x0, 0) = 0.

Proof:
Assume that the solution x(t) can be expanded as

x(t) =

∞∑
k=0

xkt
k, (13)

where xk is the differential transform of the solution x(t). Let y = x/t, then x = ty and taking the differential
transform of both sides of the latter equation, we get

xk =

k∑
l=0

δ(l − 1)yk−l = yk−1, k ≥ 1, (14)

where δk =

{
1, if k = 0,

0, if k ̸= 0.

From this, we obtain the differential transform of y in terms of that of x as

yk = xk+1, k ≥ 0. (15)

Then, we expand the left side of the equation F (x′,y,x, t) = 0 in terms of the Adomian polynomials to obtain

F

( ∞∑
k=0

(k + 1)xk+1t
k,

∞∑
k=0

xk+1t
k,

∞∑
k=0

xkt
k, t

)
=

∞∑
k=0

Fkt
k = 0. (16)

This gives
for k = 0:

F (x1, x1, x0, 0) = 0, (17)
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and for k ≥ 1:
Fk (x1, . . . , kxk, (k + 1)xk+1;x1, . . . , xk, xk+1;x1, . . . , xk) = 0, (18)

or
Mk+1xk+1 + Fk(x1, . . . , kxk, 0;x1, . . . , xk, 0;x1, . . . , xk) = 0, (19)

where the matrix Mk+1 = (k + 1)Fx′ + Fx/t is nonsingular. This leads to the following recursion for the differential
transform xk

Mkxk = −Fk−1(x1, . . . , (k − 1)xk−1, 0;x1, . . . , xk−1, 0;x1, . . . , xk−1), k ≥ 2. (20)

The above system determines xk in terms of x0, x1, . . . , xk−2, xk−1 for k ≥ 2. The first recursion term x1 is uniquely
determined from the algebraic system (17). This completes the proof of theorem 1.

Algorithm 1: DTM solution of F (x′,x/t,x, t) = 0, x(0) = 0:
input: K, n, F ∈ Rn

output: approximate solution x(t) =
K∑

k=0

xkt
k

for 2 ≤ k ≤ K do
compute rk−1 := Fk−1(x1, . . . , (k − 1)xk−1, 0;x1, . . . , xk−1, 0;x1, . . . , xk−1)
end do
initialization: x0 := 0
solve for x1 the algebraic system: F (x1, x1, x0, 0) = 0
for 2 ≤ k ≤ K do
compute Mk

solve for xk the linear algebraic system: Mkxk = −rk−1

end do
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Theorem 2.
Consider the fully implicit singular nonlinear system of ordinary differential equations F (x′′,x′/t,x′,x, t) = 0, where

F : (Rn)
4 × (0,+∞) −→ Rn, with x(0) = x0 ∈ Rn, x′(0) = 0 ∈ Rn. Assume that the function F is analytical and let

x(t) =
∑∞

k=0 xkt
k, where xk is the differential transform of the solution x(t).

Let Fk−2 := Fk−2 (2x2, . . . , (k − 1)kxk; 2x2, . . . , kxk;x1, . . . , (k − 1)xk−1;x1, . . . , xk−2), k ≥ 3 be the vector of (k− 2)-
th Adomian polynomials of the components of the vector function F . Assume that the matrix Nk := kFx′′ +
Fx′/t ∈ Rn×n, k ≥ 1 is nonsingular at (2x2, 2x2, x1, x0, 0). Then the differential transform xk of the solution
x(t) of the above system of ordinary differential equations is given by the recursion kNk−1xk = −rk−2, where
rk−2 := Fk−2 (2x2, . . . , (k − 2)(k − 1)xk−1, 0; 2x2, . . . , (k − 1)xk−1, 0;x1, . . . , (k − 1)xk−1;x1, . . . , xk−2), k ≥ 3, where
the second recursion term x2 is computed from the algebraic system F (2x2, 2x2, x1, x0, 0) = 0.

