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Abstract. An approach for estimating the weight and estimating the consistency of the pairwise 
comparison matrix using a set of spanning graphs is proposed. The structure of the set of 
spanning graphs of the decision matrix for AHP, BWM, DEMATEL and SWARA processes 
is shown. Consistency of judgments is defined through the distribution of weight coefficients 
calculated on the set of spanning graphs, as the value of the standard deviation. 
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Introduction 

Pairwise Comparisons (PCs) of alternatives (objects, criteria) are among the most common 
tools for making decisions on multiple criteria. PCs are an integral part of the analytical hierarchy 
process (AHP) [1], methods for assessing the significance of criteria, such as the Best Worst 
Method (BWM) [2], methods for identifying the components of the causal chain  (DEcision 
MAking Trial and Evaluation Laboratory, DEMATEL) [3], and Step-wise Weight Assessment 
Ratio Analysis (SWARA) method [4]. 

In practice, comparisons are never or almost never made directly, but through comparisons 
with a standard scale. Therefore, the validity of this decision tool depends on the choice of scale 
for pairwise comparisons. In AHP, the decision maker (DM) first gives linguistic pairwise 
comparisons, then receives numerical pairwise comparisons by choosing a specific numerical scale 
to quantify them, and finally derives a priority vector from the numerical pairwise comparisons. 
At all three stages, there are various choices and various methods with varying degrees of validity, 
which determines the design of the AHP model and is the subject of scientific discussions [5–10]. 

For the stage of choosing a linguistic scale, there is no consensus on the number of 
gradations or shades for pairwise comparison of alternatives, and this choice is justified in 
psychological studies, for example, [11]. The generally accepted approach to choosing the number 
of gradations is to determine the minimum perceived difference in the intensity of two exciters 
(stimuli), and the expert is actually able to distinguish only a certain limited number of its 
gradations. 

https://doi.org/10.32388/X89HNM 
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At the stage of choosing a numerical scale for obtaining a numerical matrix of pairwise 
comparisons, there are also a large number of different options, such as the Saaty scale [1], the 
Ma-Zheng scale [12], the Geometrical scale [13–15], Salo-Hämäläinen scale [16], etc. 

The process of obtaining the priority vector of objects from the numerical matrix of 
pairwise comparisons is also multivariate. There are a large number of methods for processing 
pairwise comparisons for prioritization [17, 18], among which the Eigenvector Method (EVM) [1] 
and the Logarithmic Least Squares Method (LLSM) [19] are the most commonly used. 

Consistency of the judgments reflected in the matrix of paired comparisons is hardly the 
only sign of the adequacy of the weighing procedure. For the correct formation of the matrix of 
pairwise comparisons, criterial measures of the degree of consistency are used in the form of 
consistency indices. Several variants of such indices have been introduced into consideration: 

– the Consistency index (CI) and the Consistency ratio (CR) by Saaty [1]; 
– Index KI by Koczkodaj [20]; 
– Index AI by Salo and Hämäläinen [16, 21]; 
– Index CIH by Wu and Xu [22]; 
– Cosine consistency index (CCI) by Kou and Lin [23] et al. [24]. 
Multivariance is due to the fact that one number must reflect the degree of consistency of 

a large number of judgments reflected in the matrix of paired comparisons. For each index, an area 
of criterion values is determined, indicating the degree of consistency of the matrix of paired 
comparisons. If the consistency of the pairwise comparison matrix is low, the judgment needs to 
be reconsidered. 

In this study, the author develops the notion of a spanning graph of a pairwise comparison 
matrix introduced in the fundamental work by T. Saaty [1]. The structure of the set of spanning 
graphs of the decision matrix for AHP, BWM, DEMATEL and SWARA processes is shown. 
Consistency of judgments is defined through the distribution of weight coefficients calculated on 
the set of spanning graphs, as the value of the standard deviation. Now the degree of inconsistency 
of judgments has a natural interpretation in the form of the amount of dispersion in the distribution 
of weight coefficients. 

To be able to reproduce the results and facilitate subsequent research, in the appendix the 
author presented the main algorithms of the approach described, implemented in MatLab. The 
author will be very grateful if one of the researchers writes a recursive function for generating a 
set of spanning graphs for an arbitrary value of n based on the algorithm given by the author. 

1. Methodology 

It is assumed that the reader is familiar with the technique and problems of determining the 
weight of criteria based on the pairwise comparison matrix within the framework of the analytical 
hierarchy process (AHP) [1], the best-worst method (BWM) [2], the DEMATEL approach [3], 
and the method of Step-wise Weight Assessment Ratio Analysis (SWARA) [4]. 
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1.1. General scheme of pairwise comparisons 

The decision maker first gives linguistic pairwise comparisons in the selected scale of 
gradations, then receives numerical pairwise comparisons, choosing a certain numerical scale for 
their quantitative assessment, and finally derives a priority vector from numerical pairwise 
comparisons. The general scheme of the procedure for pairwise comparisons of alternatives in 
AHP (BWM, DEMATEL) is shown in Figure 1. 

