Einstein-AdS gravity coupled to nonlinear electrodynamics,
magnetic black holes, thermodynamics in an extended phase
space and Joule-Thomson expansion

S. L. Kruglov !

Department of Physics, University of Toronto,
60 St. Georges St., Toronto, ON M5S 1A7, Canada
Canadian Quantum Research Center,

204-3002 32 Ave Vernon, BC' V1T 2L7, Canada

Abstract

We study Einstein’s gravity with negative cosmological constant
coupled to nonlinear electrodynamics proposed earlier. The metric
and mass functions and corrections to the Reissner—Nordstrém solu-
tion are obtained. Black hole solutions can have one or two horizons.
Thermodynamics and phase transitions of magnetically charged black
holes in Anti-de Sitter spacetime are investigated. The first law of
black hole thermodynamics is formulated and the generalized Smarr
relation is proofed. By calculating the Gibbs free energy and heat ca-
pacity we study the black hole stability. Zero-order (reentrant), first-
order, and second-order phase transitions are analysed. The Joule—
Thomson expansion is considered showing the cooling and heating
phase transitions. It was shown that the principles of causality and
unitarity are satisfied in the model under consideration.

1 Introduction

Black holes behave as the thermodynamic systems [1, 2, 3] and they have
the entropy connected with surface area and surface gravity which defines
the temperature [4, 5]. Black holes phase transitions occur in Anti-de Sitter
(AdS) spacetime, where the cosmological constant is negative [6]. It was
discovered that gravity in AdS spacetime is linked with the conformal field
theory (the holographic principle) [7] which has an application in condensed
matter physics. In black hole thermodynamics (in an extended phase space)
the negative cosmological constant being a thermodynamic pressure which
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is conjugated to a black hole volume [8, 9, 10, 11]. In Einstein-AdS gravity
coupled to nonlinear electrodynamics (NED) (with coupling ) the constant
[ is conjugated to the vacuum polarization. The first NED was proposed by
M. Born and L. Infeld [12] to remove a singularity of a point charge and to
have the finite the electromagnetic field energy. At the weak-field limit Born—
Infeld electrodynamics becomes Maxwell’s theory. Another NED model was
formulated by W. Heisenberg and H. Euler [13], where nonlinearity is due
to creation of the electron-positron pairs within quantum electrodynamics.
The interest in NED, as a source of gravity, is because of possibility to have
regular black holes and soliton-like configurations without singularities. Re-
cent reviews of NED models were given in [14, 15]. Black hole thermody-
namics in Einstein-AdS gravity coupled to Born—Infeld electrodynamics was
considered in [16, 17, 18, 19, 20, 21, 22] (see also [23, 24]). Born-Infeld-
AdS thermodynamics of black holes in extended phase space was studied in
25, 26, 27, 28, 29]. The Joule-Thomson expansion of black holes was inves-
tigated in [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. In this paper we study a
modified Einstein-Anti de Sitter theory with a NED model, as a matter field,
to smooth out singularities of the linear Maxwell theory. We use NED the-
ory with Lagrangian of the form L(F) = —F/ (47T (1 + (2ﬁ]—")3/4)), where
F = F"F,, /4 with F,, being the electromagnetic field tensor. The interest
in this model is due to its simplicity, the metric and mass functions are ex-
pressed in the form of elementary functions but in Born—Infeld NED they are
special functions. We consider magnetically charged black holes because elec-
trically charged black holes with NED possessing weak-field Maxwell limit
have a singularity [40].