Proof:
Assume that the solution x(t) can be expanded as in (13). Let y = x′/t, then x′ = ty and taking the differential
transform of both sides of the latter equation, we get

(k + 1)xk+1 =

k∑
l=0

δ(l − 1)yk−l = yk−1, k ≥ 1. (21)

From this, we obtain the differential transform of y in terms of that of x as

yk = (k + 2)xk+2, k ≥ 0. (22)

Then we expand the left side of the equation F (x′′,y,x′,x, t) = 0 in terms of the Adomian polynomials to obtain

F

( ∞∑
k=0

(k + 1)(k + 2)xk+2t
k,

∞∑
k=0

(k + 2)xk+2t
k,

∞∑
k=0

(k + 1)xk+1t
k,

∞∑
k=0

xkt
k, t

)
=

∞∑
k=0

Fkt
k = 0. (23)

This gives
for k = 0:

F (2x2, 2x2, x1, x0, 0) = 0, (24)

and for k ≥ 1:

Fk (2x2, . . . , (k + 1)(k + 2)xk+2; 2x2, . . . , (k + 2)xk+2, x2, . . . , (k + 1)xk+1;x1, . . . , xk) = 0, k ≥ 1, (25)

or

(k + 2)Nk+1xk+2 + Fk(6x3, . . . , k(k + 1)xk+1, 0; 3x3, . . . , (k + 1)xk+1, 0;x2, . . . , (k + 1)xk+1;x1, . . . , xk), k ≥ 1, (26)

where the matrix Nk+1 = (k + 1)Fx′′ + Fx′/t is nonsingular. This leads to the following recursion for the differential
transform xk

kNk−1xk = −Fk−2 (2x2, . . . , (k − 2)(k − 1)xk−1, 0; 2x2, . . . , (k − 1)xk−1, 0;x2, . . . , (k − 1)xk−1;x2, . . . , xk−1) , k ≥ 3.
(27)

The above system determines xk in terms of x0, x1, . . . , xk−2, xk−1 for k ≥ 3. The second recursion term x2 is uniquely
determined from the algebraic system (24). This completes the proof of theorem 2.
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Algorithm 2: DTM solution of F (x′′,x′/t,x′,x, t) = 0, x(0) = x0, x
′(0) = 0:

input: K, n, x0 ∈ Rn, F ∈ Rn

output: approximate solution x(t) =

K∑
k=0

xkt
k

for 3 ≤ k ≤ K do
compute rk−2 := Fk−2(2x2, . . . , (k − 2)(k − 1)xk−1, 0; 2x2, . . . , (k − 1)xk−1, 0;x2, . . . , (k − 1)xk−1;x2, . . . , xk−1)
end do
initialization: x0 := x0, x1 := 0
solve for x2 the algebraic system: F (2x2, 2x2, x1, x0, 0) = 0
for 3 ≤ k ≤ K do
compute Nk−1

solve for xk the linear algebraic system: kNk−1xk = −rk−2

end do

4 Numerical results and discussion

In this section, four numerical examples of fully implicit singular nonlinear systems of ordinary differential equations
are solved by the proposed technique to demonstrate its effectiveness and accuracy. All these examples cannot be
solved by software packages like Maple. Furthermore, methods like Runge-Kutta cannot be applied to these types
of systems as these systems cannot be written in an explicit form. Thanks to theorems 1 and 2, our technique has
successfully solved all these examples in power series form. We emphasise here that our technique gives exactly the
power series expansion of the exact solution if all computations are performed exactly. The implementation of our
algorithms was performed in Maple 15.

Example 1
In this example, we consider the following fully implicit nonlinear singular system of first order ordinary differential
equations

ln
(
x′
1 + te−t

)
+ x′

1 +
2x2

t
+ t− (1− t)e−t − e−2t = 0, (28)

ln
(
2x′

2 + 2te−2t
)
+ 2x′

2 +
x1

t
+ 2t− (1− 2t)e−2t − e−t = 0, (29)

where t > 0. The sought solution is x = (x1,x2)
T
. The differential system (28)-(29) has the form (1), with n = 2.