 
Fig. 1. General scheme of the procedure of pairwise comparisons 

1.2 Paired comparisons and prioritization in AHP  

The Pairwise Comparison matrix in AHP determines the relative importance of criteria wi 
(i=1,…, n):  

  (1) 

The ratio wi/wj=aij is not a quantitative degree of superiority, but a conditional one.  

A well-known example [25] of examination using judgements is presented in Table 1. 

Table 1. Which drink is consumed more in the USA? 

 Coffee Wine Tea Beer Sodas Milk Water 
Coffee 1 9 5 2 1 1 1/2 
Wine 1/9 1 1/3 1/9 1/9 1/9 1/9 
Tea 1/5 3 1 1/3 1/4 1/3 1/9 
Beer 1/2 9 3 1 1/2 1 1/3 
Sodas 1 9 4 2 1 2 1/2 
Milk 1 9 3 1 1/2 1 1/3 
Water 2 9 9 3 2 3 1 

 
When different scales are used for PCs, the same value from a given scale has a different 

meaning, and is known as the “pairwise comparison rating scale paradox” (Koczkodaj, [26–28]). 
The prioritization method refers to the process of deriving a priority vector from a numeric 

pairwise comparison matrix. The two most common prioritization methods (EVM and LLSM) [1, 
18, 19] are presented below. 
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1) Eigenvector Method is to take as weights the components of the eigenvector of the 
matrix A corresponding to the largest eigenvalue λmax: 

  (2) 
This vector is normalized. 
Consistency ratio (CR) by Saaty: 

  (3) 

Where RI is the average value of CI for random matrices using the Saaty scale. We accept a 
matrix as a consistent one iff CR < 0.1. 

2) The Logarithmic Least Squares Method (LLSM) uses the L2 metric to determine the 
objective function of the following optimization problem:: 

 (4) 

 (5) 

This solution can be found as the geometric mean of rows [19] and is equivalent to the 
method Geometric Mean Method (GMM): 

    (6) 

 
1.3 Pairwise comparisons and prioritization in BWM 

The Best-Worst Method performs paired comparisons of the best and worst criteria 
compared to other criteria. As a result, we have two preference vectors: 

AB=(aB1, aB2,…, aBn), (aBB=1) — Best-to-Other,    (7) 

AW=(a1W, a2W,…, anW), (aWW=1) — Other-to-Worst.    (8) 

Numerical pairwise comparisons in the basic version of BWM are implemented by the 
author of the method [2] in the Saaty numerical scale with estimates of quantitative importance 
from 1 to 9. 

To determine the priority vector, the following optimization problem is solved: 
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1.4 Pairwise comparisons and prioritization in DEMATEL 
The DEMATEL method uses a direct influence graph that expresses the mutual influence 

of the analyzed objects through cause-and-effect relationships. As in the AHP method, structural 
relationships arise between the analyzed elements, which served as a prerequisite for using 
DEMATEL when weighing criteria. 

One of the famous AHP transformations in DEMATEL [3] uses the following technique: 
– direct relation matrix B=(bij)n´n is a square matrix, the size of which is equal to the number 

of objects. Its rows correspond to the objects appearing first in the comparison. 
– elements of the main diagonal are equal to zero, and non-zero elements bij (i ≠ j), reflect 

the impact of the i-th object on the j-th object. When choosing an m-point scale, the direct influence 
matrix and the pairwise comparison matrix in AHP are related by: 

bij =(aij –1), ∀ i, j: aij≥1,   (13) 

bij =0, ∀ i, j: aij<1.  (14) 

 
Weight coefficients in DEMATEL are defined as follows [3]: 

,  (15) 

,  (16) 

, (17) 

as one of the possibilities, it is proposed [3] to determine the weights proportional to the average 
value of the corresponding pair of indicators t+ и t-: 

.  (18) 

where I is the identity matrix of dimension n´n. 

1.5 Pairwise comparisons and prioritization in SWARA 

Stepwise Weight Assessment Ratio Analysis is a "direct" method of assigning weights 
based on quantitative priority in an ordered sequence [4]. (n–1) independent relations wi /wj = qk 
closes the normalization condition. A feature of the SWARA method in a procedure convenient 
for the decision maker: 

- the criteria are ordered in descending order of their expected significance; 
- the significance of the first criterion in the list is equal to 1; 
- starting from the second criterion, the respondent expresses the relative importance of 

criterion j in relation to the previous (j–1) criterion (w1/w2 = q1, w2 /w3 = q2, …, wn-1 /wn = qn-1). 

