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Social network structure plays a key role in shaping processes in animal populations. These networks often show distinct

patterns in humans and other large mammals, with relationship strengths organized into di�erent tiers. Here, we used

continuous, �ne-scale tracking of four large captive colonies of zebra �nches (Taeniopygia guttata), revealing that zebra

�nches consistently have 1-2 closest contacts, 6-7 close contacts, and 22-24 strong contacts. The identities of these

contacts remain stable across days, with strong contacts maintained by spatial a�nity while closest and close contacts

are maintained by social choice. These results suggest that zebra �nches egocentric networks and social structure are

made up of consistent, di�erentiated relationships forming a multitiered social structure.

The similarities in patterns to other species suggest that fundamental principles, such as limitations in time and the

ability to move through social space, could drive common structural properties in animal social networks.
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Introduction

Social network structures have important implications for animal populations. They can shape the spread of disease[1],

what novel behaviours emerge[2][3], the patterning of cultures[4], and whether individuals are likely to cooperate or not[5]

[6]. Thus, how localised interactions scale up to shape the patterns of connections among individuals in a population is a

central question in social evolution[7]. The importance of social relationships[8][9] is re�ected in the diversity of ways that

social structure can be expressed. First, individuals can have multiple di�erent types of interactions with a given social

partner (e.g. grooming, aggressive, play)[10]. How these combine to form relationships is typically captured using

multilayered or multiplex networks, whereby each layer represents one interaction type[11][12]. Second, individuals can

have di�erent types of social partners (e.g. mate, alliance member, casual associate, competitor)[13], resulting in a variety

of social relationships[14][15]. Research on human societies has revealed distinct and consistent patterns in terms of the

number and identity of individuals we interact with socially[16]. From the frequency of calls[17]  to co-authorship
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networks[18], individuals maintain a substantially higher rate of contact with a few closest social partners[16]. More

formally, human egocentric networks have a fractal structure that is characterised by an increasing number of social

associates of decreasing relationship strength (with a consistent scaling ratio). Typically, relationship strengths can be

classed into tiers representing 1-2 closest social partners, 5 close relationships, 15 strong relationships, and so on[16] [but

see[19]  for a review of the limitations of these �ndings]. Recent investigations into animal societies suggest that many

species, including primates[20][21][22], cetaceans[23][24], other large terrestrial mammals[25][26], and birds[27][28], also live

in societies de�ned by such di�erentiated relationships.

When aggregated across multiple individuals, di�erentiated social relationships can give rise to a multitiered—or

multilevel—network structure[16][29]. These are de�ned as having communities (sets of strongly connected individuals)

that are composed of subcommunities (subsets of more strongly connected individuals, i.e. close and closest

relationships). Such with the same close social partners, strong social partners (and so on). In some societies, individuals

can freely join or leave social groups, even if they are commonly observed with the same set of associates (their closest

social partners). An example of this is bottlenose dolphin (Tursiops aduncus) societies[30]. In an extreme case, known as

multilevel societies[31], subcommunities move and make social decisions as one cohesive social entity or social unit.

Examples of stable social units are the one-male multi-female units that interact within some primate societies[32]  or

stable groups of vulturine guineafowl (Acryllium vulturinum) that �ssion-fusion with other stable groups[28]. In both cases

—those in which individuals make social choices and those where groups make social choices—can generate a multitiered

social structure. However, while evidence for true multilevel societies is increasing rapidly[31], evidence for multitiered

social structure arising in species where individuals make more autonomous decisions remains scarcer.

Detecting multitiered social structures in non-human animals is challenging. This is because it requires precisely knowing

social preferences at the individual-level and tracking these over time to establish how stable they are. It then requires

being able to obtain this information across a su�cient number (and complete set) of interconnected individuals to obtain

a meaningful picture of population structure[33]. Traditional sampling methods, such as visual observations of interactions

among individuals, do not easily scale to large numbers of individuals[34] and thus have limited the ability of studies to

capture the large-scale structural consequences of individual-level social decisions (Table 1). Such observations are

especially challenging to conduct in birds. For this reason, the social lives of birds beyond cooperative breeding have been

understudied, resulting in a mammal bias despite birds being potentially rich in complex social behaviours[27][35].
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Table 1. Mean tier sizes for non-human animals. (tier 1: small alliance or mother-o�spring unit; tier 2: family; tier 3: bond

group; tier 4: clan; tier 5: sub-population; tier 6: population). There is a scarcity of research on egocentric networks that

detect the fractal hierarchical pattern of relationship di�erentiation. Similarly, studies investigating multitiered (including

multilevel) social structures with extensive data collection, stable individual identities in groups, and experiment

replication are also limited.