In section 2 we obtain the metric function and its asymptotic with cor-
rections to the Reissner—Nordstrom solution. The first law of black hole
thermodynamics in the extended phase space is studied in section 3. We
calculate the thermodynamic magnetic potential and the thermodynamic
conjugate to the NED coupling (the vacuum polarization). We show that
the generalized Smarr relation holds. In section 4, the critical temperature
and critical pressure are obtained. By analysing the Gibbs free energy and
heat capacity we show that phase transitions take place. It is demonstrated
that black hole thermodynamics is similar to Van der Waals thermodynam-
ics. We analyse first-order, second-order, and reentrant phase transitions.
The Joule-Thomson adiabatic expansion is studied in section 5. The Joule—
Thomson coefficient and the inversion temperature are calculated. Section



6 is a summary. In Appendix A we calculate the Kretschmann scalar. We
study causality and unitarity of our NED model in Appendix B. We show
that the principles of causality and unitarity take place for any magnetic
induction fields.

We use the units: c=h =1, kg = 1.

2 Einstein-AdS black hole solution

The Einstein-AdS action with the matter is given by

1_/d4x\/—(f6 (?A ﬁ(f)), (1)

where A = —3/I? is negative cosmological constant with [ being the AdS
radius. Here, we use the matter Lagrangian in the form of NED 2 [41]

f
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with F = F*F,, /4 = (B? — E?)/2, where E and B are the electric and
magnetic induction fields, respectively. As  — 0 Lagrangian (2) becomes
the Maxwell Lagrangian £, = —F/(47). From action (1) one obtains the
field equations

1
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where L = 0L(F)/OF. The energy-momentum tensor reads
Ty =F,F, Lr+ gL (F). (5)

The line element squared with spherical symmetry is

ds* = = f(r)dt* + ——dr* + 1 (d6® + sin*(0)de”) (6)

1
f(r)
2We insert a factor 47 in the denominator of Eq. (2) to use the Gaussian units compared
to Heaviside—Lorentz units explored in [41].




We treat the black hole as a magnetic monopole with the magnetic induction
field B = q/r?, where ¢ is the magnetic charge. The metric function is given
by [40]

2m(r)G
() =1 - 2 )
with the mass function
m(r) = mo + 4w /T p(r)rdr. (8)
0

Here, mo an integration constant (the Schwarzschild mass), and p is the
energy density. Making use of Eq. (5) the magnetic energy density plus the
energy density due to AdS spacetime is given by
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From Egs. (8) and (9) one obtains the mass function
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The magnetic energy of the black hole becomes

m(r) =mgy +

, IR
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The magnetic energy, which can be considered as a magnetic mass, is finite.
Thus, the coupling 5 smoothes singularities. Making use of Eqgs. (7) and
(10) we obtain the metric function
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As r — 0, when the Schwarzschild mass is zero (mg = 0), one finds
Gnyar 1 Gyr?
2,33/ 25 33/2¢

fr) =1

flry=1- + O(r®). (13)
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As a result, we have f(0) = 1. The finiteness of the metric function is
necessary condition in order to have the spacetime regular. But the spacetime
singularity presents in the model because the Kretschmann scalar becomes
infinite at r = 0 (see Appendix A). Making use of Eq. (12) (when A = 0) as
r — 00, we obtain

2N 2 7/2 23/4
fry=1- G + TGy 4 b7 Gy + O(r_6). (14)
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We define M = mgy+mys being the ADM mass. According to Eq. (14) black
holes have corrections to the Reissner—Nordstrom solution. When g = 0
the metric (14) becomes the Reissner—Nordstrom metric. The plot of metric
function (12) is depicted in Fig. 1 (at mg = 0, Gy = 1, 1 = 10). According to
Fig. 1 black holes may have one or two horizons. When coupling (5 increases,
at the constant ¢, the event horizon radius is decreasing. If magnetic charge
g increases, at the constant (3, the event horizon radius also increases.