If we take w1=1, then wk = wk–1 / qk–1, k = 2, …, n.                       (19) 

Superiority values are well associated with percentages, which is very convenient, for 
example, w1/w2 =1,15 means that the quantitative significance of w1 exceeds w2 by 15%. Ordering 
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is also important, because when comparing, there is no need to remember the background and 
track the transitivity of judgments. Normalization of weights closes the system of linear equations: 

 (20) 

The method is deterministic. Setting a quantitative priority uniquely determines the 
weights, and vice versa. 

Obviously, any system of (n–1) independent relations wi/wj and the normalization condition 
are equivalent to SWARA.  

 
2. Evaluation of the consistency of the matrix of pairwise comparisons  

2.1 Spanning Graph approach  

In the general case, if the condition of “cardinal” consistency of PCs of the matrix A 
(aij∙ajk≠aik , ∀i, j, k) violated for any row of A, we can determine the priority vector. This also holds 
for any set of entries whose graph is a spanning cycle of the graph of the matrix. 

The spanning graph of the matrix A: any row of the matrix A or any set of elements taken 
one by one from each column of the matrix A without taking into account the repetition of 
reciprocal elements (aij=1/aji). 

The scheme for selecting a spanning graph for AHP is shown in Figure 2 for the case n=5.  

 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

1 ● ● ● ● ●  ◌ ◌ ● ● ●  ◌ ◌ ◌ ● ●  ◌ ◌ ◌ ◌ ●  ◌ ◌ ◌ ◌ ◌ 

2 ◌ □ ● ● ●  ● ● ● ● ●  ● □ ◌ ● ●  ● □ ◌ ◌ ●  ● □ ◌ ◌ ◌ 

3 ◌ ◌ □ ● ●  ◌ ◌ □ ● ●  ● ● ● ● ●  ● ● □ ◌ ●  ● ● □ ◌ ◌ 

4 ◌ ◌ ◌ □ ●  ◌ ◌ ◌ □ ●  ◌ ◌ ◌ □ ●  ● ● ● ● ●  ● ● ● □ ◌ 

5 ◌ ◌ ◌ ◌ □  ◌ ◌ ◌ ◌ □  ◌ ◌ ◌ ◌ □  ◌ ◌ ◌ ◌ □  ● ● ● ● ● 

 1x2x3x4=24  1x2x3x4=24  2x1x3x4=24  3x2x1x4=24  4x3x2x1=24 

Fig. 2. Spanning graph selection scheme for AHP 

 
Each diagonal element aii (brown) is combined with one of the elements of each column 

aij (blue) in a graph of n elements. Thus, n! spanning graphs. Each spanning graph is an n-
dimensional vector and is a collection of wi/wj ratios. The normalization condition closes this 
system of relations, which makes it possible to determine the weights. The solutions differ by a 
multiplicative constant. However, normalization results in a unique solution no matter which graph 
is used. 
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Example 2: 

 Spanning Graph (iXY) Calculation  
 P=[1  1/4   1/6  1/4  1/8 
       4   1      1/3   3    1/7 
       6   3      1      4    1/2 
       4   1/3   1/4   1    1/7 
       8   7      2      7    1]; 
 

iXY=(21  22  13  24  15),   
 
q=(p21  p22  p13  p24  p15)=  
    (4    1   1/6   3   1/8) 
 
wi/wj =pij     

w2=1,  
w2/w1 =4    ⇒ w1=1/4, 
w1/w3 =1/6 ⇒ w3=3/2, 
w2/w4 =3    ⇒ w4=1/3, 
w1/w5 =1/8 ⇒ w5=2, 
After Normalization: 
w=(0,049  0,197  0,295  0,066  0,393) 
 

 

The general algorithm for determining the set of spanning graphs based on the pairwise 
comparison matrix is given in Appendix A. 

Each spanning graph reflects one of the possible interactions of a set of n objects. 
Thus, N=n! weight coefficients w(k)=(w1(k), w2(k), …, wn(k)). 
Each set of weight coefficients reflects a certain inconsistency in the decision maker's 

preferences. 
As a result, we have a spectrum of N weight values for each object. 
For example 2, there are 120 spanning graphs, for each of which the corresponding set of 

weight coefficients is defined: 

