
Open Peer Review on Qeios
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Abstract

In this note we use the spatial representation in Σ = PG(4, q) of the projective plane Π = PG(2, q2), by fixing a

hyperplane Σ ′ with a regular spread S of lines. We consider a bundle X of varieties V3
2 of Σ having in common the q + 1

 points of a conic C2 of a plane π0, π0 ∩ Σ ′ = l0 ∈ S, thus representing an affine line of Π, and a further affine point 

O ∉ π0. This subset X of Σ represents a bundle of non-affine Baer subplanes of Π, each of them having one point at

infinity (corresponding to a line of S), having in common a subline of affine points of Π and a further affine point. Then X

 is considered as a projective system of Σ and, by using such a representation of Π, we can calculate the ground

parameters of the code CX arising from it.
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1. Introduction

It is known that a  projective translation plane Π of order n = q2 of dimension 2 over its kernel F = GF(q) can be

represented by a 4-dimensional projective space Σ = PG(4, q) over F, fixing a hyperplane Σ ′ = PG(3, q) and a spread S of

lines of Σ ′. The points of Π are represented by (i) the points of Σ ∖ Σ ′ and (ii) the lines of S. The lines of Π are represented

by (i) the planes α of Σ ∖ Σ ′ such that α ∩ Σ ′ belongs to S and by (ii) the spread S. The translation line  l of Π is

represented by S (cf. [1]).

A Baer subplane B of Π has order q and it is dense in the sense that a line of Π either is a line of B (that is, meets B in a
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subline of q + 1 points, such a subplane is affine) or it meets B in one point (such a subplane is non-affine).

The affine Baer subplanes B of Π are represented by the transversal planes β to S, that is, the planes of Σ ∖ Σ ′ such that

the line β ∩ Σ ′ ∉ S meets q + 1 lines of S. In such a way l is a line of B (cf. [2], pp. 68--72). Of course all that holds also in

case Π is the Desarguesian plane PG(2, q2) when S is a regular spread (cf. [3], [2]).

A variety V3
2 of Σ with a line l∞ in S as the minimum (linear) order directrix, a conic C2 as a 2nd order directrix with 

C2 ⊂ π0, π0 ∩ Σ ′ = l0 ∈ S ∖ l∞ and C2 ∩ l0 = ∅, represents a non-affine Baer subplane of Π having one point on the

translation line l and the subline C2 of the line π0 (cf. [3]).

In this paper we consider bundles of q + 1 varieties V3
2 of Σ = PG(4, q) with the linear directrix in S and having in common a

same conic C2 as a 2nd order directrix and one further affine point. By using the spatial representation of Π = PG(2, q2) in 

PG(4, q), we can characterize such a bundle X from the intersection point of view, construct a linear code CX arising from

it and show that its ground parameters allow CX to correct an enough large number of errors.

2. Preliminary Notes

Let  F = GF(q)  be a finite field, q = ps, p  prime. Denote Fr+1 the (r + 1)-dimensional vector space over  F, 

Pr = PrFr+1 = PG(r, q) the r-dimensional projective space contraction of Fr+1 over F. Let 
¯
F be the algebraic closure of the

field F = GF(q).

Denote St with t ≥ 2 a subspace of Pr of dimension t. A hyperplane Sr−1 will be denoted also by H, a plane by π.

The geometry Pr is considered a sub-geometry of 
¯

Pr
, the projective geometry over 

¯
F. We refer to the points of Pr as the

rational points of 
¯

Pr
.

Definition 2.1. A variety Vv
u of dimension u and of order v of Pr is the set of the rational points of a projective variety 

¯
V

v

u of 
¯
P

r
 defined by a finite set of polynomials with coefficients in the field F.

From [4], p.290, 7.- for r ≥ 4  follows

Lemma 2.2. The ruled variety Vr−1
2  of PG(r, q) is generated by the lines connecting the corresponding points of two

birationally (or, projectively) equivalent curves in two complementary subspaces, of order m and r − 1 − m, respectively. It

has order the sum of the orders of the curves as there are no fixed points.

Let P4 be the projective geometry PG(4, q).

Lemma 2.3. A variety V3
2 of PG(4, q) is obtained by joining the corresponding points of a directrix line  l and a directrix

conic C in a plane π, l and C being projectively equivalent and with l ∩ π = ∅.
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Proof. See [5] p. 90.

Choose a coordinate system in P4 so that it is a coordinate system for 
¯
P

4
 too, denote a point 

P ≈ (x1, x2, y1, y2, t):=
¯
F

∗
(x1, x2, y1, y2, t), 

¯
F

∗
=

¯
F ∖ {0}.