3 First law of black hole thermodynamics

We will consider the first law of black hole thermodynamics in extended phase
space, where the pressure is P = —A/(87) [42, 43, 44, 45, 46] and coupling /3
is a thermodynamic value. In this approach mass M is a chemical enthalpy
(M = U + PV with U being the internal energy). By using the Euler’s
dimensional analysis with G = 1 [47], [42], we obtain dimensions as follows:
(M) =L, [S]=L* [P|= L2 [J]= L3 [q] = L, [f] = L*. Then one finds

250 gp Oy O O oMt

08 opr oJ dq
where J is black hole angular momentum. The thermodynamic conjugate
to coupling /5 is the vacuum polarization [11] B = 0M /9. The black hole
entropy S, volume V' and pressure P are defined as
A 3

4
S = 7T7’_2i_, V = 571'7”3_, P = _8771‘ = W (16)

(15)

Making use of Eq. (12) for non-rotating black holes (J = 0) we obtain
, 3 3/2 3/2(
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where r is the event horizon radius, f(ry) = 0. The total black hole mass
M(r) versus r, is plotted in Fig. 2. With the help of Eq. (17) we find

B 1 3r+ > ri
2
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The Hawking temperature is given by

(19)

where f'(r) = 0f(r)/0r. By virtue of Egs. (12) and (19), one obtains the
Hawking temperature

1 3ry q°

— 4+ =F - . (20)
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Equation (20) is converted into the Hawking temperature of Maxwell-AdS
black hole as f — 0. Making use Egs. (15), (18) and (20) we find the first
law of black hole thermodynamics

dM = TdS + VdP + ®dq + BdB. (21)

Comparing Eq. (18) with (21) we obtain the magnetic potential ® and the
vacuum polarization B

_ Vay(ry) | V3gm qr’
= - 51/: + ﬁ1/4 +4[7’i+(gq2)3/4}’
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The plots of ® and B vs r, are depicted in Fig. 2. According to Fig. 3 (sub-

(22)
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plot 1) when parameter 3 increases the magnetic potential ® is decreasing.
As r, — oo the magnetic potential vanishes (®(0c0) = 0), but at ry =0 & is
finite. Figure 3 (subplot 2) shows that at r, = 0 the vacuum polarization is
finite and when r — oo, B is zero (B(c0) = 0).

Making use of Egs. (15), (16) and (22) one can verify that the generalized
Smarr relation

M =25T — 2PV 4+ q® + 288 (23)
holds.

4 Thermodynamics of black hole

With the help of Eq. (20) one finds the black hole equation of state

T 1 ¢

p— _ .
2r,  8mr? i 8mry [r3 + (Bq?)3/4]

(24)

Equation (24), as 8 — 0, is converted into charged Maxwell-AdS black hole
equation of state [45]. Equation (24) is similar to the Van der Waals equation
of state if the specific volume reads v = 2lpry (Ip = /Gy = 1) [45]. Then
Eq. (24) becomes

T 1 2q°

p—=_ .
v 2w molvd + 8(8¢?)3/4]

(25)

The inflection points in the P — v diagrams (critical points) may be obtained
by equations

or T . 1 8¢+ (avB))

v 02w mu[ud + 8(B¢2)3A]?
827P . g 3 n 8¢2[50° + 8(B¢2)*/*® + 32(8¢%)3/? 0 )
oz w3 mt 703 (08 + 8(Bq2)3/]3 =0

By virtue of Eq. (26) one finds the critical points equation

=0,

[03 +8(8¢%)*° — 24¢%v [0} — 4(B4*)*"] = 0. (27)
Making use of Eq. (26) we obtain the critical temperature and pressure

1 8¢°[v® +2(8¢%)*"]
m.  w[od+8(Bg?)?
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The solutions (approximate) v. to Eq. (27), critical temperatures T, and
pressures P, are presented in Table 1. The P — v diagrams are given in Fig.4.

