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Space has a complex structure and investigations of any electromagnetic wave transmission 
theory need to consider the inhomogeneous and anisotropic nature. We have selected two cases 
for our investigations: regions of pulse energy changes and gravitational deflection. Numerical 
methods have been developed and examples given to show that these conditions do have their 
localized effects. But, since the total length of those regions are insignificant in comparison with 
the total transmission distance involved, their inclusion does not significantly alter the linear 
relationship between wavelength change and distance travelled. The possible exception is the 
case of gravitational deflection when the waves have passed through densely populated regions 
of space. Our findings could be of interest to the current debate on Hubble tension. 
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1. Introduction       

       In recent years, we have published three papers [1,2,3] about how the nonlinear Schrodinger 
equation (NSE) could be used to find out wavelength changes in electromagnetic waves propagating 
through space. As the only direct and easily measurable physical quantity from space, electromagnetic 
waves have been widely used to study the universe. For example, redshift, the lengthening of 
wavelength in starlight, has been used to determine the distance of star, and the size and origin of the 
universe. To be sure that those applications are reliable, it is important to understand the physics 
involved in redshift. Up to recent years, there are realizations that we still need new physics to explain 
this phenomenon [4]. Although the physics behind NSE are not new, but we have shown that redshift 
could be predicted. In this paper, we report our further investigation and provide additional evidence to 
support the wave propagation theory. 

       Solving NSE numerically, we have generated waveforms specifically for bright [1], dark [2] and 
anti-dark [3] solitons. These are respectively white, dark, and grey spectral lines used by astronomers 
to determine the extent of wavelength changes in starlight coming from space.  We have shown that 
those solitons can propagate stably over the long distance through space. But the previous model used 
involves only two system parameters: namely, the dispersion coefficient and one for the nonlinear 
focusing term. In reality, space is a much more complex medium with many regions having localized 
unique features. In this paper, we shall include two extra features into our model: (i) pulse energy 
changes due to prevalent atmospheric conditions, and (ii) gravitational deflection of light path.  

       In propagating through some sections of a vast distance in space, electromagnetic waves could 
encounter atmosphere conditions that impart or absorb energy from the waves. The two cases of pulse 
energy changes we consider are (i) elements present in the atmosphere that emit or absorb pulse energy 
of similar frequency resulting in the increase or decrease of pulse amplitude, and (ii) the CW 
background that cause pulse energy to change. To account for these additional parameters, NSE has 
been modified accordingly. 
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       According to General Relativity Theory, travelling light path would be deflected near the proximity 
of a vast mass. Depending on the system involved, the full mathematical analysis is rather complicated. 
We shall use an approximate solution [4] that has been derived for cases of small deflections. In this 
approximate solution, the deflection is found to be inversely proportional to a distance variable. We 
consider that such an approximation is adequate for us to investigate the contribution of gravitational 
deflection to redshift.    

      Space should not be modelled simply as an isotropic and homogeneous medium such as quite often 
been suggested. Photos taken from James Weber Space Telescope (JWST) in its deep space probes [5] 
have shown clusters of galaxies in certain regions while there are huge empty spaces elsewhere. Along 
a given light path, a wave will experience different conditions as compared with other paths. The aim 
of our investigation is to find out whether with pulse energy changes in some sections and gravitational 
deflections in others, the overall redshift could still be predicted by the wave propagation theory using 
overall averaged system parameters. Our interest is on the gradient of the wavelength versus distance 
plot. But our findings are in dimensionless format; we need calibration to convert them into physical 
entities. 

       In Section 2 of this paper, we describe how NSE with an external source or with a CW background 
could be solved numerically. In Section 3, we describe how we calculate the deflection of a stable 
soliton using the approximate solution of General Relativity Theory. In Section 4, we give numerical 
examples that provide us with sufficient data for Discussion in Section 5. Although the propagation of 
solitons is governed by the local conditions that could have varying effects to the propagating wave, 
those effects are cumulated at each step, and are carried over to the next. It is the overall redshift that is 
important. This redshift is observed by astronomers in their empirical Hubble law and predicted by 
astrophysicists in model such as the Standard Model of cosmology. But based on our numerical 
solutions, we conclude that the electromagnetic wave theory could be used to account for those localized 
transmission variations investigated.  