P is a rational point if there exists (x1, x2, y1, y2, t) ∈ F5 such that P ≈ (x1, x2, y1, y2, t). A variety V of P4 is the set of the

rational points of 
¯

P4
 solutions of a finite set of polynomials of F[x1, x2, y1, y2, t].

Lemma 2.4. The variety V3
2 can be represented as the definite intersection of two quadrics of PG(4, q), that is, the cone of

planes Q1: sx2
2 − x2

1 − sx2t = 0 (where s is a non square of GF(q)) and the cone of planes Q2: x1y1 − x2y2 = 0. The plane 

π ′ :x1 = 0, x2 = 0 is contained in both quadrics so that, by Bezout, the order of the intersection variety is 4 − 1 = 3.

Proof. See [3] Theorem 1.1, [5] p. 92.

Let Π = PG(2, q2) be the Desarguesian plane over GF(q2). Denote l the line at infinity of Π. In the spatial representation of 

Π in P4 = PG(4, q) fix a hyperplane Σ ′ = PG(3, q) and a regular spread S of lines of Σ ′, where |S | = q2 + 1.

Lemma 2.5. The points of Π are represented by (i) the points of Σ ∖ Σ ′ (the affine points of Π) and by (ii) the lines of S (the

points at infinity of Π). The lines of Π are represented by (i) the planes α of Σ ∖ Σ ′ such that α ∩ Σ ′ belongs to S and by (ii)

the spread S, representing the line at infinity l.

Proof. See [1] the Bruck and Bose representation and  [2], p. 775.

Definition 2.6. A Baer subplane of Π = PG(2, q2) is an affine subplane if it meets the line at infinity l of Π in a subline l1, it

is a non-affine subplane if it meets the line l in one point.

Lemma 2.7.

(i) Two affine Baer subplanes of Π having in common the subline l1 can meet in at most one further point.

(ii) The Baer subplanes having in common only a subline l1 are q2.

(iii) The Baer subplanes having in common a subline l1 and one further point are q + 1.

Proof. (i) Two Baer subplanes having in common a subline l1 and two further points coincide, because they have in

common at least four reference (three by three non collinear) points.

Without loosing generality, we can consider two affine Baer subplanes B and B ′ of Π having in common a subline l1 of l. In

the spatial representation of Π, they are represented by two planes B and B ′ of P4, respectively, such that the lines 

B ∩ Σ ′ = r and B ′ ∩ Σ ′ = r′ are transversal lines of the same regulus R ⊂ S. Denote R ′ the opposite regulus to R.

There are two cases:

(ii) If r = r′, the planes B and B ′ have in common the line r meeting the regulus R in its q + 1 lines so that the subplanes B

 and B ′ have in common the subline l1 (represented by R) of the line l (represented by S) and no further (affine) points.
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Such planes are 

q4

q2
= q2 and represent q2 affine Baer subplanes of Π having in common only the subset l1 of q + 1 points

of the line at infinity l.

(iii) If r ≠ r′, the planes B and B ′ have in common an affine point O ∈ Σ ∖ Σ ′ so that the two subplanes B and B ′ meet

along the subline l1 represented by R and in the affine point O. The regulus R has q + 1 transversal lines 

{ti | i = 1, . . . , q + 1} belonging to R ′. Each space O ⊕ ti is a transversal plane τi, so that {τi | i = 1, . . . , q + 1} represent the 

q + 1 affine Baer subplanes of Π having in common l1 and the affine point O.

Choose and fix a line l∞ of the (regular) spread S, a plane π0 such that π0 ∩ Σ ′ = l0 ∈ S ∖ l∞ and a non-degenerate conic 

C2 ⊂ π0 ∖ l0. Let Λ be a projectivity between l∞ and C2. Denote V3
2 the variety arising by connecting corresponding points

of l∞ and C2 via Λ (cf. [5], p. 90).

Lemma 2.8. The variety V3
2 represents a non-affine Baer subplane of Π meeting the line at infinity l in the point l∞ and

containing the subline C2 of the line represented by π0.

Proof. See [3] and [2].

Let Fn be the n-dimensional vector space over F = GF(q).

Definition 2.9. A linear [n, k]q-code C of length n is a k-dimensional subspace of the vector space Fn.

Definition 2.10. An [n, k]q-projective system X is a set of n non necessarily distinct points of the projective geometry 

PrFk = PG(k − 1, q). It is non-degenerate if these points are not contained in a hyperplane (cf. [6], p. 2).