There are good reasons to believe that fractal patterns of relationships in egocentric networks, and emergent multitiered

structures in larger-scale networks, may be more widespread than just in humans and large mammals[27][36]. We predict

that these are especially likely to be discovered in species that maintain long-term social bonds with both mates and non-

reproductive social partners within a large, seemingly open society. This is because social relationships in animals take

time to form[37]. After all, individuals are generally limited in how many social interactions they can have at once (e.g.

grooming relationships are generally dyadic)[38], and because the inherent embedding of social associations in

space[39] promotes repeated associations within consistent subsets of individuals. Such drivers may, therefore, control the

number of tiers (number of di�erent types of social relationships) and community sizes of di�erent tiers. A key question is

whether they do so in similar ways across di�erent species, and to what extent they are driven by individual social

choice[14][15].

Here, we bridge the gap between studies of individual-level decision-making and population- level multitiered social

structure by using continuous and �ne-scale tracking in four large (N≍80, see table S1), replicated colonies of captive

zebra �nches (Taeniopygia guttata).

Zebra �nches are highly social birds that can naturally form colonies of 24 to over 200 individuals[40][41]. Within colonies,

individuals typically move in mixed-sex pairs or small groups[41]  and socialise at ‘social hotspots’[42]. Individuals form

and maintain long-lasting non-breeding social preferences with other individuals[43], and these are often expressed by

frequent ‘clumping’—two or more birds sitting on a perch in body contact with each other[44]  where they allopreen or

express other a�liative behaviours[45]. Previous studies suggest that these colonies form the substrate for song cultures to

emerge and be maintained[46]  and maintain consistent group-level social structures[47]; however, the mechanisms

underlying how social structure emerges are still poorly understood[48][49][50].
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In our study, each individual in each colony was �tted with a unique machine-readable barcode[51], allowing their position

to be tracked continuously (every two seconds from morning to evening) over 36 days per colony. Birds were tracked after

being introduced to unfamiliar members of the opposite sex and studied in mixed-sex colonies (e.g. N=40 males and 40

females). We then used the tracking data to construct egocentric and colony-level social contact networks (�g. S1, movie

S1). A major challenge to drawing �rm conclusions about how social structure emerges is that studies (i) typically

confound spatial and social processes and (ii) use a wide range of di�erent methods (Table 1). Here, we used a network

edge de�nition that disentangles social choice from spatial co-occurrences[52]  and null models[53]  to determine the

relative contributions of social and spatial choices on the structure of zebra �nch social networks. Speci�cally, we

quanti�ed social contacts (i.e. ’clumping’) based on the proximity of barcodes (equivalent to two halves of a zebra �nch

body width apart) and de�ned network edge weights as the number of frames that two individuals were clumping divided

by the number of frames in which both birds were located on the same perch (i.e. in the same spatial location).

Our approach allowed us to examine the decisions that individuals made—in terms of whom to associate with—

conditioned on spatial proximity (i.e. being on the same perch) instead of confounding preferences for whom to associate

with where in space individuals choose to be. Clumping behaviour never happens (or at least is not maintained) without

social choice, as zebra �nches maintain consistent inter-individual spacing on perches (see �g. S1 and movie S1). We then

constructed two null models, one that randomised the identities of birds within perch and a second that randomised the

identities of birds within the whole aviary.

These models allowed us to examine how observed results deviate from the expectations when removing only the

preference for whom to clump with (within perch randomisations) or removing both social and spatial preferences (within

aviary randomisations). To analyse the social networks, we used established methods from the human literature for

egocentric networks[54]  and methods recently proposed to test for the presence of multilevel social structures in

animals[31]. These methods are largely parameter-free, allowing us to objectively generate results that are directly

comparable to current and future studies.