 # Pij elements    Weight 
-- ------------ -----------------------  
1: 11, 12, 13, 14, 15,     0.043, 0.174, 0.261, 0.174, 0.348,  
 2: 11, 12, 13, 14, 25,    0.023, 0.093, 0.140, 0.093, 0.651,  
 3: 11, 12, 13, 14, 35,    0.037, 0.148, 0.222, 0.148, 0.444, 
… 
 23: 11, 12, 23, 34, 35,   0.023, 0.091, 0.273, 0.068, 0.545,  
 24: 11, 12, 23, 34, 45,   0.024, 0.098, 0.293, 0.073, 0.512,  
 25: 21, 22, 13, 14, 15,   0.043, 0.174, 0.261, 0.174, 0.348,  
… 
 27: 21, 22, 13, 14, 35,   0.037, 0.148, 0.222, 0.148, 0.444,  
… 
 71: 31, 32, 33, 34, 35,   0.044, 0.089, 0.267, 0.067, 0.533,  
 72: 31, 32, 33, 34, 45,   0.048, 0.095, 0.286, 0.071, 0.500,  
 73: 21, 32, 43, 44, 15,   0.036, 0.143, 0.429, 0.107, 0.286 
… 
118: 51, 42, 53, 54, 55,   0.057, 0.195, 0.228, 0.065, 0.455,  
119: 51, 52, 43, 54, 55,   0.063, 0.072, 0.288, 0.072, 0.505,  
120: 51, 52, 53, 54, 55,   0.065, 0.075, 0.262, 0.075, 0.523, 
Mean:                                0.034  0.123  0.276   0.074  0.493 
---------------------------------------------------------------------- 
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The distributions of the values of the weight coefficients of various objects (Drinks) for 
the decision matrix of the example in Table 1 are shown in the Figure 3. 

To isolate the “true” solution in such situations, averaging of the results is used. As you 
know, the mean value is the optimal solution that minimizes the square of the deviation: 

. (21) 

After finding the average values for each component, re-normalization is required. 
Let's denote the proposed approach as MSG (Mean of Spanning Graphs). 
 

 
Fig. 3. The distributions of the values of the weight coefficients of various objects for the decision matrix 

of the example according to the Table 1.  

 
The main advantage of MSG is the natural interpretation of the consistency of judgments 

of the decision maker, which is expressed by the distribution of weight coefficients. Now, as a 
measure of consistency, you can use the amount of dispersion of weight values from the average - 
the standard deviation. The smaller the standard deviation, the more consistent the pairwise 
comparison matrix. 

The results of the MSG weight calculation in comparison with the weighting methods EVM 
(Eigenvector Method), LSM (Least Squares Method) and GMM (Geometric Mean Method) are 
presented in Table 2. 
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Table 2. Weights of objects of example 1 obtained in various prioritization methods 

 w1 w2 w3 w4 w5 w6 w7 
AHP EVM (CR=0,022) 0,177  0,019  0,042  0,116  0,190  0,129  0,327 
AHP LSM  0,178  0,021  0,039  0,111  0,190  0,121  0,340 
AHP GMM (LLSM) 0,179  0,018  0,042  0,116  0,191  0,129  0,324 
AHP MSG  0,178  0,017  0,043  0,116  0,194  0,126  0,326 

standart deviation, s 0,040  0,005  0,009  0,025  0,039  0,031  0,074 

 
The basis of the MSG method is the lack of “cardinal” consistency of the PCs matrix due 

to the following objective and subjective factors: 
1) the numerical scale of paired comparisons is discrete and limited. Indeed, if the 

quantitative importance is a12 = 3 and a23 = 5, then in the case of a consistent judgment, a13 = 15. 
However, for example, for a 9 point scale, the closest value to 15 is 9. We will have to accept a13 

= 9, 
2) transitivity of judgments is not always observed. If, for example, the relative importance 

of criterion С1 is greater than that of С2, and the relative importance of С2 is greater than С3, then 
the relative importance of С1 need not be greater than the importance of С3, 

3) in reality, people's feelings and preferences remain inconsistent, since people's feelings 
do not correspond to an exact formula. 

 

Hypothesis: The weight distribution of each criterion is Normal 

Significant deviations from normality (multimodality, skewness and kurtosis in 
distribution, fat tails) should indicate a conflict in comparisons of different pairs or groups of 
objects. 

2.2 Consistency of CR score and standard deviation in MSG 

Let's perform a numerical experiment to determine the consistency of the CR indicator in 
AHP and the standard deviation in MSG. To do this, we scale the numerical scale of pairwise 
comparisons used at stage 2 (see the diagram in Fig. 1). It is a well-known fact (see, for example, 
[29]) that shrinking the scale [1, m] leads to: 

λmax → n   and  CR→0. 

The task is to determine the consistency of the CR and standard deviation in MSG when 
scaling. To do this, we use the Pearson correlation between CR and std(wi). 

The linear scaling of the F scale must satisfy the conditions: 

1) F: [1, m] → [1, t], mÎN, tÎR, 
2) F is strictly increasing, 
3) F(1) = 1, F(m) = t. 
Simple expansion-contraction using a fixed point allows you to do this conversion: 
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F(x) = (x–1)∙(t–1)/(m–1) + 1      (22) 

Note: the linear transformation does not preserve the transitivity of judgments: 
the condition aij ∙ ajk = aik does not imply that F(aij) ∙ F(ajk) = F(aik), ∀i, j, k. 

However, strict transitivity can be neglected if the consistency of judgments in the matrix 
of pairwise comparisons is maintained. 