P (29)

Table 1: Critical values of the specific volume, temperatures and pressures
at g=1

o] 0.1 0.2 0.4 0.5 07 0.8 0.9 1

ve 4790 4.708 4552 4.472 4297 4196 4.080 3.936
T, 0.0438 0.0442 0.0448 0.0452 0.0459 0.0463 0.0467 0.0472
P, 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041

At ¢ = 1, B = 0.5 the critical specific volume is v, &~ 4.472 and the critical
temperature is 7. = 0.0452. Figure 4 shows that at some point the pressure
is zero corresponding to the black hole remnant. Then if the specific volume
is increasing the pressure increases and the pressure has a maximum. Then
the pressure decreases that is similar to ideal gas. At the critical values we
have similarities with Van der Waals liquid behavior having the inflection
point. Making use of Egs. (27), (28) and (29) and for small 5 one finds
1 1
2 2

v:=24¢"+0(p), T.=—F——+0p), P.=——=+0(). 30
At 8 =01in Eq. (30), we obtain the critical points of charged AdS black hole
[25]. Then the critical ratio becomes

P.v 3
— cYc — O 31

o= 2o, 31)
with the value p. = 3/8 corresponding to the Van der Waals fluid.

The Gibbs free energy for fixed charge ¢, coupling # and pressure P is
given by

Pe

G=M-TS, (32)

where M is considered as a chemical enthalpy. Making use of Eqgs. (16),
(17), (20) and (32) we obtain

oo 2mr3 P ng? q*r3 B *?g(ry)

13 T avasa At (B 128V

(33)
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The plot of the Gibbs free energy G versus T for § = 0.5 and v. ~ 4.472,
T. ~ 0.0452 is depicted in Fig. 5. We took into consideration that r,
is the function of P and T' (see Eq. (24)). Subplots 1 and 2 at P < P,
show first-order phase transitions (between small and large black holes for
T < T.) similar to liquid-gas transitions with the ’swallowtail’ behaviour. In
accordance with subplot 3 the second order phase transition for P = P, takes
place. Subplot 4 corresponds to the case P > P., where there are not phase
transitions.

The entropy S vs temperature T" at ¢ = = 1 is given in Fig. 6. Figure
6 (subplots 1 and 2) show that entropy is ambiguous function of the temper-
ature and, therefore, first-order phase transitions take place. According to
subplot 3 the second-order phase transition occurs. The critical point sep-
arates low and high entropy states. In accordance with subplot 4 there are
not phase transitions at ¢ = =1, P = 0.005.

Let us study local stability of black holes by considering the heat capacity
which is given by

(34)

c_T oS\ _ToS/ory 2w, T
t\or),  oT/ory  GNOT/Ory

Equation (34) shows that when the Hawking temperature has an extremum
the heat capacity diverges and the black hole phase transition occurs. The
plot of the Hawking temperature is given in Fig. 7 for parameters g =
0.1, 0.3, 1 (Il =¢ =1). In accordance with Fig. 7, the Hawking temperature
possesses a minimum and the heat capacity diverges. Figure 7 shows that
there is a region where the Hawking temperature is negative and, therefore,
in this interval of event horizon radiuses, black holes do not exist. For the
case [ = q¢ =1, f = 0.1, equation T" = 0 has two real roots r; ~ 0.213 and
r9 & 0.472. The plot of the heat capacity (34) atg=1=1, 5 =0.1 (Gy = 1)
is depicted in Fig. 8. In accordance with Fig. 8 the heat capacity has a
singularity in the point where the Hawking temperature has a minimum.
The heat capacity diverges (07/0r=0) at r3 ~ 0.318. One can see from Eq.
(34) that when the Hawking temperature is zero the heat capacity vanishes.
The black hole undergoes the phase transition from small black hole to large
black hole in the points where the heat capacity possesses a singularity. In the
region where the heat capacity is positive the black hole is stable, otherwise
the black hole is unstable. At ro > r, > r; the Hawking temperature is
negative but at r, > ro the Hawking temperature and the heat capacity are
positive and the black hole is stable.



