#### **Open Peer Review on Qeios**

# On bundles of varieties V\_2^3 in PG(4, q) and their codes

Rita Vincenti<sup>1</sup>

1 University of Perugia

Funding: No specific funding was received for this work.Potential competing interests: No potential competing interests to declare.

## Abstract

In this note we use the spatial representation in  $\Sigma = PG(4, q)$  of the projective plane  $\Pi = PG(2, q^2)$ , by fixing a hyperplane  $\Sigma'$  with a regular spread S of lines. We consider a bundle X of varieties  $V_2^3$  of  $\Sigma$  having in common the q + 1 points of a conic  $C^2$  of a plane  $\pi_0$ ,  $\pi_0 \cap \Sigma' = I_0 \in S$ , thus representing an affine line of  $\Pi$ , and a further affine point  $O \notin \pi_0$ . This subset X of  $\Sigma$  represents a bundle of non-affine Baer subplanes of  $\Pi$ , each of them having one point at infinity (corresponding to a line of S), having in common a subline of affine points of  $\Pi$  and a further affine point. Then X is considered as a projective system of  $\Sigma$  and, by using such a representation of  $\Pi$ , we can calculate the ground parameters of the code  $C_X$  arising from it.

#### **Rita Vincenti**

University of Perugia, Italy e-mail: <u>aliceiw213@gmail.com</u>

Keywords: Finite projective geometry, varieties, linear codes.

Mathematics Subject Classification: 51E20, 51A05, 94B05, 94B27

# 1. Introduction

It is known that a projective translation plane  $\Pi$  of order  $n = q^2$  of dimension 2 over its kernel F = GF(q) can be represented by a 4-dimensional projective space  $\Sigma = PG(4, q)$  over *F*, fixing a hyperplane  $\Sigma' = PG(3, q)$  and a spread S of lines of  $\Sigma'$ . The points of  $\Pi$  are represented by (i) the points of  $\Sigma \setminus \Sigma'$  and (ii) the lines of S. The lines of  $\Pi$  are represented by (i) the planes  $\alpha$  of  $\Sigma \setminus \Sigma'$  such that  $\alpha \cap \Sigma'$  belongs to S and by (ii) the spread S. The translation line *I* of  $\Pi$  is represented by S (cf. <sup>[1]</sup>).

A Baer subplane B of  $\Pi$  has order q and it is *dense* in the sense that a line of  $\Pi$  either is a line of B (that is, meets B in a



subline of q + 1 points, such a subplane is affine) or it meets B in one point (such a subplane is non-affine).

The *affine* Baer subplanes *B* of  $\Pi$  are represented by the *transversal* planes  $\beta$  to S, that is, the planes of  $\Sigma \setminus \Sigma'$  such that the line  $\beta \cap \Sigma' \notin S$  meets q + 1 lines of S. In such a way *I* is a line of *B* (cf. <sup>[2]</sup>, pp. 68--72). Of course all that holds also in case  $\Pi$  is the Desarguesian plane *PG*(2,  $q^2$ ) when S is a regular spread (cf. <sup>[3]</sup>, <sup>[2]</sup>).

A variety  $V_2^3$  of  $\Sigma$  with a line  $I_{\infty}$  in S as the minimum (linear) order directrix, a conic C<sup>2</sup> as a 2*nd* order directrix with  $C^2 \subset \pi_0, \pi_0 \cap \Sigma' = I_0 \in S \setminus I_{\infty}$  and  $C^2 \cap I_0 = \emptyset$ , represents a non-affine Baer subplane of  $\Pi$  having one point on the translation line *I* and the *subline* C<sup>2</sup> of the *line*  $\pi_0$  (cf. <sup>[3]</sup>).

In this paper we consider bundles of q + 1 varieties  $V_2^3$  of  $\Sigma = PG(4, q)$  with the linear directrix in S and having in common a same conic C<sup>2</sup> as a 2*nd* order directrix and one further affine point. By using the spatial representation of  $\Pi = PG(2, q^2)$  in PG(4, q), we can characterize such a bundleX from the intersection point of view, construct a linear codeC<sub>X</sub> arising from it and show that its ground parameters allow C<sub>X</sub> to correct an enough large number of errors.