The elements of the matrix of paired comparisons are transformed for aij>1 according to 
the formula (22) for x=aij  

       (23) 

For other values, we use the principle of reciprocity: . 

The main problem of choosing a numerical scale is to determine the quantitative superiority 
of one object of comparison over another. If in the Saaty scale (m=9) the linguistic term “extremely 
more important” corresponds to the numerical value 9, then in the new scale at t=2 the same term 
will correspond to the value 2. As the author of AHP pointed out, it should not be taken literally 
that the quantitative superiority of one criterion over another will be 9 or 2 times. This is just a 
conditional indicator for the subsequent assessment of the weight of the criteria, and the choice of 
the scale is determined by the correspondence to empirical data. A formal description of the 
quantitative importance of criteria, based on a strict definition of the concept "One criterion is 
more important than another in so many times" was given by V. Podinovsky [30, 31]. 

It is unequivocally true that contraction of the scale [1, m] leads to CR→0. 
Figure 4 shows the dynamics of the degree of consistency of the PCs matrix and the 

standard deviation when the numerical scale Saaty (m=9) is compressed from 1 (t=9) to 7.5 (t=1,2) 
times for the problem of example 1. The scale compression ratio is equal to m/t. 

 
Fig. 4. Dynamics of the degree of consistency ratio (CR) of PCs matrix and the standard deviation when 

compressing the numerical scale from 1 (t=9) to 8 (t=1,2) times for the task of example 1. 

The Pearson correlation values between CR and std(wi) are respectively: 
0.985, 0.115, 0.711, 0.958, 0.994, 0.942, 0.980. 
Correlations close to 1 indicate consistency between the CR score and standard deviation 

in MSG. The low values of correlations corr(CR,w2) are due to the small value of std(w2) and the 
low variability of the standard deviation when the scale is compressed (Fig. 3). 

( ) ( ) ( )* –( 1 –1 / –1 1)ij ijija F a a t m= = × +

* *1/ji ija a=
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Thus, the numerical experiment indicates the correctness of using the standard deviation 
defined in MSG as a measure of the consistency of the PCs matrix. 

 
2.3 Sorting of objects of analysis and matrix of paired comparisons 

The ordering of the criteria in the SWARA schema is a useful prioritization tool for the 
expert, because when comparing, there is no need to remember the background and it is easier to 
track the transitivity of judgments. It is obvious that when the sequence of the list of criteria is 
changed, the result of the evaluation of the weight coefficients will not change. 

Each of n! the system of n independent ratios wi/wj and the normalization condition are 
equivalent to SWARA. Therefore, we re-sort both the objects and the corresponding system of 
spanning graphs. 

If the researcher has at his disposal a matrix of paired comparisons on an unsorted list (as 
in example 2), then when changing the sequence of criteria, it is necessary to re-sort the matrix of 
pairwise comparisons according to a simple algorithm: 

 

%-- input P0 -Pairwise Comparison Matrix 
P0=[1 1/4 1/6 1/4 1/8 
    4 1   1/3 3   1/7 
    6 3   1   4   1/2 
    4 1/3 1/4 1   1/7 
    8 7   2   7   1]; 
n=size(P0,2); 
for i=1:n  %-- iXY0-index Matrix for P0 
     for j=1:n 
          iXY0(i,j)=10*i+j; 
     end 
end 
%-- EigenVector w0  for max EigenValue:  

w0=eigs(P,1); 
%-- new selection of criteria order ps 
[w1 ps]=sort(w0,'descend'); 
[P iXY]=Fun_Seq(P0,p); 

function [P iXY]=Fun_Seq(P0,p) 
 
n=size(P,2);   
for i=1:n 
     for j=1:n 
         iXY(i,j)=10*p(i)+p(j); 
         P(i,j)=P0(p(i),p(j)); 
     end 
end 
%  iXY-index of Matrix for new PCs matrix 

>> 
 P=[  1   2    7    7   8   
    1/2  1    3    4   6   
    1/7  1/3  1    3   4   
    1/7  1/4  1/3  1   4   
    1/8  1/6  1/4  1/4 1] 

 
iXY=[55, 53, 52, 54, 51,  
     35, 33, 32, 34, 31,  
     25, 23, 22, 24, 21,  
     45, 43, 42, 44, 41,  
     15, 13, 12, 14, 11,] 

 
To sort the list in the above algorithm, the MatLab functions are used: eigs() and sort(). 
After sorting, the pairwise comparison matrix in AHP is such that all elements above the 

main diagonal are >1 and all elements below the main diagonal are <1. Additionally, the elements 
in each row form a non-decreasing list, and the elements in each column a non-increasing list. 
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2.4 Spanning Graph for BWM, DEMATEL and SWARA 

The set of spanning graphs in the BWM method for a list of criteria sorted in descending 
order of weight is formed according to the following scheme (Fig. 5) and represents 2∙(n–1)! sets 
of n elements, taken one from each column. 