Assume that X consists of n distinct points having maximum rank.

Codes and projective systems are linked by a strict connection one can read in [6], so that from subsets X of a projective

geometry linear codes CX can be generated. More precisely, for each point of X choose a generating vector. Denote M

 the matrix having as rows such n vectors and let CX be the linear code having Mt as a generator matrix. The code CX is

the k-dimensional subspace of  Fn which is the image of the mapping from the dual k-dimensional space (Fk)∗ onto Fn

 that calculates every linear form over the points of X. Hence the length n of codeword of CX is the cardinality of X, the

dimension of CX being just k (cf. [6], p. 3).

Denote H the set of all hyperplanes of Pk−1 = PrFk.

There exists a natural 1-1 correspondence between the equivalence classes of a non-degenerate [n, k]q-projective system 

X and a non-degenerate [n, k]q-code CX such that if X is an [n, k]q-projective system  and  CX is a corresponding code,

then the non-zero codewords of CX correspond to hyperplanes H ∈ H, up to a non-zero factor. The correspondence

preserves the ground parameters.

The weight of a codeword c corresponding to the hyperplane Hc is the number of points of X ∖ Hc, thus the minimum

weight (or, the minimum distance) d of the code CX is d = |X | − max{ |X ∩ H | ∣ H ∈ H}. Therefore in order to find the
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minimum distance of the code CX it needs to calculate the maximum intersection of X with the hyperplanes of H.

A linear code with length n, dimension k and minimum distance d over the field F = GF(q) can be denoted also as an 

[n, k, d]q-code.

If C is an [n, k, d]q-code, then C is an s-error-correcting code for all s ≤ ⌊
d−1

2 ⌋. We call t = ⌊
d−1

2 ⌋ the error-correcting

capability of C  (cf.[6], p.3).

3. Main Results

With the notations of the previous section, choose and fix the line l0 ∈ S, the plane π0 such that π0 ∩ Σ ′ = l0 ∈ S and the

non-degenerate conic C2 ⊂ π0 ∖ l0.

Denote Σ″  a hyperplane of Σ = PG(4, q) containing the plane π0. Let π = Σ″ ∩ Σ ′. The plane π contains the line l0 and

each of the q2 points of π ∖ l0 belongs to one of the q2 lines of S ∖ {l0}. Let O be a point, O ∈ Σ″ ∖ {π0 ∪ π}. Denote Q the

quadric cone having vertex the point O and directrix the conic C2. Let C ′2 = Q ∩ π. Obviously C ′2 is a non-degenerate

conic with C ′2 ∩ l0 = ∅.

Let {Ri | i = 1, . . . , q + 1} be the set of the q + 1 points of C2, {ri | i = 1, . . . , q + 1} the q + 1 lines of the cone Q with Ri ∈ ri, 

{R ′
i = ri ∩ C ′2 | i = 1, . . . , q + 1} the corresponding set of q + 1 points of C ′2 with R ′

i ∈ ri, {si | i = 1, . . . , q + 1} the q + 1 lines

of S with {R ′
i ∈ si | i = 1, . . . , q + 1}.

For each line si let λi be a projectivity between si and C2 such that λi(R
′
i) = Ri

Denote Si the point at infinity of the plane Π represented by the line si ∈ S, p0 the line of Π represented by the plane π0

 and c2 the subline of p0 corresponding to C2.

Let Vi be the variety V3
2 having the conic C2 and the line si as directrices constructed via λi. Note that, by construction, the

line ri is one of the q + 1 generatrix lines of Vi.

From Lemma 2.8 follows that each of the q + 1 variety Vi is a non-affine Baer subplane of Π meeting the line l in the point 

Si, containing c2 ⊂ p0 and the point O.

Define V:=
⋃
i Vi the union of the points of all varieties Vi for all i = 1, . . . , q + 1 .

Lemma 3.1. V represents the bundle of the full set of q + 1 non-affine Baer subplanes having in common the subline c2

 and the point O.

Proof. See (iii) of Lemma 2.7 and [3].

Proposition 3.2. Σ″ ∩ V = Q.
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Proof. By construction the hyperplane Σ″  contains Q. As for any variety Vi, Σ
″ ∩ Vi cannot contain the directrix line si

 (otherwise Σ″ = Σ ′), then Σ″  meets Vi at most in a cubic curve C2 ∪ ri (cf. [5], (ii), p. 93).

