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A myriad of scientific documents is produced annually on the most diverse topics. Thus,

understanding the paths taken during scientific advances in a given area is often challenging to map,

and scientific fortunes are hidden in these documents. Therefore, developing strategies for

understanding advances in topics of interest is crucial for good scientific work. Among the most

relevant themes of modernity, the use of renewable resources for the production of biofuels attracts

the attention of several countries, constituting a vital part of the global geopolitical chessboard since

humanity's energy needs will grow faster and faster. Fortunately, advances in personal computing

associated with free and open-source software production greatly facilitate this work of prospecting

and understanding complex scenarios. Thus, for the development of this work, the keywords biofuel

and nanocatalyst were delivered to the Scopus database, which returned 1071 scientific articles. The

titles and abstracts of these papers were saved in RIS format and submitted to automatic analysis via

the Visualization of Similarities Method implemented in VOSviewer 1.6.18 software. Then, the data

extracted from the VOSviewer were processed by software written in Python, which allowed using

the network data generated by the Visualization of Similarities Method. Thus, it was possible to

establish the relationships for the pair between the nodes of all clusters classified by Link Strength

Between Items or Terms (LSBI) or by year. This approach allowed us to infer that the most recent

pairs of terms associate the need to produce biofuels from oils produced by microorganisms and the

use of cerium oxide nanoparticles to improve the performance of fuel mixtures by reducing the

emission of hydrocarbons and NOx.
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Introduction

Biofuel is any material used to generate energy from organic biomass in internal combustion

engines[1]. In the case of biofuels, the energy source is derived from biomass, which has stored the

energy of the sun, in the case of vegetables, as chemical energy[2]. The biomass can be from several

different sources, such as aquatic and terrestrial plants, forest and agricultural residues, vegetable

oils, and municipal and industrial waste[3]. The main types of biofuels are biodiesel[4], biogas[5],

bioethanol[6], biomethanol[7], and pure vegetable oil[8].

Despite the numerous advantages, such as environmental sustainability[9] and the potential to fully or

partially replace fossil fuels[10], biofuels carry some disadvantages, such as pollution caused by

intensive crops, high water consumption, the loss of biological diversity, and food habitats[11]. There

is also a concern that the use of crops to produce biofuels would increase the price of agri-food

products[12].

Thus, the development of more efficient methods for biofuels production is key to the best use of

renewable energy sources, providing the desired transition from the consumption of petroleum-

derived fuels to fuels from sustainable sources without the need to increase agriculture areas[13]. For

this, the use of more efficient catalytic systems is promising[14][15]. Among them, the nanocatalysts

are inorganic materials, such as semiconductors and metal oxides, which are the leading players in

nanocatalysis[16][17][18][19][20][21][22][23]. Nanocatalysis bridges the gap between homogeneous and

heterogeneous catalysis, allowing the advantages of both to be combined[24]. Nanocatalysts have a

high surface area, increasing the contact between the reactants and the catalyst surface, allowing a

significant increase in catalytic activity[25]. On the other hand, they are easily separable from the

reaction medium due to their insolubility[26].

Among the most diverse uses of nanocatalysts are energy storage, fuel cell, medicine, modification of

carbon nanotubes, biodiesel production, solid composite rocket propellants, water purification, and

dyeing[27]. The present work deals with biofuels applications, introducing the result of a systematic

search for the keywords "biofuels" and "nanocatalysts" in the Scopus database. This search returned

1071 documents, which had their titles and abstracts analyzed by clustering techniques via Machine

Learning implemented in the VOSviewer software and deepened by data reprocessing using mainly the

Pandas Python library. Results referring to the number of publications per year, area of ​​knowledge,
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and country allowed drawing a global panorama. Besides that, the most recent association of terms

among the analyzed documents occurs between "exhaust gas temperature" and "CeO2 nanoparticles-

dispersed water–diesel–biodiesel". Therefore, the collected data point to the direction of the most

current scientific efforts to improve the quality of diesel engines, making them less polluting[28].