2. Stable periodic (SP) bright solitons 

      The NLS equation for electromagnetic waves (solitons) propagation in dimensionless form is 

                                             𝑢! −	
"
#
𝐷(𝑥)𝑢$$ − 𝑖|𝑢|#𝑢 = 𝑆(𝑥)                                                       (1) 

where u is the slowly varying envelope of the axial electric field, and D(x), x, t, and S are the dispersion 
coefficient, the spatial propagation distance, temporal local time, and external source, respectively. The 
last term in the left-hand side of Eq. (1) represents self-phase modulation but without a specific system 
parameter. 

       To include a CW background, uo into Eq. (1), let 

                                                      𝑢 = 𝑣 +	𝑢%                                                                      

With S = 0, substituting the above into Eq. (1) to give 

                                   𝑣! −	
"
#
𝐷(𝑥)𝑣$$ − 𝑖|𝑣 +	𝑢%|#(𝑣 +	𝑢%) = 	0                                             (1a)  

 

      Using the same numerical procedures as described in our previous papers [1,2,3], Eq. (1) could be 
solved to give a stable periodic solution along the propagation distance x.  The procedures involve the 
division of the numerical spatial time window of length L into N equal segments. Over each segment, 
the solution is to be approximated by an economized (M – 1)th order power series, 

                                                 𝑢(𝑡, 𝑥) = 	∑ 𝑢&(𝑥)𝑡&'()
&*(                                                              (2)   



    
               

Eq. (1) is discretised in the t-direction by using collocation points chosen to be the roots of a Chebychev 
function, 

                                      𝑡& =	−	𝑐𝑜𝑠 5
(#&'()-
#()'()

6 ,				𝑘 = 1,… ,𝑀 − 1                                                 (3) 

Together with the boundary conditions and all the interfacial continuity conditions between any two 
subdivisions, the set of ordinary differential equations so obtained is in the form, 
 
                                              𝑨𝑉!(𝑥) − 𝑖𝑳𝑽(𝑥) = 𝑖𝑸(𝑥, 𝑽)                                                             (4)    
                                
where V is a [M x N] vector consisting of the coefficients of the power series used and A, L, and Q are 
matrix operators. As Eq. (4) is nonlinear, it could be solved by an implicit difference algorithm together 
with iteration. 

       For a bright soliton solution, a suitable initial input pulse could be, 

                                     						𝑢(𝑡, 0) = 𝛽	exp	[−𝛼(𝑡 − 0.5𝐿)#]		                                                      (5) 

where L is the length of a given numerical window for t, 𝛼 an arbitrarily chosen constant and 𝛽 an 
adjusting parameter to give a specified pulse energy, E,                        

																																												𝐸(𝑥) = 	∫ 	(|𝑢(𝑡, 𝑥)|#)𝑑𝑡
!
"
'!"

                                                                      (6) 

It is important to set the boundary conditions as 

                               		𝑢(𝑡, 𝑥) = 1000 ./
.$
− 	𝑢(𝑡, 𝑥)						𝑎𝑡	𝑥 = 	±0.5𝐿                                             (7) 

The large constant associated with the derivative term will force u to assume a near zero value with zero 
gradient so that reflection at the boundaries is minimized.   

       For the stable periodic solution, we integrate Eq. (4) to a total distance Z, with the specified 
dispersion coefficient – D for the first half and D the second half of Z. We use the fact that, for an SP 
solution propagating through a dispersion map, the input pulse should be similar in shape as the output 
pulse. To reach this goal, an iterative scheme based on successive halves could be used, 

                                                𝑢"0"1( = 0.5(	𝑢"0" +	𝑢%/$" )                                                                  (8) 

where uin , and uout are the input and output pulse to the dispersion map respectively and the superscript 
i denote the iteration number. It should be noted that SP solitons are special cases of exactly periodic 
solitons. But, with exactly periodic soliton, the input pulse is exactly the same as the output pulse. 

