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While recent foundation models have enabled signi�cant breakthroughs in monocular depth

estimation, a clear path towards safe and reliable deployment in the real-world remains elusive.

Metric depth estimation, which involves predicting absolute distances, poses particular challenges, as

even the most advanced foundation models remain prone to critical errors. Since quantifying the

uncertainty has emerged as a promising endeavor to address these limitations and enable

trustworthy deployment, we fuse �ve di�erent uncertainty quanti�cation methods with the current

state-of-the-art DepthAnythingV2 foundation model. To cover a wide range of metric depth

domains, we evaluate their performance on four diverse datasets. Our �ndings identify �ne-tuning

with the Gaussian Negative Log-Likelihood Loss (GNLL) as a particularly promising approach,

o�ering reliable uncertainty estimates while maintaining predictive performance and computational

e�ciency on par with the baseline, encompassing both training and inference time. By fusing

uncertainty quanti�cation and foundation models within the context of monocular depth estimation,

this paper lays a critical foundation for future research aimed at improving not only model

performance but also its explainability. Extending this critical synthesis of uncertainty quanti�cation

and foundation models into other crucial tasks, such as semantic segmentation and pose estimation,

presents exciting opportunities for safer and more reliable machine vision systems.
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1. Introduction

Monocular depth estimation (MDE) received signi�cant attention in recent years due to its crucial role

in various downstream tasks ranging from autonomous driving[1][2] and robotics[3][4] to AI-generated

content such as images[5], videos[6], and 3D scenes[7][8][9]. At its core, MDE aims to transform a single

image into a depth map by regressing range values for each pixel, all without exploiting direct range or

stereo measurements. Theoretically, MDE is a geometrically ill-posed problem that is fundamentally

ambiguous and can only be solved with the help of prior knowledge about object shapes, sizes, scene

layouts, and occlusion patterns. This inherent requirement for scene understanding perfectly aligns

MDE with deep learning approaches, which have proven pro�cient in encoding potent priors[10][11][12]

[13]. These models bene�t from extreme scaling, i.e., training on massive datasets and increasing model

size, which facilitates the emergence of high-level visual scene understanding.

Based on these �ndings, a plethora of models have been proposed to address the challenges of MDE,

with recent state-of-the-art solutions often leveraging large vision transformers trained on internet-

scale data[14][15][16][17][10][11][12][13], yielding foundation models capable of generalizing to a wide range

of applications and scenes. A particularly challenging yet crucial application in �elds such as robotics[3]

[4], augmented reality[18], and autonomous driving[1][2] is the estimation of absolute distances in real-

world units (e.g., meters), commonly referred to as metric depth estimation. This task is especially

di�cult due to inherent metric ambiguities caused by di�erent camera models and scene variations.

Fortunately, these foundation models can successfully be �ne-tuned in the respective domain[10][11][12]

[13] to determine exceptionally accurate metric depths.

However, the strong performance of foundation models on common benchmarks[19][20][21][22] can lead

to naive deployment, potentially overlooking their limitations. This can be particularly detrimental in

safety-critical applications where errors can have serious consequences. There are multiple challenges

associated with real-world deployment of deep learning models, including the lack of transparency due

to the "black box" character of end-to-end systems[23][24], the inability to distinguish between in-

domain and out-of-domain samples[25][26], the tendency to be overcon�dent[27], and the sensitivity to

adversarial attacks[28][29][30].

To mitigate these risks, recent research has advocated for the quanti�cation of uncertainty in deep

learning models[31][32][33][34][35][36][37], particularly in scenarios where their deployment could have

real-world implications. A number of promising methods for uncertainty quanti�cation (UQ) have
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been developed, yet, surprisingly, there has been little attention on the integration of UQ with powerful

MDE foundation models. As illustrated in Figure 1, even state-of-the-art foundation models are not

immune to inaccuracies. However, if we can leverage UQ to correlate high uncertainties with erroneous

predictions, it opens up the possibility of safer deployment of these models in real-world applications.

To bridge the gap between ground-breaking results in research and safe, reliable deployment in real-

world applications, we investigate multiple UQ methods in combination with MDE foundation models.