Methods

Worldwide tendencies on research about "biofuels" and "nanocatalysts" were determined by mining

data. All available information was retrieved and analyzed according to the following steps.

First, all articles related to research themes subscribed to the Scopus database were searched. Data

from papers containing the term "biofuel and nanocatalyst" in the title, abstract, or keywords, using

the key TITLE-ABS-KEY ("biofuels" AND "nanocat*") AND (LIMIT-TO (DOCTYPE , "ar")) were

selected. Then, the gathered information was classified by the number of publications per year, area of

​​knowledge, and country using the Scopus Database tools. The primary data files are available on

GitHub (https://github.com/ftir-mc/Biofuel-nanocatalyst.git). 

Then,  the RIS file from Scopus was processed using the VOSviewer software, v. 1.6.18[29]. The

bibliometric classification was made in the "overlay" and "network" modes. Additionally, the files

were exported as NET and MAP files for the overlay and cluster classification, respectively. Data from

MAP files were organized by cluster size and total link strength. The top-five nodes for each cluster

were selected and plotted. 

Finally, a software code was written in Python using mainly the Pandas[30]  library. This code allows

defining the terms (nodes) correlated with each other, pair to pair, initially registered numerically in

the network file generated by VOSviewer. Then, it was possible to identify the nodes with the highest

binding strengths (measured in joint counts of occurrences) and the nodes with the most recent

annual mean values. In addition, the Euclidean distance between the nodes was calculated. These data

are shown as Treemaps, generated by the Python module Plotly Express[31].

Results

Figure 1 shows the evolution in the number of published documents on biofuel and nanocatalysts in

the Scopus database.
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Figure 1. Published documents per year from data retrieved from the Scopus database

The first documents are from 2009. After that date and until 2021, the data trend is described by a

polynomial function of order 2, with an R2 equal to 0.9745. This result indicates that the Academy's

interest in these topics has increased rapidly over the last few years. Thus, it is likely that the number

of publications will continue to increase rapidly over the next few years.

Another exciting classification automatically offered by the Scopus database is the classification by

knowledge area, shown in Figure 2.
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Figure 2. Documents per subject area from data retrieved from the Scopus database

Among the areas of knowledge, the most remarkable contributions came from Energy (579

documents), Chemical Engineering (427), Environmental Science (363), Chemistry (342), Engineering

(140), Materials Science (106), Physics and Astronomy (69 ), Biochemistry, Genetics and Molecular

Biology (66), Agricultural and Biological Sciences (59), and Medicine (40). The sum of the number of

documents exceeds the total number of articles gathered in this research because each document can

be in more than one knowledge area at the same time.

Regarding Journals, the most extensive contributions came from Renewable Energy (128 documents),

Bioresource Technology (69), Fuel (63), Energy (30), ACS Sustainable Chemistry And Engineering

(24), Biomass And Bioenergy (22), Energy Conversion And Management (20), Green Chemistry (18),

Chemosphere (17), and International Journal Of Hydrogen Energy (17).

Figure 3 shows the countries that contributed the most to the theme.
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Figure 3. Documents per country from data retrieved from the Scopus database

The data extracted from the Scopus database has the following classification: China (296 documents),

India (229), Iran (115), Malaysia (95), United States (78), Saudi Arabia (62), South Korea (45), United

Kingdom (44), Egypt (42), and Brazil (38). These data make it clear that the most prominent players

on the subject are China and India, countries with huge populations that need all possible energy

sources, including renewable ones.

Although these facts about the main areas and the leading players are fascinating even from a

geopolitical point of view, this is not the main focus of this work, which is interested in terms and

associations of terms in the documents researched.