Results

Zebra �nches have consistent closest, close, and strong social partners

The large amount of positional data (mean=1.88 million detections per aviary per day) enabled us to construct daily social

networks. This allowed for both within- and between- colony replications when examining the consistency of egocentric

network structure across days. We �rst used the Jenks natural breaks algorithm[55] to identify di�erent categories of social

contacts in the egocentric networks of 152 male and 151 female zebra �nches (e.g. Fig. 1A, B). This algorithm identi�es

clusters by minimising within-cluster distances and maximising between-cluster distances. As expected, we found an

increase in the goodness of variance �t (GVF) index with the number of clusters in each individual’s networks (i.e. GVF=1

when all the nodes are in the same cluster). We then used the cut-o� at GVF = 0.85 ego-networks (N=303), the GVF indexes

exceeded the recommended cut-o� when the number of clusters was four (Fig. 1C). These results suggest that birds had

four clusters (or tiers) of relationships: closest, close, and strong social partners, with the fourth cluster representing loose

acquaintances or individuals without a strong social relationship (Table 2, �g. S3-6). The number of partners of each type
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did not di�er between males and females (�g. S2A) and was consistent over time (Fig. 1D). Birds generally had more

opposite-sex social partners of all types. However, females had more same-sex closest and close partners compared to

males, while males had more opposite-sex partners compared to females (�g. S2B).

Figure 1. The fractal social structure in zebra �nches using Jenks natural breaks algorithm in from four large (n=80)

replicated colonies.

Observed egocentric network in a (A) male and (B) female, showing closest (inner circle), close (middle circle), and strong

(outermost circle) relationships (squares=males, circles=females) based on Jenks natural breaks algorithm in real

experiments’ raw data. (C) Goodness of variance �t (GVF) index for Jenks natural breaks algorithm for daily ego-network

of 303 individuals, with GVF = 0.85 (dashed line) consistently revealing four clusters in real experiments. (D) The number

and temporal trend of social partners in each cluster was largely consistent across individuals and across time. The solid

lines represent mean value, and the dashed lines show 95% con�dence intervals. (E) The number of preferred social

partners increased exponentially across di�erent tiers. The points are the logarithmic mean value of the number of

relationships.
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Tier
Number of Relationship

Real Experiment Null Model 1 Null Model 2

1 (lowest) 1.69 (1.63–1.75) 0.25 (0.21–0.28) 0.00 (0.00–0.01)

2 6.30 (6.06–6.54) 4.09 (3.85–4.33) 1.00 (0.79–1.22)

3 22.97 (22.26–23.68) 40.85 (39.94–41.76) 50.60 (49.43–51.78)

4 (highest) 51.63 (50.55–52.72) 33.75 (32.69–34.81) 24.00 (22.78–25.22)

Table 2. The number of relationships across di�erent tiers among the real experiment and the two null models. Values in

brackets represent 95% con�dence intervals (n = 303).

We then tested for the occurrence of a fractal pattern of relationship di�erentiation in the egocentric networks. Fractal

patterns occur when the number of preferred social partners increases exponentially across di�erent tiers, resulting in a

consistent ratio in the number of social partners from one tier to the next[16]. This analysis revealed that the number of

relationships at higher tiers is 3.77 times (e^1.326, the slope of the regression equation) that of the tier below it (Fig. 1E).

This linear slope of the log of the number of relationships in each tier provides evidence that zebra �nch egocentric social

networks are structured in a manner that is consistent with fractal patterns.

The strength of an individual’s contact with each member of the colony was also consistent from one day to the next. The

average cosine similarity[56] across individuals ranged from 0.67 to 0.76 (full results in table S2), which is substantially

higher than what is expected by chance (0.19-0.35, calculated by randomly swapping the identities of individuals within

each network but di�erently across days). This suggests that not only is the structure of the egocentric networks

consistent from day to day but also the identities of the closest, close and strong social partners are consistent from one

day to the next.