This system is subject to the initial condition

x(0) =

(
0
0

)
. (30)

We should emphasise here that Maple software cannot not solve this system. However, our technique has successfully
obtained the exact solution of this implicit singular system in power series. By applying the DTM for solving equation
(28)-(29) with initial condition (30), we use theorem 1. Thanks to this theorem, we can recursively determine the
DTM expansion coefficients xk for k ≥ 2. According to the initial conditions (30), we have

x0 =

(
0
0

)
. (31)

Then, we determine the differential transform x1 = (x11, x12)
T
from the algebraic system

F (x1, x1, x0, 0) = 0. (32)
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The above system has a unique solution and simplifies to

ln(x11) + x11 + 2x12 − 2 = 0, (33)

ln(2x12) + 2x12 + x11 − 2 = 0. (34)

Solving this algebraic system, we obtain

x1 =

(
1
1
2

)
. (35)

Then, we compute the Jacobians A := Fx′ and B := Fx/t of the function F with respect to x′ and x/t at the point
(x1, x1, x0, 0). We get

A =

( 1
x11

+ 1 0

0 1
x12

+ 1

)
=

(
2 0
0 4

)
, B =

(
0 2
1 0

)
. (36)

Using theorem 1, we have the following recursion for the differential transform xk

xk = − (kA+B)
−1

rk−1, k ≥ 2, (37)

where
rk−1 := Fk−1(x1, . . . , kxk, 0;x1, . . . , kxk, 0;x1, . . . , . . . , xk−1; 0). (38)

Using our algorithm, we compute the inverse of the matrix and the right hand sides rk−1 for k ≥ 2 and deduce:
For k = 2:

x2 = − (2A+B)
−1

r1 = −
(

4
15 − 1

15
− 1

30
2
15

)( 1
x11

+ 5
1

x12
+ 7

)
=

(
−1
−1

)
. (39)

For k = 3:

x3 = − (3A+B)
−1

r2 = −
(

6
35 − 1

35
− 1

70
3
35

) 1
x11

+ (2x21+1)2

2x2
11

+ 7
2

2
x12

+ (4x22+2)2

8x2
12

+ 13
2

 =

(
1
2
1

)
. (40)

For k = 4:

x4 = − (4A+B)
−1

r3 = −
(

8
63 − 1

63
− 1

126
4
63

) 1
2x11

− (6x31−2)(2x21+1)
2x2

11
+ (2x21+1)3

3x3
11

+ 2

2
x12

− (12x32−8)(4x22+2)
8x2

12
+ (4x22+2)3

24x3
12

+ 11
2

 =

(
− 1

6
− 2

3

)
. (41)

For sake of presentation, we give now only the numerical values of rk−1 rather than its algebraic expressions.
For k = 5:

x5 = − (5A+B)
−1

r4 = −
(

10
99 − 1

99
− 1

198
5
99

)( −13
12−161
24

)
=

(
1
24
1
3

)
. (42)

For k = 6:

x6 = − (6A+B)
−1

r5 = −
(

12
143 − 1

143
− 1

286
6

143

)(
11
30
77
24

)
=

(
− 1

120
2
15

)
. (43)

Finally, we construct the following approximate solution based on six terms

x(t) = t

(
1
1
2

)
+ t2

(
−1
−1

)
+ t3

(
1
2
1

)
+ t4

(
− 1

6−2
3

)
+ t5

(
1
24
1
3

)
+ t6

(
1

120−2
15

)
. (44)

One can easily check that the above approximation forms the first terms of the Maclauran power series of the exact
solution. It is worth noticing here that we obtain the exact values of the successive DTM expansion coefficients.
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Example 2
In this example, we consider the following fully implicit nonlinear singular system of first order ordinary differential
equations

3x′
1 + sin

(
x′
1 − t4

)
+

x2

t
− 7t− 14

5
t4 − sin(2t) = 0, (45)

3x′
2 − cos

(
x′
2 + t4

)
+

x1

t
− 7t+

14

5
t4 + cos(2t) = 0, (46)

where t > 0. The sought solution is x = (x1,x2)
T
. The differential system (45)-(46) has the form (1), with n = 2.