 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

1 ● ● ● ● ●  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌ 

2 ◌ □ ● ● ●  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ● □ ◌ ◌ ◌ 

3 ◌ ◌ □ ● ●  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ● ● □ ◌ ◌ 

4 ◌ ◌ ◌ □ ●  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ● ● ● □ ◌ 

5 ◌ ◌ ◌ ◌ □  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ● ● ● ● ● 

 1x2x3x4=24           4x3x2x1=24 

Fig. 5. Scheme for selecting spanning graphs in the BWM method 

In the general algorithm for determining the set of spanning graphs based on the pairwise 
comparison matrix given in Appendix A, the set of spanning graphs of the BWM method is the 
first and last (n–1)! sets of the general list of spanning graphs: 

iXY(i,1:n)),  i=1,…,K & i=(n-1)·K+1,…, N, N=n!, K=(n-1)! 

The set of spanning graphs in the DEMATEL method for a list of criteria sorted in 
descending order of weight is formed according to the following scheme (Fig. 6) and represents 
(n-1)! sets of n elements, taken one from each column. 

 1 2 3 4 5  1 2 3 4 5  1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

1 ● ● ● ● ●  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌ 

2 ◌ □ ● ● ●  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌ 

3 ◌ ◌ □ ● ●  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌ 

4 ◌ ◌ ◌ □ ●  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌ 

5 ◌ ◌ ◌ ◌ □  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌  ◌ ◌ ◌ ◌ ◌ 

 1x2x3x4=24            

Fig. 6. Scheme for selecting spanning graphs in the DEMATEL method  

In the general algorithm for determining the set of spanning graphs based on the pairwise 
comparison matrix given in Appendix A, the set of spanning graphs of the DEMATEL method is 
the first (n–1)! sets of the general list of spanning graphs: 

iXY(i,1:n)),  i=1,…,K, K=(n-1)! 

It is easy to see that the SWARA scheme uses only one of the possible spanning graphs, namely: 
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 1 2 3 4 5 

1 ● ● ◌ ◌ ◌ 

2 ◌ □ ● ◌ ◌ 

3 ◌ ◌ □ ● ◌ 

4 ◌ ◌ ◌ □ ● 

5 ◌ ◌ ◌ ◌ □ 

Fig. 7. Scheme for selecting spanning graphs in the SWARA method  

Thus, the authors of [4] of the SWARA approach excluded preference errors from 
consideration and determined the procedure for directly assigning weights to decision makers. 

3 Numerical example of weight estimation using MSG method within AHP, BWM, 
DEMATEL and SWARA 

Below (Table 3 and Table 4) are sequential results of weight estimation using the MSG 
approach for the example 1 task in the AHP, BWM, DEMATEL and SWARA methods.  

The results of all methods (except SWARA) are in good agreement. 

Table 3. Results of successive steps of the MSD method 

PCs iXY, ps=(7, 5, 1, 6, 4, 3, 2) P1 
1     9   5     2     1     1     1/2 
1/9  1   1/3  1/9  1/9  1/9  1/9 
1/5  3   1     1/3  1/4  1/3  1/9 
1/2  9   3     1     1/2  1     1/3 
1     9   4     2     1     2     1/2 
1     9   3     1     1/2  1     1/3 
2     9   9     3     2     3     1 

77  75  71  76  74  73  72 
57  55  51  56  54  53  52 
17  15  11  16  14  13  12 
67  65  61  66  64  63  62 
  7  45  41  46  44  43  42 
37  35  31  36  34  33  32 
27  25  21  26  24  23  22 

1     2     2     3     3     9     9 
1/2  1     1     2     2     4     9 
1/2  1     1     1     2     5     9 
1/3  1/2  1     1     1     3     9 
1/3  1/2  1/2  1     1     3     9 
1/9  1/4  1/5  1/3  1/3  1     3  
1/9  1/9  1/9  1/9  1/9  1/3  1 

BWM DEMATEL, B= SWARA 
 
Best-to-Other, (1st row of P1) 
AB =(1  2   2   3   3   9   9) 
 
Other-to-Worst, (nth col of P1) 
AW =(9   9   9   9   9   3  1) 
 

   0   1   1   2   2   8   8 
   0   0   0   1   1   3   8 
   0   0   0   0   1   4   8 
   0   0   0   0   0   2   8 
   0   0   0   0   0   2   8 
   0   0   0   0   0   0   2 
   0   0   0   0   0   0   0 

q=(1  2  1  1  1  3  3) 
 
w1 =1, 
wk = wk–1 / qk,  k = 2, …, n. 
 
w=(1  0,5  0,5  0,5  0,5  1/6  1/6) 
 

 

Table 4. Weighing result and relative error 

Weighing method w1 w2 w3 w4 w5 w6 w7 
AHP EVM (CR=0,022) 0,327 0,190 0,177 0,129 0,116 0,042 0,019 