Assume Σ″ ∩ V contains C2 ∪ ri ⊂ Vi and a further point Pj ∈ Vj with j ≠ i. Hence Σ″  contains the line r = PjRj ∈ Vj with 

Rj ∈ C2. If r ≠ rj, then Σ″  should meet Vj in C2 ∪ rj ∪ r where rj and r are two generatrix lines of Vj, then the line sj should

belong to Σ″ , a contradiction (cf. [5], (ii), p. 93). Hence Σ″ ∩ V = Q.

Denote Vaff = V ∖ Σ ′.

Proposition 3.3. 

(i) A hyperplane of Σ having maximum intersection with V is Σ ′, and Σ ′ ∩ V consists of the points of the lines 

{si | i = 1, . . . , q + 1} ⊂ S.

(ii)  A hyperplane of Σ having maximum intersection with Vaff is Σ″  and Σ″ ∩ Vaff consists of the points of Q ∖ C ′2.

Proof. (i)  Let H ∈ H a hyperplane. If H = Σ ′ then H ∩ V is the set of the (q + 1)2 points of {si | i = 1, . . . , q + 1} ⊂ S. If 

H = Σ″  then H ∩ V is the set of the q2 + q + 1 points of Q.

Let H ≠ Σ ′, Σ″ .

Denote H ∩ Σ ′ = π ′, H ∩ Σ″ = π″ .

For H there are two possibilities: 1) H contains π0, 2) H does not contain π0.

1) It is π″ = π0 so that it contains C2. Moreover π ′ ≠ π otherwise H = Σ″ . The plane π ′ forms bundle with axis the line l0
 with π0 and π. Each point of π ′ belongs to one line of S ∖ l0 then it meets the q + 1 points {Pi = π ′ ∩ si | i = 1, . . . , q + 1}.

Therefore H ∩ V contains at least the q + 1 points Pi and the points of C2. Then |H ∩ V | ≥ 2(q + 1). The maximum

intersection is reached if each line PiRi coincides with one generatrix line of the variety Vi for every i, In such a case 

|H ∩ V | = (q + 1)2.

2) Let π″ ∩ Σ ′ = l. Then l is a line of π ′ too.

Let l = l0. The plane π″  contains no generatrix line of the varieties Vi otherwise l0 would meet some line si, it meets V in at

most a conic CQ of Q. Set {Pi ∈ CQ | i = 1, . . . , q + 1}.

If π ′ = π, then π ′ ∩ V = C ′2. If π ′ ≠ π, then it contains no line si (otherwise l0 ∩ si ≠ ∅), it can meet at most q + 1 lines si in

points Ti. In both cases the maximum intersection is reached if the q + 1 lines PiR
′
i, or PiTi, respectively, coincide with the

generatrix lines of the varieties Vi. Hence |H ∩ V | ≤ (q + 1)2.

Let l ≠ l0. Denote r′ = π″ ∩ π0. Then l = si for some i or l meets at most q + 1 lines si.

If π ′ = π, it contains the q + 1 points of C ′2 and according to r′ is secant, tangent or external to the conic C2, |H ∩ V |  is

less or equal to (q + 1) + 2q = 3q + 1, (q + 1) + q = 2q + 1 or q + 1, respectively.

Assume π ′ ≠ π. The plane π ′ must contain one line t of S and the q2 points of the remaining lines of S. Then the plane π ′
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 contains the q + 1 points of t = si for some i, or the q + 1 points of the set {si ∩ π ′ | i = 1, . . . q + 1} ⊂ V. 

According to r′ is secant, tangent or external to the conic C2, H meets V in 2 generatrix lines, in 1 generatrix line or in no

generatrix line. Therefore |H ∩ V |  is less or equal to (q + 1) + 2q = 3q + 1, (q + 1) + q = 2q + 1 or q + 1.

Hence the maximum intersection a hyperplane can have with V consists of (q + 1)2 points. Σ ′ is one of such hyperplanes.

(ii) Let H be a hyperplane, H ≠ Σ ′. From [7], Lemma 11, it is known the maximum intersection a hyperplane of Σ has with a

variety V3
2 consists of two generatrix lines and the directrix line. Of course H cannot meet two different varieties in such a

way otherwise H, containing two lines of S would coincides with Σ ′. Therefore H can meet at least q varieties along the

conic C2 and one generatrix line for each variety, then q points of the conic C ′2. In any case H contains O then the cone Q

. Therefore H = Σ″ . Hence the maximum intersection a hyperplane can have with Vaff is Q ∖ C ′2 with |Q ∖ C ′2 | = q2.

Denote X:=V the projective system defined by V, CX the linear code arising from X, Xaff :=Vaff the projective system

defined by Vaff, CXaff
 the linear code arising from Xaff.