Therefore, the first strategy employed was constructing a word cloud using the words of titles and

abstracts. The result is shown in Figure 4.
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Figure 4. Voyant Tools word cloud from titles and abstracts retrieved from the Scopus database

The visual analysis of Figure 4 allows us to infer that the most frequent terms in the word cloud are

catalyst, biodiesel, oil and production. The present analysis was done using Voyant Tools, indicating

how many times these words are present in the text. More specifically, the most frequent words in the

corpus[32]  are catalyst (2054 times), biodiesel (1812), oil (1742), production (1483), and reaction

(1182).

All this information is exciting and enriching but of little practical value. Therefore, improved tools

are essential for understanding the context in which the topic of biofuels and nanocatalysts is inserted

and where the technical-scientific focus is heading. Thus, the VOSviewer software allows a particular

approach based on a method called VOS, meaning “visualization of similarities”[33]. Figure 5 shows the

maps generated by the VOSviewer software.
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Figure 5. VOS clustering map (top) and overlay (bottom) from titles and abstracts retrieved from the Scopus

database

VOSviewer generates a classification by grouping the keywords of the analyzed texts, and succinctly,

the closer two terms are, the more significant the correlation between them. The cluster data

generated by the software is a proximity map consisting of nodes (terms selected by relevance in the

number of occurrences), such as Figure 5 (top), and clusters that contain these nodes. The second way

of visualization is via the Overlay map [See Figure 5 (bottom)], which presents the same nodes as in

the previous case, now sorted by age so that older terms are marked with cold colors while newer

terms are in warm colors. Therefore, Figure 5 (top) demonstrates the existence of seven clusters, each

one marked in its color. In turn, Figure 5 (bottom) shows all the most current nodes in orange-reddish

tones.

Although functional and visually beautiful, the map representation has several overlays that make

analysis difficult. Thus, the developed code seeks to overcome this disadvantage. The first information

provided is regarding the top five nodes of each cluster. Thus, the top five nodes per cluster are hmf or

5-hydroxymethylfurfural (cluster  1; Occ. 147), hydrogenation (cluster  1; Occ.  141),

hydrodeoxygenation (cluster  1; Occ.  114), lignin (cluster  1; Occ.  95), dmf or 2,5-dimethylfuran

(cluster  1; Occ.  81), biodiesel yield (cluster  2; Occ. 97), seed oil (cluster  2; Occ.  60), liquid (cluster  2;

Occ. 59), rsm or Response Surface Methodology (cluster 2; Occ. 58), oil molar ratio (cluster 2; Occ. 57),

microalgae (cluster 3; Occ. 130), review (cluster 3; Occ. 124), medium (cluster 3; Occ. 57), wastewater

(cluster 3; Occ. 53), pretreatment (cluster 3; Occ. 50), hydrothermal liquefaction (cluster 4; Occ. 87),

htl or Hydrothermal liquefaction (cluster  4; Occ.  66), bio oil yield (cluster  4; Occ.  55), hzsm or

protonated zeolite catalysts (cluster 4; Occ. 51), mj kg (cluster 4; Occ. 42), enzyme (cluster 5; Occ. 89),

glucose (cluster  5; Occ.  82), electrode (cluster  5; Occ.  76), biofuel cell (cluster  5; Occ.  68), oxidation

(cluster 5; Occ. 60), diesel (cluster 6; Occ. 126), blend (cluster 6; Occ. 89), emission (cluster 6; Occ. 87),

diesel engine (cluster 6; Occ. 79), combustion (cluster 6; Occ. 60), cellulose (cluster 7; Occ. 85), lipase

(cluster 7; Occ. 63), hemicellulose (cluster 7; Occ. 27), day (cluster 7; Occ. 18), viz or videlicet (cluster 7;

Occ. 13). The top five nodes per cluster are also shown in Figure 6.
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Figure 6. Top five nodes per cluster from VOS analysis on titles and abstracts retrieved from the Scopus database