To gain a better understanding of the relative roles of spatial co-occurrence and individual social choices in determining

the distribution of social relationships in egocentric networks, we employed two null models. In the �rst null model, we

tested for major social preferences by permuting the identities of individuals on the same perch at the same time. This

examines the consequences of individual decisions about who to have body contact with within the subset of most likely

(or spatially proximate) associates. We note that the presence of two individuals on the same perch may also represent a

social preference. However this would unlikely to result in clumping by chance. In the second null model, we tested for the

e�ect of spatial preferences (which perch to use) on who individuals interact with by permuting the individual identities

across perches.

We found that when removing spatial and social preferences (null model 2), individuals maintained no closest and close

relationship (Table 2). Of note, the relationship between tier and the log of number of social partners in each tier was not

linear, indicating a loss of the fractal nature of the egocentric networks under null model 2 (Fig. 1E). When maintaining
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spatial, but no social, choices (null model 1), individuals still expressed closest and close relationships, but fewer than in

the observed data (Table 2). Under null model 1, the slope for the regression suggests a reasonable �t to the data (Fig. 1E).

However the slope is very steep, indicating that the number of relationships grows disproportionately faster at higher tiers

(e.g. from 0.2 to 4, and from 4 to 40). Finally, it was only in the observed data that we detected all three lower (or inner)

tiers (containing < 40 individuals, Table 2). Together, these models suggest that similarities in space use play an important

role in partitioning societies into broad social units (i.e. forming the higher, or outer, tiers of preferences in egocentric

networks, Fig. 1E), which are commonly known as communities, but that the social decisions that individuals make within

their spatial associates play a critical role in generating lower tiers, in which individuals express more distinct social

preferences (i.e. more relationships with higher strength were shown in real data, Fig. 1E).

Consistent, di�erentiated relationships result in multitiered social networks

Individual zebra �nches express clear social preferences within their most spatially proximate conspeci�cs. These patterns

should not—in and of themselves—produce a multitiered structure. For example, territorial individuals have a distinct set

of �rst-degree neighbours, second-degree neighbours, and so on. However, the overall structure is lattice- like, meaning

that second-degree neighbours are rarely shared among �rst-degree neighbours. This contrasts with clustered sets of

strongly interconnected individuals that share similar closest, close, and strong social partners, forming a multitiered

social structure.

To test whether the social preferences of zebra �nches resulted in a multitiered social structure, we applied the ’Louvain’

community detection algorithm, which uses an iterative approach to identify hierarchical subgroups by maximising

connection density within versus between groups across tiers[31]. This analysis revealed second and third tier communities

in each colony (the �rst tier represents each single individual as a distinct community), with bootstrapping

analyses[57] con�rming that this structure was robust (Table 3). The average size of the second tier community was 3.68

and 8.55 for the third tier community (Fig. 2A, table S3). These values are slightly larger than the closest and close

associates found using the egocentric network approach (by one individual in each, after accounting for the ego).
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Figure 2.The community structure of zebra �nch colony-level social networks contains multiple distinct tiers. (A) The

distribution (box plots) and mean (diamonds) group sizes for di�erent Horton orders (i.e. community tier in the social

network). (B) The log number of groups in di�erent Horton orders found in each day’s network (N = 30 days across four

replicate colonies, bars show maximum and minimum values) among the real experient and two null models. The points

are the logarithmic mean value of the number of relationships (note that all three datapoints overlap at x=1).

Population
R_com using the 'Louvain' algorithm

Tier 2 Tier 3

Replicate 1 0.6628 0.5460

Replicate 2 0.8129 0.7155

Replicate 3 0.7698 0.6410

Replicate 4 0.9052 0.7874

Table 3. Revealing the multitiered social structure of zebra �nch colonies. The robustness index (Rcom) suggests that a

network has a substantial community structure when it exceeds 0.5. All colonies showed substantial structure for both tiers

(range 0.55-0.91, note tier 1 is always the individual itself).