Theorem 3.4. 

(i) CX is an [n, k, d]q-code with n = q3 + 2q2 + q + 1, k = 5, d = q3 + q2 − q.

(ii) CXaff
 is an [n ′, k, d ′]q-code with n ′ = q3 + q2 − q, k = 5, d ′ = q3 − q.

Proof. (i) Each variety Vi consists of q + 1 skew lines, hence it has (q + 1)2 points. Every two varieties Vi  and Vj have in

common the conic C2 and the point O so that for each variety remain q2 + 2q + 1 − (q + 1) − 1 = q2 + q − 1 points. The

varieties are q + 1 so that the cardinality of X is (q2 + q − 1)(q + 1) = q3 + 2q2 − 1 plus the point O and the (q + 1) points of

the conic C2. Hence |X | = q3 + 2q2 + q + 1. The length of the code CX is therefore n = q3 + 2q2 + q + 1.

The dimension of CX is obviously 5, that is, the vector dimension of Σ.

From Proposition 3.3, (i), follows the distance of CX is d = n − | {P ∈ si | i = 1, . . . , q + 1} |  that is, 

d = q3 + 2q2 + q + 1 − (q2 + 2q + 1) = q3 + q2 − q.

(ii) The length of the code CXaff
 equals 

n ′ = |X | − | {P ∈ si | i = 1, . . . , q + 1} | = q3 + 2q2 + q + 1 − (q2 + 2q + 1) = q3 + q2 − q. Its dimension is k = 5. From

Proposition 3.3, (ii), follows the distance is d ′ = n ′ − |Q ∖ C ′2 |  that is, d ′ = q3 + q2 − q − q2 = q3 − q.

Examples

For q = 2, CX is a [19, 5, 10]2-code and it can correct at most ⌊
10−1

2 ⌋ = 4 errors. For q = 3, CX is a [49, 5, 33]3-code and it

can correct at most ⌊
33−1

2 ⌋ = 16 errors.

For q = 2, CXaff
 is a [10, 5, 6]2-code and it can correct at most ⌊

6−1
2 ⌋ = 2 errors. For q = 3, CXaff

 is a [33, 5, 24]3-code and it

can correct at most ⌊
24−1

2 ⌋ = 11 errors.

Qeios, CC-BY 4.0   ·   Article, July 4, 2023

Qeios ID: XLWZT8   ·   https://doi.org/10.32388/XLWZT8 7/8



Other References

R. Vincenti, Fibrazioni di un S3,q indotte da fibrazioni di un S3,q2 e rappresentazione di sottopiani di Baer di un piano

proiettivo, Atti e Mem. Acc. Sci. Lett. e Arti di Modena, Serie VI, Vol. XIX, (1977), 1-18.

R.Vincenti, On some classical varieties and codes, Technical Report 2000/20, Department of Mathematics and

Computer Science, University of Perugia (Italy).

References

1. a, bR. H. Bruck, R. C. Bose, Linear representation of projective planes in projective spaces, J.of Algebra, 4, (1966),

117–172.

2. a, b, c, dR. Vincenti, A survey on varieties of PG (4,q) and Baer subplanes of translation planes, Annals of Discrete

Math., N.H. Pub. Co., 18, (1983), 775–780.

3. a, b, c, d, eR. Vincenti, Alcuni tipi di variet ́a V23 di S4,q e sottopiani di Baer, Algebra e Geometria Suppl. BUMI, Vol. 2,

(1980), 31–44.

4. ^E. Bertini, Introduzione alla geometria proiettiva degli iperspazi, (1907), Enrico Spoerri Editore, Pisa.

5. a, b, c, d, eR. Vincenti, Finite fields, projective geometry and related topics, Morlacchi Editore, (2021), ISBN 978-88-

9392-259.

6. a, b, c, dR. Vincenti, Varieties and codes from partial ruled sets, International Mathematical Forum, Vol. 18, no. 1,

(2023), 1–14, doi.org/10.12988/imf.2023.912353.

7. ^R. Vincenti, Linear codes from projective varieties: a survey, March 21st, 2023, Article on the IntechOpen Edited Book

Coding Theory Essentials, by D. G. Harkut, (2023), doi: 10.5772/intechopen.109836

Qeios, CC-BY 4.0   ·   Article, July 4, 2023

Qeios ID: XLWZT8   ·   https://doi.org/10.32388/XLWZT8 8/8


	On bundles of varieties V_2^3 in PG(4, q) and their codes
	Abstract
	1. Introduction
	2. Preliminary Notes
	3. Main Results
	Other References
	References