Regarding the nodes of Cluster 1, shown in Figure 6, second-generation biofuels that use

lignocelluloses or celluloses are outstanding alternatives to fossil fuels. Besides, lignocellulosic

biomass and carbohydrates are the preferred green, sustainable, and inedible raw materials to prepare

various biofuels and valuable chemicals. In particular, furan-based fuels such as 2,5-dimethylfuran

(DMF) and 5-hydroxymethylfurfural (HMF) provide a higher energy density than ethanol. DMF is

insoluble in water. HMF is a critical intermediate for the DMF synthesis process. DMF is a promising

fuel for compression-ignition and spark-ignition engines. These species can improve engine

performance, emission, and combustion characteristics compared to other liquid biofuels without
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modifying the engine structure. Thus, the high energy density, low freezing point, high octane

number, high boiling point, high combustion quality, and low pollution emissions make DMF a

suitable alternative for commercial gasoline and diesel[34]. Besides being potential biofuels, DMF and

HMF are known as intermediates to synthesize other biomaterials and pharmaceuticals[35][36][37][38]

[39][40], which add value to these molecules.

In turn, regarding the nodes of Cluster 2, the growing concern with the sustainability of several first-

generation biofuels is the critical concern of several works that seek the production of biodiesel from

non-food crops. This fuel is called second-generation biodiesel, and its main positive points are the

consumption of residual oils, the use of abandoned land, and the independence of food crops. Still, the

global biofuel production market has not expanded considerably. Among biofuels, biodiesel has the

most significant potential for use as an alternative, biodegradable, renewable, and environmentally

friendly fuel. Despite this, production optimization is a vital issue for increasing the scope of this

biofuel. For this, the use of residual oils, the selection of inedible oilseed species with high oil yield,

and the optimization of processes are fundamental studies[41]. Among the optimization techniques,

the response surface methodology stands out due to its advantages, such as the determination of the

independent variables' magnitudes, the ability to model the system mathematically, as well as the

time savings, and cost reduction due to the smallest number of necessary experiments for the

construction of the response surface[42][43][44][45][46][47][48][49][50][51][52][53][54].

As for the nodes of Cluster 3, different wastewater sources such as municipal, agricultural and

industrial contain significant amounts of organic and inorganic contaminant nutrients that are

released into water bodies without proper treatment, resulting in eutrophication. The main reason for

the waste above is the absence of efficient and economical methods for wastewater treatment.

However, wastewater is perfect for microalgae growth. These are single-cell photosynthetic

organisms capable of growing in wastewater and even sewage. Thus, wastewater treatment with

microalgae is advantageous, as it decreases the biochemical oxygen demand (BOD), the chemical

oxygen demand (COD), and removes inorganic nutrients (nitrates and phosphates) from wastewater,

in addition to sequestering carbon dioxide via biofixation of inorganic carbon from the atmosphere.

Despite the incredible versatility of microalgae, wastewater has different compositions and needs to

be treated beforehand[55]. Thus, it is often necessary to adjust nutrients and other factors such as

temperature, pH, salinity, light intensity, and duration of the microalgae growth process. Another

crucial issue is the selection of microalgae species[56][57][58][59][60][61][62][63]. Finally, the
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microalgae-mediated wastewater treatment can directly produce biofuel (bioelectricity and

biohydrogen), besides lipid-rich biomass, essential for biodiesel production[64][65][66].

Concerning Cluster 4, biomass conversion methods mainly consist of biochemical methods such as

fermentation and thermochemical methods, which include combustion, pyrolysis, gasification, and

liquefaction. The latter, thermochemical liquefaction, is an efficient and promising way to convert

biomass into solid waste, liquid or bio-crude fuel, and gas. Hydrothermal liquefaction (HTL) is the

thermochemical process that treats wet biomass at temperatures between 250 and 350 °C and

pressures between 5 and 15 Mpa. HTL is done in the presence of a solvent, which can be water or

alcohol, with or without a catalyst. The catalysts greatly influence the yield and quality of the bio-

crude obtained via the HTL process. Various acid or alkaline catalysts can be used. However, they cause

corrosion of liquefaction equipment and require additional steps for separation/purification

increasing production costs. Thus, replacing conventional catalysts with heterogeneous ecological

catalysts is pivotal in improving bio-crude yield and quality in biomass liquefaction[67]. The

heterogeneous Ni/HZSM-5 catalyst is hydrothermally stable, improving the pyrolysis bio-oil.