This system is subject to the initial condition

x(0) =

(
0
0

)
. (47)

We emphasise here that Maple software cannot not solve this system numerically or in power series in its present
form. However, our technique has successfully obtained the exact solution of this implicit singular system in power
series. By applying the DTM for solving equation (45)-(46) with initial condition (47), we use theorem 1. Thanks
to this theorem, we can recursively determine the DTM expansion coefficients xk for k ≥ 2. According to the initial
condition (47), we have

x0 =

(
0
0

)
. (48)

Then, we determine the DTM expansion coefficient x1 = (x11, x12)
T
from the algebraic system

F (x1, x1, x0, 0) = 0. (49)

The above system has a unique solution and simplifies to

3x11 + sin(x11) + x12 = 0, (50)

3x12 − cos(x12) + x11 + 1 = 0. (51)

Solving this algebraic system, we obtain

x1 =

(
0
0

)
. (52)

Then, we compute the Jacobians A := Fx′ and B := Fx/t of the function F with respect to x′ and x/t at the point
(x1, x1, x0, 0). We get

A =

(
3 + cos(x11) 0

0 3 + sin(x12)

)
=

(
4 0
0 3

)
, B =

(
0 1
1 0

)
. (53)

Using theorem 1, we have the following recursion for the differential transform xk

xk = − (kA+B)
−1

rk−1, k ≥ 2, (54)

where
rk−1 := Fk−1(x1, . . . , kxk, 0;x1, . . . , kxk, 0;x1, . . . , . . . , xk−1; 0). (55)
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Using our algorithm, we compute the inverse of the matrix and the right hand sides rk−1 for k ≥ 2 and deduce:
For k = 2:

x2 = − (2A+B)
−1

r1 = −
(

6
47 − 1

47
− 1

47
8
47

)(
−9
−7

)
=

(
1
1

)
. (56)

For k = 3:

x3 = − (3A+B)
−1

r2 = −
(

9
107 − 1

107
− 1

107
12
107

)(
−2x2

21 sin(x11)
−2 + 2x2

22 cos(x12)

)
=

(
0
0

)
. (57)

For k = 4:

x4 = − (4A+B)
−1

r3 = −
(

12
191 − 1

191
− 1

191
16
191

)(
4
3 − 6x31x21 sin(x11)− 4

3x
3
21 cos(x11)

6x32x22 cos(x12)− 4
3x

3
22 sin(x12)

)
=

(
0
0

)
. (58)

For sake of presentation, we give now only the numerical values of rk−1 rather than its algebraic expressions.
For k = 5:

x5 = − (5A+B)
−1

r4 = −
(

15
299 − 1

299
− 1

299
20
299

)( −19
5
14
5

)
=

(
1
5

− 1
5

)
. (59)

For k ≥ 6, we can show that xk = 0. Finally, we construct the following approximate solution based on six terms

x(t) = t2
(

1
1

)
+ t5

(
1
5

− 1
5

)
. (60)

One can easily check that the above approximation is the exact solution. It is worth noting here that we obtain the
exact values of the successive DTM expansion coefficients.

Example 3
In this example, we consider the following fully implicit nonlinear singular system of second order ordinary differential
equations

x′′3
1 + x′′

1 +

(
x′
1

t

)3

+ x2
2 − t6 − 239t3 − 6t− 4 = 0, (61)

x′′3
2 + x′′

2 +

(
x′
2

t

)3

+ x2
1 − t6 − 247t3 − 6t− 4 = 0, (62)

where t > 0. The sought solution is x = (x1,x2)
T
. The differential system (61)-(62) has the form (3), with n = 2.

This system is subject to the initial conditions

x(0) =

(
2
−2

)
, x′(0) =

(
0
0

)
. (63)

This implicit singular system cannot be solved by Maple software numerically or in power series in its present form.
However, our technique has successfully obtained the exact solution of this system in power series. By applying the
DTM for solving system (61)-(62) with initial condition (63), we use theorem 2 and recursively determine the DTM
expansion coefficients xk for k ≥ 3. According to the initial conditions (63), we have

x0 =

(
2
−2

)
, x1 =

(
0
0

)
. (64)
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Then, we determine the DTM expansion coefficient x2 = (x21, x22)
T
from the algebraic system

F (2x2, 2x2, x1, x0, 0) = 0. (65)

This system has a unique solution x2 = (x21, x22)
T and simplifies to

16x3
21 + 2x21 + x2

02 − 4 = 0, (66)