## 2. Preliminary Notes

Let F = GF(q) be a finite field,  $q = p^s$ , p prime. Denote  $F^{r+1}$  the (r+1)-dimensional vector space over F,

 $P^r = PrF^{r+1} = PG(r, q)$  the *r*-dimensional projective space contraction of  $F^{r+1}$  over *F*. Let <sup>*F*</sup> be the algebraic closure of the field F = GF(q).

Denote  $S_t$  with  $t \ge 2$  a subspace of  $P^r$  of dimension *t*. A hyperplane  $S_{r-1}$  will be denoted also by *H*, a plane by  $\pi$ .

The geometry  $P^r$  is considered a sub-geometry of  $P^r$ , the projective geometry over F. We refer to the points of  $P^r$  as the rational points of  $P^r$ .

**Definition 2.1.** A variety  $V_u^v$  of dimension u and of order v of  $P^r$  is the set of the rational points of a projective variety  $V_u^v$  of  $P^r$  defined by a finite set of polynomials with coefficients in the field **F**.

From <sup>[4]</sup>, p.290, 7.- for  $r \ge 4$  follows

**Lemma 2.2.** The ruled variety  $V_2^{r-1}$  of PG(r, q) is generated by the lines connecting the corresponding points of two birationally (or, projectively) equivalent curves in two complementary subspaces, of order m and r - 1 - m, respectively. It has order the sum of the orders of the curves as there are no fixed points.

Let  $P^4$  be the projective geometry PG(4, q).

**Lemma 2.3.** A variety  $V_2^3$  of PG(4, q) is obtained by joining the corresponding points of a directrix line *I* and a directrix conic C in a plane  $\pi$ , *I* and C being projectively equivalent and with  $I \cap \pi = \emptyset$ .

Proof. See <sup>[5]</sup> p. 90.

Choose a coordinate system in  $P^4$  so that it is a coordinate system for  $P^4$  too, denote a point

 $P \approx (x_1, x_2, y_1, y_2, t) := F^* (x_1, x_2, y_1, y_2, t), F^* = F \setminus \{0\}.$ 

*P* is a *rational point* if there exists  $(x_1, x_2, y_1, y_2, t) \in F^5$  such that  $P \approx (x_1, x_2, y_1, y_2, t)$ . A variety *V* of  $P^4$  is the set of the rational points of  $P^4$  solutions of a finite set of polynomials of  $F[x_1, x_2, y_1, y_2, t]$ .

**Lemma 2.4.** The variety  $V_2^3$  can be represented as the definite intersection of two quadrics of PG(4, q), that is, the cone of planes  $Q_1$ :  $sx_2^2 - x_1^2 - sx_2t = 0$  (where s is a non square of GF(q)) and the cone of planes  $Q_2$ :  $x_1y_1 - x_2y_2 = 0$ . The plane  $\pi': x_1 = 0, x_2 = 0$  is contained in both quadrics so that, by Bezout, the order of the intersection variety is 4 - 1 = 3.

Proof. See <sup>[3]</sup> Theorem 1.1, <sup>[5]</sup> p. 92.

Let  $\Pi = PG(2, q^2)$  be the Desarguesian plane over  $GF(q^2)$ . Denote *I* the line at infinity of  $\Pi$ . In the spatial representation of  $\Pi$  in  $P^4 = PG(4, q)$  fix a hyperplane  $\Sigma' = PG(3, q)$  and a regular spread S of lines of  $\Sigma'$ , where  $|S| = q^2 + 1$ .

**Lemma 2.5.** The points of  $\Pi$  are represented by (i) the points of  $\Sigma \setminus \Sigma'$  (the affine points of  $\Pi$ ) and by (ii) the lines of S (the points at infinity of  $\Pi$ ). The lines of  $\Pi$  are represented by (i) the planes  $\alpha$  of  $\Sigma \setminus \Sigma'$  such that  $\alpha \cap \Sigma'$  belongs to S and by (ii) the spread S, representing the line at infinity *I*.