We speci�cally focus on combining the state-of-the-art DepthAnythingV2 foundation model[13] with

�ve di�erent UQ methods to enable pixel-wise uncertainty measures for metric depth estimation:

1. Learned Con�dence (LC)[38]: Con�dences, interpreted as uncertainties, are learned by extending

the primary objective function with an additional loss term.

2. Gaussian Negative Log-Likelihood (GNLL)[39]: Predictions are treated as samples from a

Gaussian distribution, with the network outputting both a predictive mean and its corresponding

variance, which is learned implicitly through minimizing the Gaussian Negative Log-Likelihood.

3. Monte Carlo Dropout (MCD)[40]: Dropout layers remain active during inference, sampling from

the posterior distribution to estimate a predictive mean and variance.

4. Sub-Ensembles (SE)[41]: A Deep Ensemble[42]  is approximated by multiplying a subset of the

model’s layers instead of using the full model.

5. Test-Time Augmentation (TTA)[43]: Perturbations applied to inputs during inference produce

unique samples, enabling computation of a predictive mean and corresponding variance.

We conduct extensive evaluations across four diverse datasets:

1. NYUv2[19]: Low-resolution indoor scenes.

2. Cityscapes[21]: High-resolution outdoor urban scenes.

3. HOPE[44]: Synthetic training images and real-world testing images of household objects.

4. UseGeo[45]: High-resolution aerial images.

This wide selection ensures coverage of a broad spectrum of real-world applications. Additionally, we

examine all publicly available pre-trained encoders of the DepthAnythingV2 model, comprehensively

revealing insights into the performance of models across various sizes and con�gurations.

We believe that our analysis will contribute to a deeper understanding of the limitations of these

powerful foundation models, enhancing transparency and reliability in MDE. By highlighting often
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overlooked challenges, such as the lack of explainability, our work paves the way for future research

that not only seeks to improve performance but also aims to teach these models to know what they

don’t know.

Figure 1. Qualitative example of a �ne-tuned DepthAnythingV2 for metric monocular depth estimation

on the NYUv2 dataset [19], using a ViT-S encoder and Monte Carlo Dropout for an additional

uncertainty estimate. The binary accuracy map is based on the δ1 error. The strong correlation between

erroneous predictions and high uncertainties highlights the potential of integrating uncertainty

quanti�cation (UQ) methods with foundation models for MDE.
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2. Related Work

2.1. Monocular Depth Estimation

Foundations. Monocular Depth Estimation (MDE) is a dense regression task that aims to predict a

depth value for each pixel in a given input image. The pioneering work of[46]  laid the foundation for

MDE by directly predicting depth using a multi-scale neural network. This seminal approach

demonstrated that convolutional neural networks could e�ectively learn spatial hierarchies and

capture depth cues from monocular images, thus inspiring a plethora of subsequent methods[47][48]

[49][50]. While most introduce novel architectures or loss functions,[51] reformulate depth estimation as

an ordinal regression problem through discretization of the depth ranges. Another innovative approach

by[52]  incorporates neural conditional random �elds to model contextual dependencies, further

re�ning depth predictions. Besides,[53]  impose geometric constraints based on piecewise planarity

priors.

Vision Transformers. Naturally, the rise of vision transformers[54] has also signi�cantly impacted the

�eld of MDE. These models employ the self-attention mechanism of the transformer to aggregate

depth information across a more extensive �eld of view to capture long-range dependencies and global

context, leading to more accurate and consistent depth maps. Inherently, multiple approaches have

successfully adapted vision transformers to MDE[55][56][57][58][59][60][61][62][63][64][65].

Hybrid Approaches. Beyond more traditional regression-based methods, some works creatively treat

MDE as a combined regression-classi�cation task. By discretizing the depth range into bins, these

methods simplify the learning task improve performance in some cases. Notable examples include

AdaBins[66], BinsFormer[67], and LocalBins[10].

Generative Models. A more recent trend in MDE includes repurposing generative models such as

di�usion models[68][69][70][71][65][72], e�ectively building on its predecessor, generative adversarial

networks[73][74].