16x3
22 + 2x22 + x2

01 − 4 = 0, (67)

which gives

8x3
21 + x21 = 0, (68)

8x3
22 + x22 = 0. (69)

Solving this algebraic system, we obtain

x2 =

(
0
0

)
. (70)

Then, we compute the Jacobians A := Fx′′ and B := Fx′/t of the function F with respect to x′′ and x′/t at the point
(2x2, 2x2, x1, x0, 0). We get

A =

(
12x2

21 + 1 0
0 12x2

22 + 1

)
=

(
1 0
0 1

)
, B =

(
12x2

21 0
0 12x2

22

)
=

(
0 0
0 0

)
. (71)

Using theorem 1, we have the following recursion for the differential transform xk

xk = −
(
1

k

)
((k − 1)A+B)

−1
rk−2, k ≥ 3, (72)

where

rk−2 := Fk−2(2x2, . . . , (k − 2)(k − 1)xk−1, 0; 2x2, . . . , (k − 1)xk−1, 0;x1, . . . , (k − 1)xk−1;x1, . . . , . . . , xk−2; 0). (73)

This leads to

xk = − 1

k(k − 1)
rk−2, k ≥ 3. (74)

Using our algorithm, we compute the right hand sides rk−2 for k ≥ 3 and deduce:
For k = 3:

x3 = −1

6
r1 = −1

6

(
2x02x12 − 6
2x01x11 − 6

)
=

(
1
1

)
. (75)

For k = 4:

x4 = − 1

12
r2 = − 1

12

(
270x21x

2
31 + 2x02x22 + x2

12

270x22x
2
32 + 2x01x21 + x2

11

)
=

(
0
0

)
. (76)

For k = 5:

x5 = − 1

20
r3 = − 1

20

(
1008x21x31x41 + 243x3

31 + 2x02x32 + 2x12x22 − 239
1008x22x32x42 + 243x3

32 + 2x01x31 + 2x11x21 − 247

)
=

(
0
0

)
. (77)

In a similar way, we can show that xk = 0 for k ≥ 7. Finally, we construct the following approximate solution based
on seven terms

x(t) =

(
2
−2

)
+ t3

(
1
1

)
=

(
2 + t3

−2 + t3

)
. (78)
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One can easily check that the above approximation is the exact solution. It is worth noting here that we obtain the
exact values of the successive DTM expansion coefficients.

Example 4
In this example, we consider the following fully implicit nonlinear second order system of singular ordinary differential
equations

x′′
1 − x′′3

2 +
x′

1

t
+ x2 −

(
4− 5t+ t2 + t3

)
e−t +

(
6t− 6t2 + t3

)3
e−3t = 0, (79)

x′′3
1 + x′′

2 +
x′

2

t
+ x1 −

(
9t− 6t2 + t3

)
e−t −

(
2− 4t+ t2

)3
e−3t = 0, (80)

where t > 0. The sought solution is x = (x1,x2)
T
. The differential system (79)-(80) has the form (3), with n = 2.

This system is subject to the initial conditions

x(0) =

(
0
0

)
, x′(0) =

(
0
0

)
. (81)

This implicit singular system cannot be solved by Maple software numerically or in power series in its present form.
However, our technique has successfully obtained the exact solution of this system in power series. By applying the
DTM for solving the system (79)-(80) with initial condition (81), we use theorem 2. Thanks to this theorem, we can
recursively determine the DTM expansion coefficients xk for k ≥ 3. According to the initial conditions (81), we have

x0 =

(
0
0

)
, x1 =

(
0
0

)
. (82)

Then, we determine the differential transform x2 from the algebraic system

F (2x2, 2x2, x1, x0, 0) = 0. (83)

The above system has a unique solution x2 = (x21, x22)
T
and simplifies to

4x21 − 8x3
22 + x02 − 4 = 0, (84)

4x22 + 8x21 + x01 − 8 = 0, (85)

which gives

4x21 − 8x3
22 − 4 = 0, (86)

4x22 + 8x21 − 8 = 0. (87)

Solving this algebraic system, we obtain

x2 =

(
1
0

)
. (88)