4.1 Reentrant phase transitions

The reentrant phase transition firstly was observed in a nicotine/water mix-
ture [48]. It was discussed also in higher dimensions [49] and in spinning
Kerr-AdS black holes [50]. The phenomenon of reentrant phase transition
is described in multi-component fluids [51]. The reentrant phase transition
(zeroth-order phase transition) takes place when a system possesses a transi-
tion from one phase to another phase and then goes back to the first phase.
In this process one thermodynamic variable is changed but others remain
constant. As the pressure increases from 0.001 to 0.002 in Fig. 8 (from panel
1 to panel 2), there will be a large-small-large reentrant phase transition.
In our model there is the global minimum of the Gibbs free energy having
a jump depicted in Fig. 9 (for an example) for P = 0.002. When T de-
creases, the black hole follows the lower vertical curve until 7" = T;. Then it
coincides with the upper horizontal line corresponding to small stable black
holes and undergoes a first-order large-small black hole phase transition. As
T decreases up to T' = Tj, the Gibbs free energy G possesses a discontinuity
at its global minimum. When 7' continues to decrease, the system goes to the
stable black holes. Thus, the zeroth-order phase transition occurs between
small and large black holes.

5 Joule-Thomson expansion

During the Joule-Thomson isenthalpic expansion the enthalpy (the mass M)
is constant. The cooling-heating phases are described by the Joule-Thomson

coefficient
_(oT 1 ov (0T /Ory)um
w=(o8), & (o), V|- Grmry @

Equation (35) shows that the Joule-Thomson coefficient is the slope of the
P — T function. At the inversion temperature T; the sign of i is changed,
and T; can be found by equation p;(7;) = 0. In the cooling phase (p; > 0)
initial temperature is higher than inversion temperature 7; and the final
temperature decreases. If the initial temperature is lower than 7T} then the
final temperature increases in accordance with the heating phase (u; < 0).
Making use of Eq. (35) and taking into account equation p;(7;) = 0, we
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obtain

. oT . Ty or
v (), -5 (), o

The inversion temperature separates cooling and heating processes. The
inversion temperature line goes through P — T diagrams maxima [31, 32].
Equation (24) may be represented as equation of state

1 q*
T=——+4+2Pr, — )
drr O T A (8 (B

(37)

At f =0 Eq. (37) is converted into equation of state of Maxwell-AdS black
holes. From Eq. (17) and using equation P = 3/(87l?) one obtains

3 3/2 3/2
M(ry) - T4 g(ry)
2 4/3pY4 0 12814

We depicted the P —T isenthalpic diagrams in Fig. 9 by taking into account
Egs. (37) and (38). Figure 10 shows that the inversion P, — T; diagram
crosses maxima of isenthalpic curves. Making use of Egs. (24), (36) and (37)
we find the inversion pressure P,

P (38)

- 3
dmrs

Y 16w, (r3 4 (B@)¥Y)7 At
By virtue of Egs. (37) and (39) one obtains the inversion temperature
2493 22\3/4 1

8r(rl + (B)%/4)?  dmry

Substituting P; = 0 in Eq. (39), we find the equation for the minimum of
the event horizon radius 7,

B0 in (2 + (B — 4 (1 + (B =0, (4))

From Egs. (40) and (41) at 8 = 0, one obtains minimum of the inversion
temperature corresponding to Maxwell-AdS magnetic black holes

T = —.

min _ 2 42
7 6\/671'(:] h 2 ( )
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Making use of Egs. (30) and (42) at 5 = 0 we find the relation T/"" = T /2
which corresponds to electrically charged AdS black holes [30]. With the
help of Egs. (39) and (40) we plotted P; — T; diagrams in Fig. 6. According
to Fig. 6. the inversion point increases when the black hole mass increases.
The inversion diagrams P; — T; are depicted in Figs. 10 and 11. According
to Fig. 11 when magnetic charge ¢ increases then the inversion temperature
increases. Figure 12 shows that when the coupling  increases the inversion
temperature decreases. From Eqs. (35), (37) and (38) we find

orT 1 opr 3q¢%r?
()b (), e
M M

ory 4rrd ory Amlri + (¢*B)%*)*
oP 3 V32 2q(r °r?
o _ . [\/_q 477_3M+r+_q g(4+)+ - qary =, (43)
ory ), Amril 4pY 4pY 2[r} + (8¢2)3/]

where P|y; is given in Eq. (38). Equations (35) and (43) define the Joule—
Thomson coefficient as the function of the magnetic charge ¢, coupling (3,
black hole mass M and event horizon radius ;. When the Joule-Thomson
coefficient is positive (p; > 0) a cooling process occurs. If p; < 0 a heating
process takes place.