Two tiers were identi�ed in both null models 1 and 2 (Fig. 2B), but the community structure in each colony was only robust

in null model 1 (table S4). Like with the egocentric networks, we found that the tier corresponding to closest associates was

absent in both null models, resulting in a steeper decline in the number of communities detected as a function of the
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number of tiers (Fig. 2B). In other words, there were more individuals within each group for a given tier in the null models

than in the real, observed data. These results suggest that, as with the egocentric network approach, tiers representing

weaker relationships (more occasional social partners) of the network can emerge as an outcome of spatial preferences,

but the tiers representing stronger social relationships in the network emerge as a function of individuals’ speci�c social

choices within the set of frequently available associates.

Finally, we used the Horton analysis[54]  to test whether the community structure was also fractal-like. The regression

slope between the community tier (the Horton number) and the log number of groups detected (calculated for each daily

network) was -1.056 (Fig. 2B), corresponding to a Horton-Strahler branching ratio of 2.87 (see Methods for details). The

linear �t of this regression suggests that a network with B branches can be split into B further branches, each growing in

size by a factor of 2.87. These numbers align with the results of our analysis of the egocentric networks (Fig. 1E).

Discussion

We found that the distribution of social contacts among zebra �ches is highly structured, both from the perspective of an

individual and of the overall structure of the social network. Across four replicated colonies, individuals had, on average, 1-

2 closest, 6-7 close, and 22-24 strong social partners, where social relationships were de�ned as sitting in close body

contact. These patterns are qualitatively similar to those observed in humans (see Table 2 in Dunbar[16]), and the Horton

branching ratio of 2.87 is similar to humans, primates, and other large mammals that all have values close to 3[54].

Importantly, the two null models showed that the properties that we detected were not attributed solely to di�erences in

space use among individuals and re�ected choosiness among individuals, even among their frequent social partners. Thus,

zebra �nches appear to maintain consistent higher-tier structure (strong social associates) across days that emerge from

their choice of where to be while expressing notable carry-over of their closest social partners from day to day that

emerged from social choices.

One important question is whether the tiered nature of the zebra �nch social structure corresponds to a multilevel society.

While individual zebra �nches maintain a consistent set of closest associates, and these are also closest associates with one

another (hence the fractal nature of the network), there is no evidence that these sets of close associates act as a stable

social units. For example, the cosine similarities, though higher than expected by chance, never reached 1 (table S2).

Multilevel societies have a distinct form of social structure where the higher tiers (e.g. close and strong social partners) are

the result of interactions between groups of individuals that form lower tiers (the closest social partners), and thus where

the lower tiers (or lowest tier) represent a distinct and stable social unit[31]. For example, in superb fairywrens (Malurus

cyaneus), members of the same social unit (called a breeding group) are always found together[27]. Similarly, outside of

breeding, groups of vulturine guineafowl remain together and move cohesively[58], even when there is a con�ict over

where or when to move[59]. Thus, higher-tier associations in these species are the outcome of lower-tier collective

decisions. By contrast, individual zebra �nches are likely to have substantially greater independence when making

decisions, meaning that they can temporarily �ssion and fusion as individuals, even if they do maintain several closest

social relationships.

The pattern of multilevel social structure has been observed in many species, comprising levels such as troops, clans, and

bands (Table 2). Previous studies have suggested that certain ecological pressures may contribute to the formation of these
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multilevel societies. These pressures include adapting to �uctuating food availability, maintaining spatial cohesion to

avoid predator pressure[60], and fostering cooperative behaviour[27]. While zebra �nches do not live in multilevel societies,

we found that the number of contacts increases exponentially in each tier of individuals’ social environments in a similar

way.

These patterns raise questions about how multilevel societies evolve. While most research has focused on factors that drive

between-group social contact, it is also possible that the multitied structure of multilevel societies could arise �rst. The

resulting patterns, which include repeated social contacts among small subsets of individuals (closest relationships), may

then promote various forms of cooperative investment [e.g. generalized reciprocity[61] or high-cost investments[62]]. The

resulting interdependence among individuals[63]  may then select for increased social stability, eventually leading to the

formation of stable groups.