Depth in the Wild. Estimating depth "in the wild" has become an increasingly important area of

research in MDE. It refers to the challenge of predicting accurate depth estimates in unconstrained

environments, where lighting, scene structure, and camera parameters vary signi�cantly. With the

increasing availability of compute resources, researchers have found scaling to be a valuable tool to

tackle this challenge. By constructing large and diverse depth datasets and leveraging powerful
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foundation models, MDE has become more accessible and robust to real-world use. Foundation models

are large neural networks pre-trained on internet-scale data, which allow them to develop a high-level

visual understanding that can either be used directly or �ne-tuned for a variety of downstream

tasks[75].

Ordinal Depth. One of the earlier works aimed at addressing depth in the wild by leveraging the scale of

data is[14]. Building on this idea,[15]  introduced the OASIS dataset, a large-scale dataset speci�cally

designed for depth and normal estimation. It is worth noting, however, both of these works primarily

focus on relative (ordinal) depth, which only estimates the depth order instead of providing absolute

measurements. While ordinal depth can provide valuable information about the structure of a given

scene, its practical use is limited.

A�ne-invariant Depth. To overcome the limitations of ordinal depth, several studies have explored

a�ne-invariant depth estimation, which provides depth estimates up to an unknown a�ne

transformation. In other words, the absolute scale and o�set of the depth map can vary while the

relative depth di�erences are preserved. For instance, models trained on the MegaDepth dataset[16],

which uses multi-view internet photo collections along with structure-from-motion and multi-view

stereo methods to create depth maps, can generalize well to unseen images. Another signi�cant

contribution is MiDaS[17], which achieves the ability to generalize across a variety of scenes and

conditions through training on a mixture of multiple datasets.

Metric Depth. For applications that often require absolute distances, such as robotics[3][4], augmented

reality[18], and autonomous driving[1][2], metric depth estimation is crucial. Metric depth estimation

aims to provide absolute depth measurements in real-world units (e.g., meters or centimeters).

Inconveniently, zero-shot generalization is particularly challenging due to the metric ambiguities

introduced by di�erent camera models. Aside from some works that explicitly incorporate camera

intrinsics as an additional input[76][77]  to directly solve this issue, current state-of-the-art metric

depth estimation approaches still rely on �ne-tuning powerful foundation models in the respective

domain[10][11][12][13].

2.2. Uncertainty Quanti�cation

Overview. A wide variety of UQ methods have been proposed to address the shortcomings of deep

neural networks, particularly in terms of reliability and robustness[78][40][42][41][79][80][35][81]. Among

them, sampling-based approaches are the most prominent due to their ease of use and e�ectiveness in
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providing high-quality uncertainty estimates[78][40][42]. While they usually produce the most accurate

uncertainty estimates, the computational cost associated with the necessity of multiple forward passes

often makes them unusable for real-world applications that require fast inference times or that are

running on resource-constrained devices.

Sampling-based Methods. One of the simplest and most prevalent sampling-based UQ methods is

Monte Carlo Dropout (MCD)[40]. MCD approximates a Gaussian process by keeping dropout layers

active during both training and testing. Originally, dropout layers were solely introduced as a

regularization technique to prevent over�tting[82]. With MCD, however, they are also used during test

time to turn a deterministic model into a stochastic one to sample from the posterior distribution. The

predictive uncertainty of a given model can then easily be estimated by calculating the standard

deviation (or variance) of the samples. Another widespread sampling-based UQ method are Deep

Ensembles[42], which are generally considered the state-of-the-art for UQ across various tasks[83][84]

[85][86]. They consist of a collection of independently trained models, ideally each initialized with

random weights and optimized with random data augmentations to maximize the diversity among the

ensemble members[87]. The high e�ectiveness of Deep Ensembles comes at the cost of a very high

computational overhead due to the need to train and evaluate multiple models.

E�ciency-oriented Methods. In addition to these methods, there are several approaches that aim to

balance computational e�ciency with the quality of uncertainty estimates[41][79][80][35]. For instance,

Sub-Ensembles[41] exploit subnetworks within a single model to produce diverse predictions without

the need of a full ensemble of models. They o�er an e�ective trade-o� between uncertainty quality and

computational cost, which can easily be tuned based on the given constraints.