Then, we compute the Jacobians A := Fx′′ and B := Fx′/t of the function F with respect to x′′ and x′/t at the point
(2x2, 2x2, x1, x0, 0). We get

A =

(
1 −12x22

12x21 1

)
=

(
1 0
12 1

)
, B =

(
1 0
0 1

)
. (89)
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Using theorem 1, we have the following recursion for differential transform xk

xk = −
(
1

k

)
((k − 1)A+B)

−1
rk−2, k ≥ 3, (90)

where

rk−2 := Fk−2(2x2, . . . , (k − 2)(k − 1)xk−1, 0; 2x2, . . . , (k − 1)xk−1, 0;x1, . . . , (k − 1)xk−1;x1, . . . , . . . , xk−2; 0). (91)

This leads to

xk = − 1

k3

(
k 0

−12(k − 1) k

)
rk−2, k ≥ 3. (92)

Using our algorithm, we compute the right hand sides rk−2 for k ≥ 3 and deduce:
For k = 3:

x3 = −1

9

(
1 0
−8 1

)
r1 = −1

9

(
1 0
−8 1

)(
x12 + 9
x11 + 63

)
=

(
−1
1

)
. (93)

For k = 4:

x4 = − 1

16

(
1 0
−9 1

)
r2 = − 1

16

(
1 0
−9 1

)(
−216x22x

2
32 + x22 − 8

216x21x
2
32 + x21 − 273

)
= − 1

16

(
1 0
−9 1

)(
−8
−56

)
=

(
1
2
−1

)
.

(94)
In a similar way, we can compute

r3 =

(
25
6
55
2

)
, r4 =

(
− 3

2
−9

)
, r5 =

(
49
20
259
120

)
. (95)

Using the recursion (90), we find

x5 =

(
− 1

6
1
2

)
, x6 =

(
1
24
− 1

6

)
, x7 =

(
− 1

120
1
24

)
. (96)

Finally, we construct the following approximate solution based on seven terms

x(t) = t2
(

1
0

)
+ t3

(
−1
1

)
+ t4

(
1
2
−1

)
+ t5

(
− 1

6
1
2

)
+ t6

(
1
24
− 1

6

)
+ t7

(
− 1

120
1
24

)
. (97)

One can easily check that the above approximation forms the first terms of the Maclauran power series of the exact so-
lution x(t) = (t2e−t, t3e−t)T. It is worth noting here that we obtain the exact values of the successive DTM coefficients.

5 Conclusion

This manuscript presents a new method for solving two classes of fully implicit systems of singular nonlinear ordinary
differential equations. These types of systems are difficult to solve, and existing software packages like Maple cannot
solve them due to their implicit structure. The proposed method combines the differential transform method (DTM)
with an important property of the Adomian polynomials to develop two simple and efficient algorithms that can be
easily implemented using software packages like Maple, Mathematica, or Matlab. The new approach provides the
DTM with a powerful technique to solve fully implicit differential systems, giving it an advantage over other methods
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like Runge-Kutta, Adomian decomposition method, and other semi-analytical methods. Unlike other techniques, this
new method does not require transforming the system into a first-order explicit system, making it a more efficient
and accurate solution technique. The paper includes numerical examples of four fully implicit nonlinear singular
systems of ordinary differential equations that are not solvable at least by Maple. The numerical results show that
the proposed method has successfully solved these examples by providing the exact solutions in a convergent power
series form. To solve these implicit classes of differential equations over large intervals, a multi-stage algorithm can be
used [28]. We emphasize that this new technique can be also applied to solve other fully implicit systems of ordinary
differential equations, delay differential equations, differential-algebraic equations, fractional differential equations,
and time-dependent algebraic equations. Future work will be on developing algorithms to solve such implicit classes.
Finally, we believe that the findings of this paper will broaden the application and popularity of the DTM.

Data Availability
This manuscript includes all the data used to support its findings.

Funding
The author received no financial support for the research and the publication of this article.

Conflicts of Interest
The author declares that no conflicts of interest exist regarding the publication of this manuscript.