Proof. See <sup>[1]</sup> the Bruck and Bose representation and <sup>[2]</sup>, p. 775.

**Definition 2.6.** A Baer subplane of  $\Pi = PG(2, q^2)$  is an affine subplane if it meets the line at infinity of  $\Pi$  in a subline  $l_1$ , it is a non-affine subplane if it meets the line I in one point.

#### Lemma 2.7.

- (i) Two affine Baer subplanes of  $\Pi$  having in common the subline  $I_1$  can meet in at most one further point.
- (ii) The Baer subplanes having in common only a sublinel  $_1$  are  $q^2$ .
- (iii) The Baer subplanes having in common a sublinel<sub>1</sub> and one further point are q + 1.

Proof. (*i*) Two Baer subplanes having in common a subline  $I_1$  and two further points coincide, because they have in common at least four *reference* (three by three non collinear) points.

Without loosing generality, we can consider two affine Baer subplanesB and B' of  $\Pi$  having in common a subline  $I_1$  of I. In the spatial representation of  $\Pi$ , they are represented by two planes B and B' of  $P^4$ , respectively, such that the lines  $B \cap \Sigma' = r$  and  $B' \cap \Sigma' = r'$  are transversal lines of the same regulus R  $\subset$  S. Denote R' the opposite regulus to R.

There are two cases:

(*ii*) If r = r', the planes *B* and *B'* have in common the line *r* meeting the regulus R in its q + 1 lines so that the subplanes B and B' have in common the *subline I*<sub>1</sub> (represented by R) of the *line I* (represented by S) and no further (affine) points.

0

Such planes are  $\frac{q^2}{q^2} = q^2$  and represent  $q^2$  affine Baer subplanes of  $\Pi$  having in common only the subset  $l_1$  of q + 1 points of the line at infinity *l*.

(*iii*) If  $r \neq r'$ , the planes *B* and *B'* have in common an affine point  $O \in \Sigma \setminus \Sigma'$  so that the two subplanes B and B' meet along the subline  $I_1$  represented by R and in the affine point *O*. The regulus R has q + 1 transversal lines  $\{t_i | i = 1, ..., q + 1\}$  belonging to R'. Each space  $O \oplus t_i$  is a transversal plane  $\tau_i$ , so that  $\{\tau_i | i = 1, ..., q + 1\}$  represent the q + 1 affine Baer subplanes of  $\Pi$  having in common  $I_1$  and the affine point *O*.

Choose and fix a line  $I_{\infty}$  of the (regular) spread S, a plane  $\pi_0$  such that  $\pi_0 \cap \Sigma' = I_0 \in S \setminus I_{\infty}$  and a non-degenerate conic  $C^2 \subset \pi_0 \setminus I_0$ . Let  $\Lambda$  be a projectivity between  $I_{\infty}$  and  $C^2$ . Denote  $V_2^3$  the variety arising by connecting corresponding points of  $I_{\infty}$  and  $C^2$  via  $\Lambda$  (cf. <sup>[5]</sup>, p. 90).

**Lemma 2.8.** The variety  $V_2^3$  represents a non-affine Baer subplane of  $\Pi$  meeting the line at infinity I in the point  $I_{\infty}$  and containing the subline  $C^2$  of the line represented by  $\pi_0$ .

Proof. See <sup>[3]</sup> and <sup>[2]</sup>.

Let  $F^n$  be the *n*-dimensional vector space over F = GF(q).

**Definition 2.9.** A linear  $[n, k]_{a}$ -code C of length n is a k-dimensional subspace of the vector space  $F^{n}$ .

**Definition 2.10.** An  $[n, k]_q$ -projective system X is a set of n non necessarily distinct points of the projective geometry  $PrF^k = PG(k-1, q)$ . It is non-degenerate if these points are not contained in a hyperplane (cf.<sup>[6]</sup>, p. 2).

Assume that X consists of *n* distinct points having maximum rank.