UQ in Self-supervised MDE. While substantial progress has been made in developing e�ective UQ

methods, integrating these techniques with MDE comes with some unique challenges like the limited

ground truth data, which is expensive and di�cult to acquire, especially at scale. For that reason, a

signi�cant body of research has focused on UQ in self-supervised MDE[88][89][90][91][92]. While they all

explore di�erent strategies to estimate the uncertainty, some even manage to leverage the uncertainty

to enhance model performance[88][90][91].

UQ in Supervised MDE. For supervised learning scenarios, one common approach to UQ involves

modeling the regression output as a parametric distribution and training the model to estimate its

parameters[93][39]. This approach allows the model to not only output the depth estimate but also to
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measure the corresponding uncertainty, typically represented as the variance of the distribution.

Similarly,[94]  propose an auxiliary network that exploits the output and the intermediate

representations of the main model to estimate the uncertainty.[95]  introduce a post hoc uncertainty

estimation method that relies on gradients extracted with an auxiliary loss function. This technique

utilizes Test-Time Augmentation[43] to investigate the correspondence of the depth prediction for an

image and its horizontally �ipped counterpart. Another innovative approach is proposed by[96], who

address computational e�ciency by optimizing a set of latent prototypes. The uncertainty is quanti�ed

by examining the position of an input sample in the prototype space. Lastly,[97] developed a training-

free uncertainty estimation approach based on tolerable perturbations during inference and using the

variance of multiple outputs as a surrogate for the uncertainty.

Research Gap. Despite signi�cant advancements in UQ for MDE, integrating these techniques with

large-scale foundation models remains unexplored. We aim to address this gap by combining multiple

UQ methods with the state-of-the-art DepthAnythingV2 foundation model[13], enabling pixel-wise

uncertainty estimates in addition to metric depth measurements. Our �ndings will contribute to a more

nuanced understanding of the capabilities and limitations of these models, emphasizing the

importance of not only striving for higher performance but also making MDE more reliable and

trustworthy for real-world use.

3. DepthAnything Foundation Model

DepthAnythingV2[13]  is one the most recent state-of-the-art foundation models for MDE, which can

easily be �ne-tuned for metric depth estimation, making it the perfect candidate for exploring the

combination of various UQ methods with MDE foundation models. Consequently, we want to provide a

more detailed overview of this model, which was built upon the framework established by its

predecessor, DepthAnythingV1[12].

DepthAnythingV1. [13] laid the groundwork for creating a versatile foundation model for MDE using the

DINOv2 encoder[98] for feature extraction with the DPT decoder[61] for depth regression. The training

process of DepthAnythingV1 involves a semi-supervised approach using a student-teacher framework.

The teacher model generates pseudo-labels for an extremely large corpus of unlabeled images (approx.

62 million from 8 public datasets), while the student is trained on both the pseudo-labels and a set of

1.5 million labeled images from 6 public datasets. To ensure robustness of the learned representations,
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they additionally apply strong image perturbations for the student. These include strong color

distortion like color jittering and Gaussian blurring and strong spatial distortion through CutMix[99].

To further re�ne the model’s capabilities, they also introduce an auxiliary feature alignment loss. It

measures the cosine similarity between the features of the student model and those of a frozen DINOv2

encoder, which is a powerful model for semantic-related tasks like image retrieval and semantic

segmentation. This potent addition to the training process helps imbue the DepthAnythingV1 model

with high-level semantic understanding to further improve the depth estimation.

DepthAnythingV2. Building on the success of DepthAnythingV1,[13]  quickly introduced several key

advancements that enable �ner and more robust depth predictions. These improvements are centered

around the following three strategies:

1. Synthetic Data for Label Accuracy: One of the most signi�cant changes for DepthAnythingV2 is

the replacement of all labeled real images with synthetic images. This alteration is motivated by

the desire to eliminate label noise and address the lack of detail often ignored in real datasets. In

contrast to real images, synthetic data allows for precise depth training and avoids the

inconsistencies found in real-world labels.