       The stable periodic solitons so found could be used as the initial input to start a propagation history 
through sections that have various system parameters. It should be noted that for those histories the 
same set of algebraic equations are used with the exception that the steps described in Eq. (8) are not 
included. 

3. Gravitational Deflection 

       Based on the approximate solution [4] of the General Relativity theory, the light path deflection 
angle, ∆ϴ is found to be inversely proportional to the distance between the light path and the centre of 
the mass:               

																																																																					∆ϴ =	 23)
∆

                                                                            (9) 



    
               

where G is the gravitation constant, M is the mass and ∆ is the distance between the wave front and the 
centre of the mass. Eq. (9) could be used in its dimensionless form,  

                                                                 ∆𝛳 =	 5
ℰ
 ,                                                                         (10) 

where ℰ = 	 5∆
23)

 . We can study the contribution of gravitational deflection by tracking the history using 
a single arbitrarily chosen parameter C. Numerically, we shall use a new rectangular coordinate system 
(x1, x2). Tracking the wavefront at a particular step, let the mass be at ((x1)m, (x2)m ) and the wavefront 
be at ((x1)1, (x2)2); the straight line connecting the wavefront to the centre of the mass is      

																																												ℰ = 	R((𝑥1)7 − (𝑥1)()# + ((𝑥2)7	 + (𝑥2)()#                                    (11) 

Then, Eq. (10) can be used to find the deflection angle ∆𝛳,  If a wavefront has propagated along a light 
path making an angle ϴ with the x1-axis and reached ((x1)1, (x2)2), path direction for the next integration 
step would be along the deflected angle, ϴ + ∆𝛳. With the path integration step being ∆x, the change 
of the wave front position would be ∆x cos (ϴ + ∆𝛳)	 and ∆x sin (ϴ + ∆𝛳) in x1- and x2- coordinate, 
respectively. Knowing the new position, Eqs, (11) and (10) could be used to find  ℰ  and  ∆𝛳,	 
respectively, for the next integration step.                                   

4. Numerical Examples 

       For every case of our present investigations, we start with a stable bright solution obtained 
numerically as described in our previous paper [3]. Using L = 40, N = 10, M = 20, ∆x = 0.0005, D = - 
0.1, E = 0.25, and a dispersion map Z = 6, Figure 1 shows that such a soliton propagates stably with an 
increasing wavelength. Further more, the same characteristics are observed when it is propagating 
through a section with a set of different system parameters. We retain the description of periodic because 
the histories are all repeatable. 

 

 

       

 

4.1 Propagation of a bright soliton with CW background 
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Figure 1   Propagation of bright stable periodic solution 



    
               

       Example 1 - Four cases (See Table 1 for details), with or without a CW background, were used to 
show the differences in the pulse half width, W, propagation histories.  (W is the same as FWHA, full 
width at half maximum, a commonly used measure for pulse width.): 

                                         

  Propagation 
distance, x 

Dispersion 
coefficient, D 

CW background, 
uo 

Case 1          0 to 6 -0.2 0 
Case 2 0 to 2 

2 to 2.5 
2.5 to 3.5 
3.5 to 4 

         4 to 6 

-0.2 
-0.2 
-0.2 
-0.2 
-0.2 

0 
-0.2 

0 
-0.2 

0 
Case 3 0 to 6 -0.1 0 
Case 4 0 to 2 

2 to 2.5 
2.5 to 3.5 
3.5 to 4 
4 to 6 

-0.1 
-0.1 
-0.1 
-0.1 
-0.1 

0 
0.5 
0 

0.5 
0 

 

 

The pulse width histories found are shown in Fig. 2. The noticeable features are: (i) the gradient is 
slightly higher for negative uo , and slightly lower for positive uo ; (ii) the gradient in the sections before 
and after a section with CW background remains the same.  
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Figure 2.  Effects of CW background on the half pulse width histories  



    
               

            

 

        Example 2 - Case 5 (See Table 2 for details) is designed to include two sections, in each, both D 
and uo have the same values but of opposite sign. In five other sections involved the dispersion 
coefficient is randomly selected but, for the whole length, the overall distance weighted average is 0.1 
that is the same as Case 3 in Example 1. 