Codes and projective systems are linked by a strict connection one can read in<sup>[6]</sup>, so that from subsets X of a projective geometry linear codes  $C_X$  can be generated. More precisely, for each point of X choose a generating vector. Denote M the matrix having as rows such *n* vectors and let  $C_X$  be the linear code having M<sup>t</sup> as a generator matrix. The code  $C_X$  *is the k-dimensional subspace of F<sup>n</sup>* which is the *image of the mapping from the dualk-dimensional space* ( $F^k$ ) \* *onto F<sup>n</sup> that calculates every linear form over the points of*X. Hence the length *n* of codeword of  $C_X$  is the cardinality of X, the dimension of  $C_X$  being just *k* (cf. <sup>[6]</sup>, p. 3).

Denote H the set of all hyperplanes of  $P^{k-1} = PrF^k$ .

There exists a natural 1-1 correspondence between the equivalence classes of a non-degenerate  $[n, k]_q$ -projective system X and a non-degenerate  $[n, k]_q$ -code  $C_X$  such that if X is an  $[n, k]_q$ -projective system and  $C_X$  is a corresponding code, then the non-zero codewords of  $C_X$  correspond to hyperplanes  $H \in H$ , up to a non-zero factor. The correspondence preserves the ground parameters.

The weight of a codeword *c* corresponding to the hyperplane  $H_c$  is the number of points of  $X \setminus H_c$ , thus the minimum weight (or, the minimum distance) *d* of the code  $C_X$  is  $d = |X| - max\{|X \cap H| \mid H \in H\}$ . Therefore in order to find the

minimum distance of the code  $C_X$  it needs to calculate the maximum intersection of X with the hyperplanes of H.

A linear code with length *n*, dimension *k* and minimum distance *d* over the field F = GF(q) can be denoted also as an  $[n, k, d]_{q}$ -code.

If *C* is an  $[n, k, d]_q$ -code, then *C* is an *s*-error-correcting code for all  $s \le \lfloor \frac{d-1}{2} \rfloor$ . We call  $t = \lfloor \frac{d-1}{2} \rfloor$  the *error-correcting* capability of *C* (cf.<sup>[6]</sup>, p.3).

# 3. Main Results

With the notations of the previous section, choose and fix the line  $I_0 \in S$ , the plane  $\pi_0$  such that  $\pi_0 \cap \Sigma' = I_0 \in S$  and the non-degenerate conic  $C^2 \subset \pi_0 \setminus I_0$ .

Denote  $\Sigma''$  a hyperplane of  $\Sigma = PG(4, q)$  containing the plane  $\pi_0$ . Let  $\pi = \Sigma'' \cap \Sigma'$ . The plane  $\pi$  contains the line  $I_0$  and each of the  $q^2$  points of  $\pi \setminus I_0$  belongs to one of the  $q^2$  lines of  $S \setminus \{I_0\}$ . Let O be a point,  $O \in \Sigma'' \setminus \{\pi_0 \cup \pi\}$ . Denote Q the quadric cone having vertex the point O and directrix the conic  $C^2$ . Let  $C'^2 = Q \cap \pi$ . Obviously  $C'^2$  is a non-degenerate conic with  $C'^2 \cap I_0 = \emptyset$ .

Let  $\{R_i | i = 1, ..., q + 1\}$  be the set of the q + 1 points of  $C^2$ ,  $\{r_i | i = 1, ..., q + 1\}$  the q + 1 lines of the cone Q with  $R_i \in r_i$ ,  $\{R_i^{'} = r_i \cap C'^2 | i = 1, ..., q + 1\}$  the *corresponding* set of q + 1 points of  $C'^2$  with  $R_i^{'} \in r_i$ ,  $\{s_i | i = 1, ..., q + 1\}$  the q + 1 lines of S with  $\{R_i^{'} \in s_i | i = 1, ..., q + 1\}$ .

For each line  $s_i$  let  $\lambda_i$  be a projectivity between  $s_i$  and C<sup>2</sup> such that  $\lambda_i(R_i) = R_i$ 

Denote  $S_i$  the point at infinity of the plane  $\Pi$  represented by the line  $s_i \in S$ ,  $p_0$  the line of  $\Pi$  represented by the plane  $\pi_0$ and  $c_2$  the subline of  $p_0$  corresponding to  $C^2$ .