6 Summary

We obtained new magnetic black hole solution in Einstein-AdS gravity cou-
pled to NED. It is shown that the principles of causality and unitarity occur
for any magnetic induction fields. The metric and mass functions and cor-
rections to the Reissner—Nordstrom solution were found. When coupling 3 is
increasing (at constant magnetic charge) the event horizon radius decreases.
If magnetic charge increases (at constant coupling ) the event horizon ra-
dius is increasing. It was demonstrated that a spacetime singularity presents
because the Kretschmann scalar is infinite at » = 0. The black holes ther-
modynamics in an extended phase space with negative cosmological constant
(which is a thermodynamic pressure) was studied. In this approach the mass
of the black hole is the chemical enthalpy. The vacuum polarization, which
is a thermodynamic quantity conjugated to coupling /3, and thermodynamic
potential, conjugated to magnetic charge, were obtained. We showed that
the first law of black hole thermodynamics and the generalized Smarr formula
take place. It was demonstrated that black hole thermodynamics is similar
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to the Van der Waals liquid—gas thermodynamics. We analysed the Gibbs
free energy and heat capacity showing phase transitions. We have analysed
zero-order, first-order, and second-order phase transitions. The critical ra-
tio p. obtained is different from the Van der Waals value 3/8. We studied
the black hole Joule-Thomson isenthalpic expansion and cooling and heat-
ing phase transitions. We found the inversion temperature which separates
cooling and heating processes of black holes.

7 Appendix A

The Kretschmann scalar is defined as
2'(r)\> (2 -\’
K(T’) = R,Wang’aﬁ — (f”(?“))Q + < fr(m) + ( (f(T’) )> ) (44)
From Eq. (12) (at Gy = 1) one finds

, 2m q>? T *? 2r
0= i (00 ) -
oy Amg g T\, A
fir) = - B 3r3YBE (9(7") + \/§> - r(r3 + B3/4¢3/2)2) T 12’ (45)
where
g(r) =1In r _(;_f%);/ﬁq — 2v/3arctan (W) . (46)

Making use of Egs. (12) and (45) the Kretschmann scalar versus r is plotted
in Fig. 12. As r — 0 the Kretschmann scalar approaches to infinity showing
a spacetime singularity at » = 0. But at small radiuses, close to the Planck
length Ip = \/Gnh/c3, one needs to take into account quantum effects [52].
The Kretschmann scalar becomes constant as r — co. According to Fig. 12
the curvature invariant K (r) is not bounded. Figure 12 shows that as the
coupling J increases (at fixed ¢ and 1) the Kretschmann scalar decreases.

8 Appendix B

The NED models are viable if causality and unitarity principles take place.
The causality principle requires that a group velocity of elementary excita-
tions over a background field does not exceed the light speed in vacuum. The
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unitarity principle requires that the propagator residue has to be positive.
These principles lead to requirements (in our notations) [53]

Lr<0, Lrr>0, Lr+2FLrr <0, (47)

were Lr = 0L/OF. Making use of of Eq. (2) we obtain

. BF+2yF L 08
T savaBF (L + 28FPA T 5o YaBE (1+ (26F))

2(2BF)7/* + 38BF + 8/2BF
32m/2BF (14 (26F)3/4)°
Equation (47) is satisfied for 8 > 0 and F = B%/2 > 0 i.e. for pure magnetic

field. Thus, the principles of causality and unitarity occur for any magnetic
induction fields.