Furthermore, the Ni/HZSM-5 catalyst can be reused as they are heterogeneous solids separated and

recovered from the reaction products. In addition, they are disposed of safely[68][69][70][71][72][73][74].

Regarding Cluster 5, obtaining energy from renewable resources is one of humanity's main goals, and

one option for this goal is enzymatic biofuel cells. These devices can convert energy derived from

biofuels into electrical energy via the catalytic action of oxidoreductase enzymes. This known

technology has been neglected due to its inherent difficulties besides the easier and faster

development of metallic electrocatalysts for fuel cells. Protein immobilization and stabilization

reached the necessary advance only at the end of the 20th Century. Due to the incomplete oxidation of

biofuels, enzymatic biofuel cells suffer from low energy density. For instance, glucose enzymatic

biofuel cells can generate 2 electrons. However, 24 electrons can be released from glucose, showing

that there is still much ground for increasing the efficiency of these devices[75]. The use of enzyme

cascades is an alternative to maintaining the high energy densities of biofuel cells and increasing

energy density. Enzyme cascades can mimic the metabolic pathways of enzymes to completely oxidize

substrates such as ethanol and increase power density by almost ten times compared to a single

enzyme ethanol biofuel cell[76][77][78][79][80][81][82][83][84][85][86].

Regarding Cluster 6, the transport sector is the leading consumer of diesel, producing massive

emissions in internal combustion (IC) diesel engines. This environmental impact can be minimized or
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eliminated using blends of diesel with biodiesel or biodiesel alone. Biodiesel is the safest alternative

automotive fuel with low particulate and hydrocarbon emissions. However, biodiesel in engines

presents challenges, mainly due to this biofuel's low volatility and high viscosity, characteristics

restricting fuel spraying, and good air-fuel mixture. Biodiesel-diesel blends need additional studies

for their use, and the lack of knowledge of the performance of biodiesel-diesel in diesel engines is the

reason for the lower use of the blend of these fuels. One of the limitations of biodiesel as a fuel for IC

engines is its high viscosity which increases NOx emissions. The diesel engine design must be

modified to use biodiesel without additives, allowing for efficient self-ignition and fuel lubricity,

which can be achieved using oxygenated compounds such as ethanol. Several studies discuss diesel-

alcohol and diesel-biodiesel-alcohol mixtures. Although biodiesel blend in diesel engines has many

advantages, the main drawback is small oxidative steadiness, generating peroxides and

hydroperoxides and monomeric, oligomeric, and short-chain compounds produced via

rearrangement, fission, and dimerization reactions[87]. Although the IC engine guarantees low fuel

consumption and low carbon dioxide emissions, this engine is a source of particulate matter and

nitrogen oxide emissions, with unfavorable effects on human health and the environment[88][89][90]

[91][92][93][94][95][96][97][98][99][100][101]. Therefore, studies on fuel mixtures and new engine designs

are essential for expanding the use of biofuels.

Regarding Cluster 7, a tendency in the fast evolution of biomass decomposition techniques uses

cellulase enzymes from multiple domains of microorganisms. The enzymatic decomposition of

cellulose depends mainly on glycosidic hydrolases and oxidative enzymes. Several organisms produce

cocktails of "free enzymes" that synergistically degrade biomass. Enzymatic action involving three-

dimensional arrangements of proteins and the chemical biology of enzymes are emerging fields.