References

[1] Borrdephong R., Derek I. G., Michiel S., Christophe De Wagter, Riender H., Alexei S., Henk A. P. B., “Multi-
body system modelling of unmanned aircraft system collisions with the human head,” International Journal of
Crashworthiness, vol. 25, no. 6, 689-707, 2020.

[2] T. Uppal, S. Raha, S. Srivastava, “Trajectory feasibility evaluation using path prescribed control of unmanned
aerial vehicle in differential algebraic equations framework,”the Aeronautical Journal, Vol. 121 No 1240, 2017.

[3] Moritz, G., David H., Yonas, Z., Moritz, B., Benrhnard, T, Stelian C.,“Analytically Differentiable Dynamics for
Multi-body Systems with Friction Contact,” ACM Trans. Graph, vol. 39, no. 6, Article 190, 2020.

[4] Zdravko Terze, Milan Vrdoljak and Hink Wolf, “Numerical Simulation of Landing Aircraft Dynamics,” Stojarstvo
vol. 51, no. 6, pp. 657-665, 2009.

[5] B. Simeon, F. Grupp, C. Führer and P. Rentrop, “A nonlinear truck model and its treatment as a multibody
system,” J. Comp. and App. Math., vol. 50, pp. 523-532, 1994.

[6] Balena Matteo, Mantriota Giacomo and Reina Giulio, “Dynamic Handling Characterization and Set-Up Opti-
mization for a Formula SAE Race Car via Multi-Body Simulation,” J. Machines, vol. 9, no. 6, 2021.

[7] V. Chauhan and P. K. Srivastava, “Computational techniques based on runge-kutta method of various order and
type for solving differential equations,” Int. J. Math. Eng. Manag. Sci., vol. 4, no. 2, pp. 375–386, 2019.

[8] Pushap Lata Sharma and Ashok Kumar, “Review Paper on the Runge-Kutta Methods to study Numerical
Solutions of Initial Valuie Problems in Ordinary Differential Equations,”International Journal of Applied Math-
ematics and Statistical Sciences (IJAMSS) ISSN(P): 2319–3972; ISSN(E): 2319–3980, Vol. 10, Issue 1, Jan–Jul
2021; 45–54.

15



[9] Frede Nidal Anakira, Ali Jameel, Mohmmad Hijazi, Abdel-Kareem Alomari, Noraziah Man,“A new approach
for solving multi-pantograph type delay differential equations” International Journal of Electrical and Computer
Engineering (IJECE), 2022, Vol 12 (2) 1859-1868.

[10] Wazwaz, A.M, “A reliable modification of Adomian decomposition method,” Appl. Math. Comput. 1999, 102,
77–86.

[11] Ahmad M. D. Al-Eybani, “Adomian Decomposition Method to Solve the Second Order Ordinary Differential
Equations,”International Journal of Mathematics and Physical Sciences Research,” Vol. 8, Issue 2, Month: Oc-
tober 2020 - March 2021, 87-92.

[12] AL-Mazmumy, M., Alsulami, A.A., Bakodah, H.O., Alzaid, N.,“Modified Adomian Method through Efficient
Inverse Integral Operators to Solve Nonlinear Initial-Value Problems for Ordinary Differential Equations,” Axioms
2022, 11, 698.

[13] Alsulami, A.A., AL-Mazmumy, M., Bakodah, H.O., Alzaid, N.,“A Method for the Solution of Coupled System of
Emden–Fowler–Type Equations,” Symmetry 2022, 14, 843.

[14] J.-H. He and Y. O. El-Dib, “Homotopy perturbation method for fangzhu oscillator,” Journal of Mathematical
Chemistry, vol. 58, no. 10, pp. 2245–2253, 2020.

[15] S. Al-Ahmad, I. M. Sulaiman, M. Mamat, K. Kamfa,“Solutions of classes of differential equations using modified
differential transform method,” J. Math. Comput. Sci., 10 (2020), 2360–2382.

[16] S. Al-Ahmad, I. M. Sulaiman, M. Mamat, P. L. Ghazali,“Modified differential transform scheme for solving
systems of first order ordinary differential equations,” J. Math. Comput. Sci., 22 (2021), 73–84.