2. Scaling up the Teacher Model: To mitigate the drawbacks of synthetic images, such as

distribution shifts and restricted scene coverage, the capacity of the teacher model signi�cantly

increased. DepthAnythingV2 employs DINOv2-G, the most powerful variant of the DINOv2

encoder[61].

3. Leveraging Pseudo-Labeled Real Images: To bridge the gap between synthetic images and the

complexity of real-world scenes, DepthAnythingV2 incorporates large-scale pseudo-labeled real

images into its training pipeline. This does not only expand the lacking scene coverage of the

synthetic images but also ensures that the model is exposed to a wide variety of real-world

scenarios, improving its generalization capabilities.

These advancements make DepthAnythingV2 one of the most powerful, if not the most powerful

currently available MDE foundation model. Aside from providing high-quality depth predictions across

a diverse range of applications, the model can easily be �ne-tuned for metric depth estimation tasks,

achieving state-of-the-art results. Given these attributes, DepthAnythingV2 serves as an ideal

candidate for exploring foundation model uncertainty in MDE. We aim to assess various UQ methods in
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combination with this foundation model, enabling pixel-wise uncertainty measures while maintaining

high accuracy in the regressing metric depths in real-world applications.

4. Methodology

4.1. Overview

Our primary research question is straightforward: How can we bridge the gap between ground-

breaking results in research and safe deployment in real-world applications that need robust metric

depth estimates with corresponding uncertainties.

As Figure 2 shows, we study �ve di�erent approaches to not only estimate metric depths but also their

corresponding uncertainties: Learned Con�dence (LC)[38], Gaussian Negative Log-Likelihood (GNLL)

[39], Monte Carlo Dropout (MCD)[40], Sub-Ensembles (SE)[41], and Test-Time Augmentation (TTA)[43]

The upper two approaches of Figure 2, LC and GNLL, are fairly simple since they only require adding a

second output channel to the already existing depth head. The �rst output channel outputs the metric

depth maps and the second output channel the uncertainty.

The third option, MCD, is equally straightforward since it only requires activating all of the already

existing dropout layers in the model while �ne-tuning. During inference, these dropout layers are kept

active and multiple depth outputs are being sampled. By computing the mean and variance, the �nal

depth map and the corresponding uncertainty are obtained.

The fourth option, SE, is possibly the most complicated and requires signi�cant changes to the

architecture. Instead of using just one depth head, a sub-ensemble of randomly initialized depth heads

is created. During inference, every depth head predicts slightly di�erent depth samples. Similar to the

third option, MCD, the �nal depth map and uncertainty can be obtained by computing the mean and

variance.

Finally, as Figure 2 shows, we also examine TTA, which does not require any changes to the �ne-

tuning process of DepthAnythingV2. Instead, we apply horizontal and vertical �ipping during test-time

to create two additional inputs to create a total of three unique depth samples. Based on these, we

compute the mean and variance to obtain the �nal depth map and the uncertainty.

qeios.com doi.org/10.32388/YLJOS8 10

https://www.qeios.com/
https://doi.org/10.32388/YLJOS8


Figure 2. A schematic overview of how to fuse the �ve di�erent uncertainty quanti�cation approaches with

the DepthAnythingV2[13] foundation model.

4.2. Learned Con�dence

The general approach of LC was originally proposed by[38] for classi�cation tasks, but has already been

adapted before for regression tasks by[100]. The con�dences, which we interpret as uncertainties, can

simply be learned in addition to the primary objective function:

where   represents the number of pixels having valid ground truth values,   denotes the con�dence

score of the  -th valid pixel generated by the model,    is the depth output of the model,    is the

ground truth depth,   is set to 0.2, following[100], and   is the scale-invariant loss introduced

by[46]:
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where  . We follow the �ne-tuning recommendations of DepthAnythingV2[13]  and

set  .