A major gap in knowledge is the question of how common tiered egocentric networks are in nature. Our literature search

(Table 1) found relatively few examples, which were mostly in mammals. One reason for this gap is that it is progressively

more challenging to collect the necessary data to accurately characterise each edge in a social network as we zoom out to

higher tiers [see[64]  for further discussion]. Without the ability to accurately estimate each edge, subsequent analyses

aiming to identify putative tiers would become subject to substantial error. In our study, we were able to identify four

putative tiers in zebra �nch social networks because our tracking system allowed us to collect high-resolution spatial and

temporal data in much larger colonies than what had been previously studied. Previous to our study, individuals had been

studied in social contexts where they were unlikely to face many of the limitations that give rise to the patterns we

uncovered (e.g. in small colonies) or could only track a small portion of the population[43]. Yet, even our colonies, which

were comprised of 80 birds each, were also much smaller than some of the �ock sizes naturally found in nature. For

example, zebra �nches can exist in �ocks of up to 300 birds in non- breeding seasons[65]. Thus, we were likely to have

been limited in our ability to quantify the precise number of individuals present within the higher social tiers of

individuals’ egocentric networks (i.e. the fourth tier or any tiers above that). Studying �ne-scale structures in such large

groups remains a long-term challenge for the �eld[33]. Future work on larger colonies would be needed to better resolve

the higher tiers of zebra �nch societies.

A major question is where the outer bound to individuals’ abilities to maintain known social relationships is. Some bird

species, such as superb starlings (Lamprotornis superbus) and vulturine guineafowls (Acryllium vulturinum), can maintain

large group sizes (e.g. up to at least 65 individuals in the latter)[66][67]  with consistent social membership that can last

over months or years[68]. Thus, it is likely that—at least in some birds—the outer bound could exceed 60 individuals. From

the regression in Fig. 2B, we can also �nd that the horizontal intercept in the observed data is about 5, meaning that zebra

�nches may have the potential to form a community of the �fth Horton order. The size of a community at that order would

be about 68 individuals, which is too large for us to have been able to detect statistically (i.e. it would require studying

colonies of > 120 birds). Previous studies[41] also found that the mean size of basic social units in wild zebra �nches is 2.9,

which is similar to the size of our inferred second tier communities (i.e. closest relationships). The match between the

pattern observed in the wild and those in our experiment may also re�ect the fact that groups in zebra �nches are

primarily organised around mated pairs, which maintain close spatial and temporal associations, and that these often
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associate with other non- breeding social partners[43]. Together, these insights suggest that the colonies in our studies can

e�ectively re�ect the actual social structure in zebra �nches, at least in the communities capturing lower tiers.

Our estimates of the number of closest social contacts for zebra �nches are consistent with those in other species (e.g.

Table 1 and in humans), but the number of close and strong social contacts is marginally higher. This could be due to

several methodological di�erences. One potential reason is that we kept individuals in high densities, and higher densities

typically lead to higher rates of social encounters[69]. However, as we normalised each individual’s distribution of edge

weights (see Methods), we expected that density should not have a large e�ect because we could characterise properties

that correspond to the shape of the distribution rather than the absolute contact rates themselves. Future studies could

investigate the sensitivity of the estimates to population density and the robustness of drawing absolute estimates from

studies with very di�erent means of collecting the underlying social data.

We demonstrated that zebra �nches’ social networks contain distinct tiers and found a scaling ratio by Horton analysis of

2.87. Previous studies had found similar scaling ratios in humans[16]  and social animals[54]  and suggested that scaling

ratios of around 3 may be a universal feature of multilevel animal societies[54]. A key question is whether social animals

evolve to have some convergent structural patterns in their social contacts, such as the di�erentiation of the egocentric

relationships and the strati�cation of the society or some other forms of fractal patterns, because such structures are

adaptive (sensu[70]) or whether this scaling ratio captures a fundamental property of how animal societies self-organise.

For example, such patterns could emerge because social animals face similar constraints of time and cognition[71][72].

Previous work in zebra �nches found that rates of clumping increased with temperature[47], suggesting that such

behaviour is time-limited. There is also increasing awareness of the role that space use plays in shaping the overall

structure of social networks[39], with previous work on a population-level network of great tits (Parus major) highlighting

the clustering of individuals in space as generating a pattern that can appear like a multilevel network. In our study, we

could use null models to explicitly disentangle the contribution of spatial and social processes, con�rming the importance

of space in determining who is available to �ock with (higher tiers) and the importance of social choices in re�ning

associations to a smaller subset of individuals (lower tiers) within the local social environment.