Lr+2FLyr=— (48)
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Figure 1: The function f(r) at my = 0, Gy = 1, [ = 10. Figure 1 shows
that black holes could have one or two horizons. In accordance with subplot
1, if coupling f is increasing the event horizon radius decreases. According
to subplot 2 when magnetic charge ¢ increases the event horizon radius also
increases.
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Figure 2: The function M(ry) at mg = 0, Gy = 1. According to Fig. 2,
left panel, the black hole mass M (r,) decreases, at fixed r; and ¢, when the
coupling (3 increases. In accordance with right panel, when magnetic charge
q increases, at fixed r, and (3, the event horizon radius also increases.
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Figure 3: The functions ® and B vs r; at ¢ = 1. The solid curve in subplot 1
is for § = 0.05, the dashed curve is for g = 0.2, and the dashed-doted curve
is for 5 = 0.5. It follows that the magnetic potential ® is finite at . = 0 and
becomes zero at r, — oo. If coupling S is increasing the magnetic potential
decreases. The function B in subplot 2 vanishes as r, — oo and is finite at
ry = 0.
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Figure 4: The function P(v) at ¢ = 1, f§ = 0.5. The critical isotherm
corresponds to T, ~ 0.0452 possessing the inflection point.
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Figure 5: The plots of the Gibbs free energy G vs. T at ¢ = 1, f = 0.5.
According to subplots 1 and 2 we have the ’swallowtail” plots with first-order
phase transitions. Subplot 3 shows the second-order phase transition with
P = P, ~0.0037. Subplot 4 shows the case P > P, with non-critical behavior
of the Gibbs free energy.
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Figure 6: The plots of entropy S vs. temperature 7" at ¢ = 1, § = 0.5.
According to subplots 1 and 2 (in some range of T') entropy is ambiguous
function of the temperature and first-order phase transitions occur. In ac-
cordance with subplot 3 the second-order phase transition takes place.

25



0.8 . . T

—— B=0.1
0.7F | — — B=0.3 |-

0.6

0.5

0.4

0.3

0.2

0.1

0.5 1 1.5 2

Figure 7: The plots of the Hawking temperature 7" versus horizon radius 7
at l=q=1, =0.1, 0.3, 1. Figure shows that the Hawking temperature
has a minimum.
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Figure 8: The plot of the heat capacity C, versus horizon radius r, at [ =
g =1, 8 =0.1. According to the figure, the heat capacity has a singularity
where the Hawking temperature possesses a minimum.
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Figure 9: Reentrant phase transition. There is a finite jump in the Gibbs
free energy showing the zeroth-order phase transition.
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Figure 10: The plots of the temperature 7" vs. pressure P for ¢ = 30, 5 = 0.5.
The P, —T; diagram goes via maxima of isenthalpic curves. The solid curve is
for mass M = 90, the dashed curve corresponds to M = 100, and the dashed-
doted curve is for M = 110. The inversion temperature T; vs. pressure P;
(¢ = 30, 8 = 0.5) is depicted by solid line. If black hole masses are increasing
the inversion temperature 7T; increases.
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Figure 11: The inversion temperature 7T; vs. pressure P; at ¢ = 25, 30 and
35, 8 = 0.1. When magnetic charge ¢ increases the inversion temperature is
increasing.
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Figure 12: The inversion temperature 7T; vs. pressure P; at § = 0.1, 0.2
and 0.4, ¢ = 20. Figure shows that if the coupling § increases the inversion
temperature decreases.
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Figure 13: The plot of the function K(r) vs. r for ¢ =1 =1, myg = 0. The
solid line corresponds to 8 = 0.2, the dashed line corresponds to 5 = 0.5
and the dashed-dotted line corresponds to 8 = 1. The Kretschmann scalar
approaches to infinity as r — 0 showing a space-time singularity at r = 0.
As r — 0o the Kretschmann scalar becomes constant.
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