Let V<sub>i</sub> be the variety  $V_2^3$  having the conic C<sup>2</sup> and the line  $s_i$  as directrices constructed via  $\lambda_i$ . Note that, by construction, the line  $r_i$  is one of the q + 1 generatrix lines of V<sub>i</sub>.

From Lemma 2.8 follows that each of the q + 1 variety  $V_i$  is a non-affine Baer subplane of  $\Pi$  meeting the line *l* in the point  $S_i$ , containing  $c_2 \subset p_0$  and the point *O*.

Define V :=  $i^{j}$  V<sub>i</sub> the union of the points of all varieties V<sub>i</sub> for all i = 1, ..., q + 1.

**Lemma 3.1.** V represents the bundle of the full set of q + 1 non-affine Baer subplanes having in common the sublinec<sub>2</sub> and the point *O*.

Proof. See (iii) of Lemma 2.7 and <sup>[3]</sup>.

**Proposition 3.2.**  $\Sigma'' \cap V = Q$ .



Proof. By construction the hyperplane  $\Sigma''$  contains Q. As for any variety  $V_i, \Sigma'' \cap V_i$  cannot contain the directrix line  $s_i$  (otherwise  $\Sigma'' = \Sigma'$ ), then  $\Sigma''$  meets  $V_i$  at most in a cubic curve  $C^2 \cup r_i$  (cf. <sup>[5]</sup>, (*ii*), p. 93).

Assume  $\Sigma^{''} \cap V$  contains  $C^2 \cup r_i \subset V_i$  and a further point  $P_j \in V_j$  with  $j \neq i$ . Hence  $\Sigma^{''}$  contains the line  $r = P_j R_j \in V_j$  with  $R_j \in C^2$ . If  $r \neq r_j$ , then  $\Sigma^{''}$  should meet  $V_j$  in  $C^2 \cup r_j \cup r$  where  $r_j$  and r are two generatrix lines of  $V_j$ , then the line  $s_j$  should belong to  $\Sigma^{''}$ , a contradiction (cf. <sup>[5]</sup>, (*ii*), p. 93). Hence  $\Sigma^{''} \cap V = Q$ .

Denote  $V_{aff} = V \setminus \Sigma'$ .

#### **Proposition 3.3.**

(*i*) A hyperplane of  $\Sigma$  having maximum intersection with V is  $\Sigma'$ , and  $\Sigma' \cap V$  consists of the points of the lines  $\{s_i | i = 1, ..., q+1\} \subset S$ .

(*ii*) A hyperplane of  $\Sigma$  having maximum intersection with  $V_{aff}$  is  $\Sigma''$  and  $\Sigma'' \cap V_{aff}$  consists of the points of  $Q \setminus C'^2$ .

Proof. (*i*) Let  $H \in H$  a hyperplane. If  $H = \Sigma'$  then  $H \cap V$  is the set of the  $(q + 1)^2$  points of  $\{s_i | i = 1, ..., q + 1\} \subset S$ . If  $H = \Sigma''$  then  $H \cap V$  is the set of the  $q^2 + q + 1$  points of Q.

Let  $H \neq \Sigma', \Sigma''$ .

Denote  $H \cap \Sigma' = \pi', H \cap \Sigma'' = \pi''$ .

For *H* there are two possibilities: 1) *H* contains  $\pi_0$ , 2) *H* does not contain  $\pi_0$ .

1) It is  $\pi'' = \pi_0$  so that it contains C<sup>2</sup>. Moreover  $\pi' \neq \pi$  otherwise  $H = \Sigma''$ . The plane  $\pi'$  forms bundle with axis the line  $I_0$  with  $\pi_0$  and  $\pi$ . Each point of  $\pi'$  belongs to one line of S \  $I_0$  then it meets the q + 1 points { $P_i = \pi' \cap s_i | i = 1, ..., q + 1$ }. Therefore  $H \cap V$  contains at least the q + 1 points  $P_i$  and the points of C<sup>2</sup>. Then  $|H \cap V| \ge 2(q + 1)$ . The maximum intersection is reached if each line  $P_i R_i$  coincides with one generatrix line of the variety  $V_i$  for every *i*, In such a case  $|H \cap V| = (q + 1)^2$ .