[17] H.H. Mehne,“Differential transform method: A comprehensive review and analysis,”Iranian Journal of Numerical
Analysis and Optimization, 2022; 12(3 (Special Issue), 2022): 629-657

[18] Tadeusz Jankowski,“A numerical Solution of Implicit Ordinary Differential Equations,” Demonstratio Mathemat-
ica, Vol. XXV, no 1-2, 1992.

[19] Braun, E., Seiler, W.M. and Seiß, M, “On the Numerical Analysis and Visualisation of Implicit Ordinary Differ-
ential Equations,” Math.Comput.Sci. 14, 281–293 (2020).

[20] S. Harikrishnan, E. M. Elsayed, K. Kanagarajan, “Analysis of implicit differential equations via Ψ-fractional
derivative,”,Journal of Interdisciplinary Mathematics ISSN: 0972-0502 (Print), ISSN: 2169-012X (Online) Vol. 23
(2020), No. 7, 1251–1262.

[21] Van Gorder, R.A, “Optimal homotopy analysis and control of error for implicitly defined fully nonlinear differential
equations,” Numer Algor 81, 181–196 (2019).

[22] Arshad Ali, Kamal Shah and Thabet Abdeljawad, “Study of implicit delay fractional differential equations under
anti-periodic boundary conditions,” Ali et al. Advances in Difference Equations, (2020) 2020:139.

[23] Chandrali Baishya,“Solution of Nonlinear Singular Initial Value Problem by Differential Transform Method Pow-
ered by Adomian Polynomial,” Global Journal of Pure and Applied Mathematics, Volume 13, Number 2 (2017),
pp. 617–625

[24] Assabaai, Mobarek A. and Kherd, Ahmed (2022), “Numerical Solution of Singular Nonlinear Ordinary Differential
Equations Using Said-Ball Polynomial,”Emirates Journal for Engineering Research: Vol. 27: Iss. 4, Article 4.

16



[25] Kherd, A., Bamsaoud, S. F., Bazighifan, O., Assabaai, M. A., “Improved Operational Matrices of DP-Ball
Polynomials for Solving Singular Second Order Linear Dirichlet-type Boundary Value Problems,”Hadhramout
University Journal of Natural and Applied Sciences, 19(1) (2022), 39-50.

[26] Xie, L.-j., Zhou, C.-l., Xu, S, “Solving the Systems of Equations of Lane-Emden Type by Differential Transform
Method Coupled with Adomian Polynomials,”Mathematics 2019, 7, 377.

[27] Singh OP, Pandey RK, Singh VK, “An analytic algorithm of Lane-Emden type equations arising in astrophysics
using modified homotopy analysis method,”Comput Phys Commun 2009;180:1116–24.

[28] Brahim Benhammouda, ”The Differential Transform Method as an Effective Tool to Solve Implicit Hessenberg
Index-3 Differential-Algebraic Equations”, Journal of Mathematics, vol. 2023, Article ID 3620870, 13 pages, 2023.

[29] R. Rach, “A New Definition of the Adomian Polynomials,” Kybernetes, vol. 37, pp. 910-955, 2008.

[30] R. Rach, “A Convenient Computational Form for the Adomian Polynomials,” Journal of Mathematical Analysis
and Applications, vol. 102, pp. 415-419, 1984.

[31] A. M. Wazwaz, “A New Algorithm for Calculating Adomian Polynomials for Nonlinear Operators,” Applied
Mathematics and Computation, vol. 111, pp. 53-69, 2000.

[32] J. S. Duan, “Recurrence Triangle for Adomian Polynomials,” Applied Mathematics and Computation, vol. 216,
pp. 1235-1241, 2010.

[33] J. S. Duan, “An Efficient Algorithm for the Multivariable Adomian Polynomials,” Applied Mathematics and
Computation, vol. 217, pp. 2456-2467, 2010.

[34] J. S. Duan, “Convenient Analytic Recurrence Algorithms for the Adomian Polynomials,” Applied Mathematics
and Computation, vol. 217, pp. 6337-6348, 2011.

[35] R. Rach, G. Adomian, “Transformation of Series,” Appl. Math. Lett., vol. 4, no. 4, pp. 69-7l, 1991.

17