However, the physicochemical persistence of cellulose and chitin limits fast and economic

degradation. Most commercial enzymes are of fungal origin. Bacterial cellulosomes substantially

increase the hydrolytic activity of fungal cellulase. Methods for producing cellulosic liquid biofuels by

enzymatic hydrolysis have been developed since the end of the 20th Century[75][102]. Advances such as

Genetic Engineering have opened new horizons for this field of study, and several pieces of research

have been developed[103][104][105][106][107][108][109][110].

The Treemaps in Figure 7 show the five main pairs of links extracted from the network database

generated by VOSviewer. Treemaps bring, from outside to inside, information about Terms, Link

Strength Between Items (LSBI), years, clusters, and Euclidean Distances (E.D.), respectively. More
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specifically, the top Treemap is sorted by the highest LSBI values, while the bottom one follows a

classification by the most recent years of the respective nodes. These Treemaps, as well as the results

shown in Table 1, are the direct result of the software developed especially for this work, which allows

associating the numerical information provided in the Network file with the labels, years, and

strength of the links of the files generated by VOSviewer.

Figure 7. Top five link strength between terms and top five most recent linked terms from VOS analysis on titles

and abstracts retrieved from the Scopus database
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Top five link strength between terms

Terms (t.1 vs. t.2) LSBI ↓ Years (t.1 vs. t.2) E.D.

1. dmf vs. hmf 234 2019.77 (t.1) vs. 2018.86 (t.2) 0.08

1. dimethylfuran vs. dmf 125 2019.84 (t.1) vs. 2019.77 (t.2) 0.03

1. blend vs. diesel 118 2019.99 (t.1) vs. 2020.16 (t.2) 0.04

1. dimethylfuran vs. hmf 115 2019.84 (t.1) vs. 2018.86 (t.2) 0.11

1. htl vs. hydrothermal liquefaction 112 2018.89 (t.1) vs. 2019.16 (t.2) 0.05

       

Top five most recent linked terms

Terms (t.1 vs. t.2) LSBI Years (t.1 vs. t.2) ↓ E.D.

1. cnwedb vs. egt 10 2022.0 (t.1) vs. 2022.0 (t.2) 0.13

1. egt vs. scp 4 2022.0 (t.1) vs. 2021.67 (t.2) 0.69

1. oleaginous yeast vs. sco 16 2022.0 (t.1) vs. 2021.44 (t.2) 0.26

1. egt vs. exhaust gas temperature 4 2022.0 (t.1) vs. 2021.4 (t.2) 0.13

1. cnwedb vs. exhaust gas temperature 5 2022.0 (t.1) vs. 2021.4 (t.2) 0.26

Table 1. Main information from treemaps containing the top five LSBI and top five most recent linked terms

Regarding the highest values ​​of Link Strength Between Items or Terms (LSBI), the 2,5-Dimethylfuran

(DMF) vs. 5-Hydroxymethylfurfural (HMF) appears twice in Table 1 (see lines 1 and 4), with LSBI
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values ​​equal to 234 and 115, respectively. The observed repetition is that the terms appear written in

abbreviated and complete forms. Something similar occurs in lines 2 and 5, which have the repeated

dimethylfuran vs. dmf and htl vs. hydrothermal liquefaction (HLT). Thus, only two sets of pairs should

be considered, which are (i) 2,5-Dimethylfuran (DMF) vs. 5-Hydroxymethylfurfural (HMF) and (ii)

blend vs. diesel, both highlighted in blue and italics. Once again, as discussed above, it is clear the

great importance of HMF & DMF as alternative fuels, which can add extra value due to their ability to

be used as precursors for several other chemicals. In addition, the other duo, Blend & Diesel, has

relevance due to the continuous process of researching innovations and improvements in IC engines,

responsible for most of the land transport performed by humanity. These researches are fundamental

for reducing the anthropocentric impact of particulates and carbon dioxide emissions that are

responsible for several environmental imbalances.

Regarding the most recent connected terms, shown at the bottom of Table 1, the CeO2 nanoparticles-

dispersed water–diesel–biodiesel fuel blend (CNWEDB) vs. Temperature of the engine exhaust (EGT)

appears twice in Table 1, lines 6 and 10, and have LSBI values ​​equal to 10 and 5, respectively.