                                

Section Propagation 
distance, x 

Dispersion 
coefficient, D 

External 
source, uo 

1 2 -0.2 0 
2 0.5 0.2 -0.2 
3 1 0.1 0 
4 0.5 -0.2 0.2 
5 2 -0.15 0 

   

                                             Table 2 – System parameters for Case 5 

The solutions are shown in Fig. 3 in that we can see, in Sections 2 and 4, there are large decreasing and 
increasing of pulse energy due to the present of uo. But the gradient change between Sections 2 and 3 is 
very small. The same happens in between Sections 4 and 5. Also shown is the fact that the overall half 
pulse width change could be accurately predicted by using the average distance weighted D as in Case 
4 of Example 1.  

 

 

 

 

  

       4.2   Propagation of solitons with external source     
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Example 3 – This example, Case 6, consists of three sections that all have D = - 0.2 but S(x) = s u, 
where s = 0.5, - 0.5 and 0.5, respectively, in each section. Features of the solution histories are: (i) pulse 
energy increases or decreases steadily according to the sign of s, and (ii) there is very little change in 
the wavelength half width gradient in all sections, as can be seen in Figure 4. 

 

 

 

 

       4.3 Propagation with gravitational deflection 

       With small deflection, propagation of electromagnetic waves is still governed by Eq. 1. The 
propagation distance, x, is taking to be along the deflected light path. When integrating Eq. (1) by a 
stepwise procedure, the deflection and tracking of the wavefront are carried out based on procedures 
described in Section 3.  

       Example 4 – Using the x1-, and x2- coordinates, the starting position is chosen to be at (0, 0) with 
the mass located along the straight line x1 = 0.5 Z, where Z is the length of the propagation distance to 
be investigated. If the line joining the wavefront to the centre of the mass makes an angle, φ, with the 
x1-axis, the mass is located at (0.5 Z, b), where b = 0.5 Z tan(φ).  For this example, the initial φ = 20o , 
ϴ = 0, Z = 3, and D = - 0.2.   For the arbitrarily chosen constant in Eq. (10), C = 0.00005 and 0.0001, 
respectively, for Cases 7 and 8. The solutions are plotted out in Figure 5, The deflection rate (as seen in 
the direction changes) is the largest at x1 = 0.5 Z, where the wavefront is closest to the mass. Also, a 
larger C gives larger deflection as expected. Without deflection, the wavefront will move along the x1-
axis and travel 3 units in that direction. With deflection, the wavefront has travelled the same distance 
along its path, the same as with the case without deflection, but shorter in term of x1-coodinate. It should 
be pointed out the scaled down dimensionless length units, x1 and x2, used here are based on the local 
conditions and would be many orders smaller than x, the propagation distance used in NSE which is in 
billions of light years.     
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5. Discussion 

       Since the discovery of statistically significant difference in Hubble constant predicted by Big Bang 
theory-based method and by empirical correlation, this ‘Hubble tension’ has not yet been resolved. A 
2023 review [7] has referenced 531 papers; each has offered one or other scientific solution. But some 
people would insist on the Big Bang approach often on philosophical belief, while others accept what 
they consider as more authoritative. Scientists would ask for new evidence such as in the call for new 
physics [4,7]. Although the physics used in Schrödinger equation is not new, it has been widely used, 
both in theory and in practice, for wave propagation in many diverse fields. However, its application to 
electromagnetic waves propagating through space is a new suggestion.  

       There are more than 43 known mechanisms for wavelength changes [8]. Most of these mechanisms 
are localized effects that would not contribute significantly to the overall wavelength changes that is 
the central issue of Hubble tension. However, if a localized effect is recursive (happening in many 
sections of the light path), contribution of this type of effect needs to be investigated. We have selected 
pulse energy change and CW background; both are recursive. 

       In additional to Hubble tension, another challenge facing Big Bang theory is the fact that a 
homogeneous and isotropic universe is assumed on a large-scale model and the cosmological principle 
such that one single Hubble law is supposed to cover all cases no matter how far away they are been 
observed. But, even on such a scale, the universe is found to be both anisotropic and inhomogeneous 
[9,10]. Based on what we have found numerically, the wave propagation theory needs not rely on the 
Cosmological principle, although a set of distance averaged parameters could be used to predict the 
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overall wavelength shift. This is due to the fact that the waves are found to be stable, periodical and 
other innate characteristics of their propagation. 