2) Let  $\pi^{''} \cap \Sigma^{'} = I$ . Then *I* is a line of  $\pi^{'}$  too.

Let  $I = I_0$ . The plane  $\pi''$  contains no generatrix line of the varieties  $V_i$  otherwise  $I_0$  would meet some line  $s_i$ , it meets V in at most a conic  $C_Q$  of Q. Set  $\{P_i \in C_Q | i = 1, ..., q + 1\}$ .

If  $\pi' = \pi$ , then  $\pi' \cap V = C'^2$ . If  $\pi' \neq \pi$ , then it contains no line  $s_i$  (otherwise  $I_0 \cap s_i \neq \emptyset$ ), it can meet at most q + 1 lines  $s_i$  in points  $T_i$ . In both cases the maximum intersection is reached if the q + 1 lines  $P_i R'_i$ , or  $P_i T_i$ , respectively, coincide with the generatrix lines of the varieties  $V_i$ . Hence  $|H \cap V| \leq (q + 1)^2$ .

Let  $l \neq l_0$ . Denote  $r' = \pi'' \cap \pi_0$ . Then  $l = s_i$  for some *i* or *l* meets at most q + 1 lines  $s_i$ .

If  $\pi' = \pi$ , it contains the q + 1 points of C<sup>2</sup> and according to r' is secant, tangent or external to the conicC<sup>2</sup>,  $|H \cap V|$  is less or equal to (q + 1) + 2q = 3q + 1, (q + 1) + q = 2q + 1 or q + 1, respectively.

Assume  $\pi' \neq \pi$ . The plane  $\pi'$  must contain one line *t* of S and the  $q^2$  points of the remaining lines of S. Then the plane  $\pi'$ 

contains the q + 1 points of  $t = s_i$  for some i, or the q + 1 points of the set  $\{s_i \cap \pi' | i = 1, ..., q + 1\} \subset V$ . According to r' is secant, tangent or external to the conic  $C^2$ , H meets V in 2 generatrix lines, in 1 generatrix line or in no generatrix line. Therefore  $|H \cap V|$  is less or equal to (q + 1) + 2q = 3q + 1, (q + 1) + q = 2q + 1 or q + 1.

Hence the maximum intersection a hyperplane can have with V consists of  $(q + 1)^2$  points.  $\Sigma'$  is one of such hyperplanes.

(*ii*) Let *H* be a hyperplane,  $H \neq \Sigma'$ . From <sup>[7]</sup>, Lemma 11, it is known the maximum intersection a hyperplane of  $\Sigma$  has with a variety  $V_2^3$  consists of two generatrix lines and the directrix line. Of course*H* cannot meet two different varieties in such a way otherwise *H*, containing two lines of S would coincides with  $\Sigma'$ . Therefore *H* can meet at least *q* varieties along the conic C<sup>2</sup> and one generatrix line for each variety, then *q* points of the conic C<sup>'2</sup>. In any case *H* contains *O* then the cone Q. Therefore  $H = \Sigma''$ . Hence the maximum intersection a hyperplane can have with  $V_{aff}$  is Q \ C<sup>'2</sup> with |Q \ C<sup>'2</sup>| = q<sup>2</sup>.

Denote X:= V the projective system defined by V,  $C_X$  the linear code arising from X,  $X_{aff} := V_{aff}$  the projective system defined by  $V_{aff}$ ,  $C_{X_{aff}}$ , the linear code arising from  $X_{aff}$ .

#### Theorem 3.4.

(i)  $C_X$  is an  $[n, k, d]_q$ -code with  $n = q^3 + 2q^2 + q + 1$ , k = 5,  $d = q^3 + q^2 - q$ . (ii)  $C_{X_{aff}}$  is an  $[n', k, d']_q$ -code with  $n' = q^3 + q^2 - q$ , k = 5,  $d' = q^3 - q$ .