AHP MSG  0,349 0,189 0,169 0,125 0,111 0,040 0,019 
standart deviation, s 0,046 0,033 0,031 0,026 0,022 0,008 0,009 

BWM      0,297 0,191 0,191 0,127 0,127 0,042 0,024 
BWM MSG  0,338 0,185 0,176 0,127 0,116 0,041 0,017 

standart deviation, s 0,062 0,035 0,033 0,026 0,023 0,007 0,007 
DEMATEL 0,309 0,180 0,175 0,135 0,135 0,044 0,022 

DEMATEL MSG 0,355 0,177 0,177 0,126 0,105 0,039 0,020 
standart deviation, s 0,020 0,010 0,010 0,030 0,020 0,006 0,009 

SWARA 0,3 0,15 0,15 0,15 0,15 0,05 0,05 
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Relative error (x-y)/x∙100% 
BWM vs AHP EVM, % 9,2 0,5 7,9 1,6 9,5 0,0 26,3 
DEMATEL vs AHP EVM, % 5,5 5,3 1,1 4,7 16,4 4,8 15,8 
SWARA vs AHP EVM, % 8,3 21,1 15,3 16,3 29,3 19,0 163,2 

AHP MSG vs AHP EVM, % 6,7 0,5 4,5 3,1 4,3 4,8 0,0 
BWM MSG vs AHP EVM, % 3,4 2,6 0,6 1,6 0,0 2,4 10,5 

DEMATEL MSG vs AHP EVM, % 8,6 6,8 0,0 2,3 9,5 7,1 5,3 

 

The distributions of the values of the weight coefficients of the first object (after resorting 
it is Water), calculated on the basis of the MSG method for the matrix of pairwise comparisons 
according to the Table 1 are shown in Figure 8. 

 
Fig. 8. The distributions of the values of the weight coefficients of the first object calculated on the basis 

of the MSG method for the matrix of pairwise comparisons according to Table 1. 
 
4 Discussion 
In the discussion, we will try to answer the question about the effectiveness of the MSG 

method. 
According to Table 3, the results of all methods (except SWARA) are in good agreement, 

the discrepancy is about 5% on average. The strong discrepancy for the 7th object is due to the 
small value of the weight and low variability. 

The MSG weighting result is in line with AHP EVM and its peers, but its advantage cannot 
be determined due to the lack of performance criteria. 

The MSG approach is useful because it reveals the causal relationship between the pairwise 
comparison matrix and the decision through the distribution of weights computed on the set of 
spanning graphs. Now the degree of inconsistency of judgments has a natural interpretation in the 
form of the amount of dispersion in the distribution of weight coefficients. 

For the AHP, BWM, DEMATEL methods, the amount of information for estimating the 
weights is redundant. Therefore, these methods belong to evaluation methods and use "soft 
calculations" when finding a solution, based on minimization with an excessive number of 
connection equations. In the SWARA-method, the initial ratios wi/wj are quantitative, and mean 
how many times the i-th criterion is preferable to the j-th one. 

Unlike AHP, only 2∙(n–1) pairwise comparisons are performed in the BWM-method, 
which makes the task of the decision maker easier. However, it is not clear whether the reduction 
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in information content is sufficient for the correctness of the results. As in the previous case, the 
advantage of the method cannot be determined due to the lack of performance criteria. 

DEMATEL for evaluating the weights of the criteria, according to the author, is not 
justified due to the fact that the intensity of the impact of the i-th object on the j-th object and the 
preference of the i-th object over the j-th object are two different categories. Although there is no 
explicit reverse effect in the matrix, in the weighting method, the reverse effect takes place in the 
formula (16): T=B·(I-B)-1. The information content of the direct influence matrix in DEMATEL is 
significantly lower than the information content of the PCs matrix in AHP. A reasonable question 
is why apply the worst version of the method. 

The SWARA method is a “direct” method of assigning weights based on quantitative 
priority in an ordered sequence. Obviously, any system of (n-1) independent ratios wi/wj and the 
normalization condition are equivalent to the SWARA procedure, but give a different weighting 
result. Setting a quantitative priority uniquely determines the weights, and vice versa. It follows 
from this that it is possible to derive a priority vector using objective weighting methods using the 
information contained in the decision matrix (Entropy, CRITIC, SD methods [32]). The author 
repeatedly carried out such experiments: 

1) order the criteria, set the priority vector, determine the weights (SWARA), 
2) we determine the decision matrix, determine the weights (for example, CRITIC) and 

recalculate the priority vector using SWARA. 
Result: the discrepancy is catastrophic. 
Why not use a deterministic preference-based method (eg SWARA) to evaluate criteria 

weights? Because people's preferences remain inconsistent. Any row (column) of the pairwise 
comparison matrix in AHP, in combination with the normalization condition, represents a closed 
system and is sufficient to directly determine the weights of the criteria. However, it is easy to see 
that these rows (columns) are only partially consistent, although they represent preferences 
between the same criteria, but in a different sequence. 