Materials & Methods

Experiment model and data collection

Between December 2017 and March 2018, we conducted continuous and �ne-scale tracking in four large replicated

colonies (N≍80, see table S1; the dimension of each aviary: 5m x 2.0m x 2.5m) of zebra �nches. The zebra �nches were

placed in mixed-sex colonies (e.g. N=40 males and 40 females) for 30 days. In replicates 1 and 2 (commencing December

2017), the birds were 170 ± 25 days old at the start of the experiment, with an age range of 105- 199 days; in replicates 3 and

4 (commencing January 2018), the birds were 200 ± 29 days old, with an age range of 120-241 days. During the experiment,

we used an automated barcode-based tracking system to record the positions of individuals[46]. Here we report the result

from the mixed-sex colonies.

Each individual was �tted with a unique machine-readable barcode[51]. In each aviary, eight cameras (8-megapixel

Camera Module V2; RS Components Ltd and Allied Electronics Inc.), each connected to a Raspberry Pi (Raspberry Pi 3
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Model Bs; Raspberry Pi Foundation), were strategically placed. These cameras recorded individuals at six perches and at

two feeders.

Between 05:30 and 20:00, when lights were switched on, each camera took a picture every two seconds. The structure and

size of the perches and feeders in each aviary were designed to allow individuals to freely interact with others or move

between groups at their discretion.

We �rst de�ned social connectivity among individuals based on spatial proximity, de�ning two individuals to be closely

associated and likely interacting if they are in physical contact [’clumping’[37]]. Zebra �nches often maintain this body

contact for extended time periods, during which they often engage in allopreening and other a�liative interactions[45].

Body contact was de�ned using a threshold distance of 80 pixels between two barcodes (�g. S1), which corresponds to the

width of a zebra �nch at the height at which the cameras were mounted[37]. Using the second-by-second proximity data,

we then calculated the propensity for each pair of zebra �nch to be in physical contact on each day, using a modi�ed simple

ratio index [the total number of detections together divided by the number of frames in which both were observed on the

same perch[73]]. This edge de�nition captures individuals’ social decisions in terms of whom to have contact with

independently of spatial drivers that determine their opportunity to interact [i.e., spatial proximity[74]].

Detection of relationship tiers

We used the Jenks natural breaks algorithm[55], which is implemented in R package BAMMtools[75], to identify di�erent

categories of social contacts in the egocentric networks of 152 male and 151 female zebra �nches. This algorithm identi�es

clusters (sets of relationships with di�erent edge weights) by minimising within-cluster distances and maximising

between cluster distances. We calculated the goodness of variance �t index (GVF) for the Jenks natural breaks algorithm

with di�erent numbers of clusters:

where C is the number of clusters, N is the number of all individuals in the ego-networks, Nk is the size of the kth cluster

identi�ed by the Jenks natrual breaks algorithm, rki is the normalised contact rate with the focal bird of the ith individual in

the kth cluster, where the normalised contact rate means the contact rate of i to the focal bird divided by the mean contact

rate of the focal bird with all other colony members, and   means the mean nomalised contact rate in the kth cluster. The

GVF varies between 0 and 1, and gives a measure of minimising the variance within classes and maximising the variance

between classes when the data are partitioned into N clusters. As the GVF increases with the number of clusters, we should

use the cut-o� at GVF = 0.85 recommended by Coulson[57] to identify the optimal number of clusters. We then found the

optimal clustering number in all networks, which is four (Fig. 1C), to get the di�erentiated relationships. For an

individual’s egocentric networks, the number of closest relationships is de�ned as the size of the �rst cluster; the number

of close relationships is the sum of the sizes of the �rst and second clusters, corresponding to human friendships; the

number of strong relationships is the sum of the �rst three clusters; and the last cluster is classi�ed as acquaintances,

which is not seen as a special social relationship. Then, we �rst made a comparison between the mean number of

relationships among males and females using mixed-e�ect linear regression by lme4 package in r[76]. In this analysis, sex

was treated as a �xed e�ect while individual identity was considered as a random e�ect. Subsequently, we tested the