Something similar occurs in line 9, which has the repeated terms Temperature of the engine exhaust

(EGT) vs. Temperature of the engine exhaust (EGT). Thus, only three sets of pairs could be considered.

However, among the three possible candidates, only two presented higher LSBI values, which are (iii)

CeO2 nanoparticles-dispersed water–diesel–biodiesel fuel blend (CNWEDB) vs. Temperature of the

engine exhaust (EGT) and (iv) oleaginous yeast vs. Single cell oils (SCO). Their LSBI values are equal to

10 and 16, respectively. Among these same two pairs, the first has values ​​from more recent years

[2022.0 (t.1) vs. 2022.0 (t.2)] than the year values ​​presented by the second [2022.0 (t.1) vs. 2021.44

(t.2)].

Regarding the first pair of more modern terms, there is scientific evidence that the oxygen present in

biodiesel decreases the produced carbon monoxide and the hydrocarbon emissions of the IC engine.

On the other hand, as a significant disadvantage, the higher oxygen content of biodiesel leads to

higher concentrations of NOx. Compared to pure biodiesel, NOx emissions can be reduced by using

water-in-biodiesel fuel emulsions. In addition, some experimental studies investigated the use of

CeO2 nanoparticles as an additive in diesel-biodiesel fuel mixtures and their impact on the thermal

and environmental behavior of the CI diesel engine. HC releases are reduced by fifty percent using

CeO2 trapped on amide-functionalized multiwall carbon nanotubes (MWCNT) nanocatalysts

dissipated in the B20 mixture[111]. The engine running on this mixture also produced lower CO
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emissions than the base fuel. More recently, it has been proven that the presence of CNWEDB

increases the brake thermal efficiency of the engine by almost eight percent in comparison to diesel.

Also, the heat losses were observed at eighty percent engine load for CNWEDB, indicating a minimum

better conversion of fuel energy to useful work[112].

Regarding the second pair of more recent terms, yeasts are microbial agents for the efficient

production of free alkanes, fatty acids, and fatty alcohols[113]. For instance, the yeasts  Rhodotorula

glutinis and  Rhodosporidium toruloides can store more than eighty percent of lipids in their

organisms[114]. Single-cell oils (SCOs) are microbial oils derived from algae, bacteria, fungi, and

oleaginous yeasts[115]. Oleaginous yeasts are able to use various inexpensive carbon sources, such as

agro-industrial fritters such as corn husk, paper mill waste, sugarcane molasses, wheat bran, and

wheat straw, making single-cell oils production commercially viable and sustainable[116]. Thus, a

series of tailings can be used, reducing the environmental impact of several monocultures and even

untreated effluents[117][118][119][120].

Therefore, this work establishes that the use of yeasts for the production of fats later transformed into

biodiesel and systems based on cerium oxide nanoparticles are critical themes for the scientific and

technological developments related to the energetic use of renewable resources.

Conclusions

This work established a new data manipulation procedure assisted by the Visualization of Similarities

Method and Python. The analysis of more than a thousand papers on biofuels and nanocatalysts by

this process showed the existence of two sets of pairs of terms, classified according to their LSBIs and

their years of publication. The analysis based on the LSBI values ​​demonstrates the great importance of

HMF & DMF as alternative fuels. Research on Blend & Diesel is fundamental for reducing the

anthropocentric impact of particulates and carbon dioxide emissions responsible for several

environmental imbalances. In turn, the analysis based on the modernity of the sets of pairs of terms

showed that using microorganisms to prepare oils and cerium oxide nanoparticles to increase the

efficiency of burning fuel mixtures are hot topics that still can be extensively explored. Thus, the

concern with energy efficiency and environmental preservation is critical for the scientific and

technological developments related to the energetic use of renewable resources.
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