Proof. (*i*) Each variety V<sub>i</sub> consists of q + 1 skew lines, hence it has  $(q + 1)^2$  points. Every two varieties V<sub>i</sub> and V<sub>j</sub> have in common the conic C<sup>2</sup> and the point *O* so that for each variety remain  $q^2 + 2q + 1 - (q + 1) - 1 = q^2 + q - 1$  points. The varieties are q + 1 so that the cardinality of X is  $(q^2 + q - 1)(q + 1) = q^3 + 2q^2 - 1$  plus the point *O* and the (q + 1) points of the conic C<sup>2</sup>. Hence  $|X| = q^3 + 2q^2 + q + 1$ . The length of the code  $C_X$  is therefore  $n = q^3 + 2q^2 + q + 1$ .

The dimension of  $C_{\chi}$  is obviously 5, that is, the vector dimension of  $\Sigma$ .

From Proposition 3.3, (*i*), follows the distance of  $C_X$  is  $d = n - |\{P \in s_i | i = 1, ..., q + 1\}|$  that is,  $d = q^3 + 2q^2 + q + 1 - (q^2 + 2q + 1) = q^3 + q^2 - q.$ 

(*ii*) The length of the code  $C_{X_{aff}}$  equals

 $n' = |X| - |\{P \in s_i | i = 1, ..., q + 1\}| = q^3 + 2q^2 + q + 1 - (q^2 + 2q + 1) = q^3 + q^2 - q$ . Its dimension is k = 5. From Proposition 3.3, (*ii*), follows the distance is  $d' = n' - |Q \setminus C'^2|$  that is,  $d' = q^3 + q^2 - q - q^2 = q^3 - q$ .

#### **Examples**

For q = 2,  $C_X$  is a  $[19, 5, 10]_2$ -code and it can correct at most  $\left\lfloor \frac{10-1}{2} \right\rfloor = 4$  errors. For q = 3,  $C_X$  is a  $[49, 5, 33]_3$ -code and it can correct at most  $\left\lfloor \frac{33-1}{2} \right\rfloor = 16$  errors.

For q = 2,  $C_{X_{aff}}$  is a  $[10, 5, 6]_2$ -code and it can correct at most  $\left[\frac{6-1}{2}\right] = 2$  errors. For q = 3,  $C_{X_{aff}}$  is a  $[33, 5, 24]_3$ -code and it can correct at most  $\left[\frac{24-1}{2}\right] = 11$  errors.

# **Other References**

- R. Vincenti, Fibrazioni di un S3,q indotte da fibrazioni di un S3,q2 e rappresentazione di sottopiani di Baer di un piano proiettivo, Atti e Mem. Acc. Sci. Lett. e Arti di Modena, Serie VI, Vol. XIX, (1977), 1-18.
- R.Vincenti, On some classical varieties and codes, Technical Report 2000/20, Department of Mathematics and Computer Science, University of Perugia (Italy).

## References

- 1. <sup>a, b</sup>*R. H. Bruck, R. C. Bose, Linear representation of projective planes in projective spaces, J.of Algebra, 4, (1966), 117–172.*
- <sup>a, b, c, d</sup>R. Vincenti, A survey on varieties of PG (4,q) and Baer subplanes of translation planes, Annals of Discrete Math., N.H. Pub. Co., 18, (1983), 775–780.
- a, b, c, d, eR. Vincenti, Alcuni tipi di variet´a V23 di S4,q e sottopiani di Baer, Algebra e Geometria Suppl. BUMI, Vol. 2, (1980), 31–44.
- 4. <sup>^</sup>E. Bertini, Introduzione alla geometria proiettiva degli iperspazi, (1907), Enrico Spoerri Editore, Pisa.
- 5. <sup>a, b, c, d, e</sup>*R. Vincenti, Finite fields, projective geometry and related topics, Morlacchi Editore, (2021), ISBN 978-88-9392-259.*
- a, b, c, dR. Vincenti, Varieties and codes from partial ruled sets, International Mathematical Forum, Vol. 18, no. 1, (2023), 1–14, doi.org/10.12988/imf.2023.912353.
- <sup>^</sup>R. Vincenti, Linear codes from projective varieties: a survey, March 21st, 2023, Article on the IntechOpen Edited Book Coding Theory Essentials, by D. G. Harkut, (2023), doi: 10.5772/intechopen.109836