 
5 Conclusions 

The MSG approach reveals the causal relationship between the pairwise comparison matrix 
and the decision through the distribution of weight coefficients calculated on the set of spanning 
graphs. The degree of inconsistency of judgments has a natural interpretation in the form of a 
scattering value in the distribution of weight coefficients. MSG needs a qualitative theoretical 
justification, which may constitute a direction for further research. According to the author, the 
solution to the problem of comparing weighting methods lies in the field of information theory. 
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Appendix A. MSG-method. MatLab code 

%-- MSG procedure 
%-- by Prof. Irik Z. Mukhametzyanov  
%-- Dec.21 2022, Ufa, USPTU 
 
clear all 
%-- Pairwise Comparison Matrix PCs: 
 P=[1  1/4  1/6 1/4 1/8 
    4  1    1/3 3   1/7 
    6  3    1   4   1/2 
    4  1/3  1/4 1   1/7 
    8  7    2   7   1]; 
n=size(P,2); 
in1=ones(n,n-1); 
in2=repmat([1:n-1],n,1); 
for k=2:n 
    for j=1:k-1 
        in1(k,j)=1+j;  
        in2(k,j)=k; 
    end 
end 
n1=in1'; n2=in2'; 
 
%- only for n=5 (for other n similarly) 
%  who can write a recursive function? 
ij=0; 
if n==5 
 for k=1:n 
  R(k)=10*k+k; 
  p=setdiff([1:n],[k]); 
  for i1=n1(1,k):n2(1,k)    
     for i2=n1(2,k):n2(2,k)   
       for i3=n1(3,k):n2(3,k)     
         for i4=n1(4,k):n2(4,k)   
             R(p(1))=10*i1+p(1); 
             R(p(2))=10*i2+p(2); 
             R(p(3))=10*i3+p(3); 
             R(p(4))=10*i4+p(4); 
             ij=ij+1; 
             iXY(ij,:)=R; 
         end 
       end 
     end 
  end 
 end 
end 
%----------------------------------- 
m=size(iXY,1); 
iX=floor(iXY/10); 
iY=iXY-iX*10; 
for ii=1:m 
  for i=1:n 
    G(ii,i)=P(iX(ii,i),iY(ii,i)); 
  end 
end 

 

% Calculation of weights for each  
% Spanning Graph: 
 
K=factorial(n-1); 
for k=1:n 
  q(k)=1; 
  for ii=K*(k-1)+1:K*k   %--rows G  
%-- left of diagonal element to element  
    in 1 column 
   for j=k-1: -1 : 1 
       q(j)=q(iX(ii,j))/G(ii,j);  
   end 
%-- right on diagonal element  
    to the element in the n column 
   for j=k+1: n 
       q(j)=q(iX(ii,j))/G(ii,j); 
   end 
   w(ii,:)= q/sum(q); 
   fprintf('\n%2d: ',ii) 
   fprintf('%d, ', iXY(ii,1:n)) 
   fprintf('%5.3f,', w(ii,1:n)) 
end 
fprintf('\n') 
 
>> 
 # Pij elements    Weight 
-- ------------ ----------------------- 

 1: 11, 12, 13, 14, 15,  0.043, 0.174, 0.261, 0.174, 0.348,  
 2: 11, 12, 13, 14, 25,  0.023, 0.093, 0.140, 0.093, 0.651,  
 3: 11, 12, 13, 14, 35,  0.037, 0.148, 0.222, 0.148, 0.444, 
… 
 23: 11, 12, 23, 34, 35,  0.023, 0.091, 0.273, 0.068, 0.545,  
 24: 11, 12, 23, 34, 45,  0.024, 0.098, 0.293, 0.073, 0.512,  
 25: 21, 22, 13, 14, 15,  0.043, 0.174, 0.261, 0.174, 0.348,  
 26: 21, 22, 13, 14, 25,  0.023, 0.093, 0.140, 0.093, 0.651,  
 27: 21, 22, 13, 14, 35,  0.037, 0.148, 0.222, 0.148, 0.444,  
… 
 71: 31, 32, 33, 34, 35,  0.044, 0.089, 0.267, 0.067, 0.533,  
 72: 31, 32, 33, 34, 45,  0.048, 0.095, 0.286, 0.071, 0.500,  
 73: 21, 32, 43, 44, 15,  0.036, 0.143, 0.429, 0.107, 0.286 
… 
118: 51, 42, 53, 54, 55,  0.057, 0.195, 0.228, 0.065, 0.455,  
119: 51, 52, 43, 54, 55,  0.063, 0.072, 0.288, 0.072, 0.505,  
120: 51, 52, 53, 54, 55,  0.065, 0.075, 0.262, 0.075, 0.523, 
Mean:                               0.034  0.123  0.276   0.074  0.493 
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