       In our numerical investigations of Examples 1 and 2, we have dealt with cases where the pule 
amplitude has changed gradually together with a small change of the pulse shape due to the present of 
a CW background. In these cases, as can be seen in Fig. 2, our numerical predictions have indicated a 
small change of the gradient in the redshift–distance plot. But the changes could be cancelled out in the 
present of sources of opposite sign, as in Case 5 of Example 2 and shown in Fig. 3. Also, the overall 
wavelength changes can be predicted by using the distance weighted D without CW background. 

       Pulse energy changes due to an external source proportional to the pulse itself, will only affect the 
amplitude and not the pulse shape as in Example 3. In these cases, there is no change is the gradient as 
can be seen in Fig. 4.  This is consistent with what we have found previously that pulse energy has not 
been an important variable in the predictions of wavelength changes [11].  

       We did not investigate cases of large pulse distortion due to external energy sources.  However, if 
the waves are soliton-like, it is characteristic of such propagating waves to restore to their stable shapes 
once those external factors no longer exist. 

       If our interest is the overall wavelength changes over the entire journey through space, it should be 
pointed out that total contribution due to energy changes would be quite small because of the following 
reasons: (i) wave length changes is accumulated throughout the entire distance travelled that is 
measured in billions of light years; the total distance over which the conditions are in favour of energy 
exchanges could be measured only in millions of light year; (ii) as can be seen in our Examples, there 
are no dramatic changes in wavelength changes due to energy changes; (iii) wavelength changes could 
be positive or negative, leading to closer to zero contribution, if the total is to be taken into consideration. 

       The situation with gravitational deflection is different. Gravity causes the light path to curve. 
Without deflection, the waves are propagating in a straight line and the distance between two points is 
always shorter when comparing with a curved light path. In additional, contributions are accumulative 
over the entire propagating distance through space. Based on our propagation theory and as shown in 
our numerical Example 4, the wavelength changes over a given time interval is the same with or without 
deflection. But the apparent gradient in the wavelength change-distance relationship, however, is higher 
in the present of deflection. The implication is that waves passing through densely populated regions of 
space would have noticeable longer path length than those passing through sparsely populated regions. 
Locally, the deflection could be large; Case 8 of Example 4 show a total deflection of nearly 60o from 
the original light path. But masses situated at the opposite side of the path could cause negative 
deflection. The fact that some waves have eventually reached the observers is evidence the nett 
deflection need not be considered. 

       Historically, the deflection and lengthening of light path due to gravity had been used to confirm 
General Relativity Theory. The lengthening of light path had also been used as the scientific argument 
for an expanding universe in the early days of the Big Bang theory. Although we do not have the actual 
physical data, in principle, our numerical example is sufficient to demonstrate that light path can be 
lengthened by gravity. But, if we accept the prediction by General Relativity Theory, this should be the 
same anywhere in the universe and is not related to the position of the observer. We cannot accept the 
preposition in Big Bang theory that the rate of wavelength lengthening is proportional to the distance 
between light source and observers.    

6. Conclusion 
 

(1) Due to the innate nature of soliton, and the balancing of the dispersion term with the nonlinear 
terms in NSE, electromagnetic waves can propagate stably over a long distance with 



    
               

wavelength changes linearly proportional to distance travelled, although the rate of change is 
governed by the local prevalent conditions. 
 

(2) Solitons have both wave-like and particle-like transmission characteristics. Due to the latter 
characteristic, any changes are being accumulated throughout the entire distance travelled. 
 

(3) Since all wavelength changes vary linearly with distance, the distance weighted averages can 
be used to predict the overall shift that retains the linear relationship over any length of 
transmission. 
 

(4) Consideration of an inhomogeneous and anisotropic space is needed if localized events are 
involved. But overall contributions to redshifts observed in starlight are most likely 
insignificant except for gravitational deflection.  
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