GVF = 1 −
∑

N
i ( − )ri r̄

2

∑
C
k ∑

Nk
i

( − )rki rk¯ ¯¯̄¯ 2

rk¯ ¯¯̄¯
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di�erence between same-sex and opposite-sex relationships within and among sexes in the same way. To quantify the

stability of the identities of the social partners across days, we used the cosine similarity, which is de�ned as:

where   represents the normalise contact rate of i and j on day d, which is the contact rate of i and j on day d divided by the

mean contact rate of i with all other colony members on that day. The cosine similarity ranges from 0 to 1, with CSd (i)

being high if the contact rate with all social partners was similar across days (e.g. the close relationships of i on day d are

still close relationships on day d+1). CSd (i) is low if the contact rate change from day to day. To get a better understanding

of the value obtained, we performed 1000 permutations of the identities of individuals in each daily networks

(independently) to generate a null distribution of the cosine similarity expected by chance.

To further illustrate the fractal structure present in the egocentric networks, which means the number of relationships

increases exponentially across layers, we used the Horton analysis (further details provided in the subsequent section). A

linear mixed-e�ect regression model was constructed by lme4[76], with the log number of relationships as dependent

variables, tier as a �xed e�ects, and individual identity as a random e�ect. The existence of the fractal structure can be

validated by the presence of a notable linear relation.

Null models

We generated the null model 1 by permuting the individual identities on the same perch for every record within the original

second-by-second proximity data, and the null model 2 by pair of zebra �nch to be in physical contact on each day, using a

modi�ed simple ratio index similar to our approach in the real situations. The relationships of di�erent types were

recognised by using the thresholds determined by Jenks natural breaks algorithm in the real experiments, which are more

likely to accurately represent breaks in di�erent relationships in the real situation. This method allowed for a clearer

comparison between the real experiments and the null models. The techniques used to determine the numbers of

relationships and the pattern of increase across tiers are same as those employed in the real experiments.

Extracting community structures

To determine whether zebra �nch social networks have a tiered structure, we started by constructing one social network

for the duration of each colony. To get the di�erent tiers of community structure for each colony, we used the ’Louvain’

algorithm from igraph[77]. This algorithm iteratively identi�es the hierarchical subgroups and maximises the connection

density within these subgroups compared to between them at di�erent tiers[31], and it revealed second and third tier

communities (the �rst tier being each single individual). We then used the resampling algorithm described by Shizuka and

Farine[78] to estimate the robustness of these communities in both detected tiers by generating a network of community

co-membership.

While there has been some debate about the use of bootstrapping methods as a means to control for dependencies in social

network data[79], it remains a valuable approach to test the robustness of the communities. In brief, we created 1000

networks using bootstrapped versions of our observation dataset (resampling the second-by-second data with

C (i) =Sd

∑j r
d
ij
rd+1
ij

∑j ( )rd
ij

2− −−−−−−−
√ ∑j ( )rd+1

ij

2− −−−−−−−−
√
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replacement, keeping all individuals in the network). In each of these networks, we used the same ’Louvain’ algorithm to

determine the membership of individuals into communities. Our community co-membership networks re�ect the

proportion of these networks in which each pair (dyad) of individuals co-occurred in the same community. Finally, we

extracted the community structure of this network, and measured the assortativity [using assortnet[80]] of the network

according to the community structure. The resulting value (Rcom) re�ects the partitioning of the network into substantial

community structure when values exceed 0.5, and a lack of community structure when below 0.5.

We then used Horton analysis to calculate the Horton-Strahler branching ratio[81] (B) between the three tiers in the real

observed data and two null models:

where the Nw is the number of groups in order w detected using the ’Louvain’ algorithm in each daily networks, the

equation can be rearranged on the log scale as: 

where λ= −ln B and k = Δw. We �tted the equation to the log number of the frequency of the communities found in each

daily networks by linear mixed-e�ect regression using lme4, and the rooms and replicates are included as random e�ects,

to get the regression slope λ, which can be then used to calculate the Horton-Strahler branching ratio by B = e−λ.
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