4.3. Gaussian Negative Log-Likelihood Loss

For depth regression, neural networks are usually only trained to output a predictive mean  . To also

approximate the corresponding variance  , i.e. the uncertainty, we follow the approach of[39]: By

treating the neural network prediction as a sample from a Gaussian distribution, we can minimize the

Gaussian Negative Log-Likelihood (GNLL) loss, which can be formulated as:

Analogous to Equation  1 for LC, there is no ground truth for the uncertainty, which means that    is

solely learned implicitly through the optimization of the predictive means   based on the ground truth

labels  .

4.4. MC Dropout

Using MCD[40] to estimate the predictive mean   and the corresponding uncertainty, i.e., the variance 

 or standard deviation  , is fairly straightforward. Since the DepthAnythingV2 model already applies

dropout layers throughout its architecture, we simply have to activate them not only during training

but also during inference to sample from the posterior of the network.

To compute the predictive mean  , we take the average of all the samples:

where   is the number of samples and   is the  -th depth prediction of the network.

For the uncertainty, we calculate the variance:

Besides that, we follow the �ne-tuning recommendations of DepthAnythingV2[13], using the scale-

invariant loss   from Equation 2 as the objective function.

= log − logdi yi ŷ i
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4.5. Sub-Ensemble

Sub-Ensembles (SE)[41] enable the approximation of Deep Ensemble. While a Deep Ensemble requires

multiple models to be trained and used during inference, the SE only requires a subset of the layers to

be multiplied. As shown by Figure 2, we use a shared encoder for multiple randomly initialized depth

heads. To maximize the diversity across the depth heads and decrease the training time, we cycle

through the heads during training. Per training batch, only one head is optimized, the others are

ignored. During inference, however, each depth head predicts a unique sample    based on the

extracted feature from the encoder. Similar to MCD, we can compute the mean   and variance   (see

Equations 4 and 5) to get the desired output, i.e., a �nal depth map and a corresponding uncertainty.

As for MCD, we follow the �ne-tuning recommendations of DepthAnythingV2[13], using the scale-

invariant loss   from Equation 2 as the objective function.

4.6. Test-Time Augmentation

In contrast to the other four uncertainty quanti�cation approaches, we just �ne-tune the

DepthAnythingV2 model with the scale-invariant loss   from Equation 2 for metric depth estimation

and apply Test-Time Augmentation (TTA) after training[43]. As shown by Figure 2, we �ip the input

image vertically as well as horizontally and perform inference with each. As a result, we obtain three

unique depth samples   that we can use to compute the the mean   and variance   (see Equations 4

and 5).

5. Experiments

5.1. Experimental Setup

Training. For all training processes, we follow the default settings of DepthAnythingV2 for metric

depth �ne-tuning[13], using an AdamW optimizer[101]  with a base learning rate of  , a weight

decay of 0.01, and a polynomial learning rate scheduler:

where   is the current learning rate and   is the initial base learning rate. Every model is trained for

25 epochs with an e�ective batch size of 16, using four NVIDIA A100 GPUs. We do not employ any early

stopping techniques and hence only evaluate the �nal model checkpoints.

yt

μ s2

(y, )LSI ŷ

LSI

yt μ s2

6 ⋅ 10−5

lr = ⋅ ,lrbase (1 − )
iteration

total iterations

0.9

(6)

lr lrbase
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Scene / Application Resolution (W   H) Training Images Test Images  

Cityscapes[21] Outdoor 2048   1024 2975 500

NYUv2[19] Indoor 640   480 795 654

UseGeo[45] Aerial 1989   1320 551 277

HOPE[44] Robotics 1920   1080 49450 (synth.) 457 (real)

Table 1. Overview of metric depth datasets that we used for evaluation.

Datasets. We conduct our experiments on four highly di�erent datasets, simulating a broad range of

real-world applications, as shown by Table 1. Cityscapes[21] provides an urban street scene benchmark

dataset with high-resolution images. In contrast, NYUv2[19]  presents indoor scenes with a very low

image resolution. UseGeo[45]  covers high-resolution aerial images, which are often neglected in the

computer vision community despite their signi�cance in many real-world applications. Finally, the

HOPE[44]  dataset o�ers a variety of household objects, originally designed for pose estimation. The

main reason why the HOPE dataset is so interesting is that the training dataset is based on almost

50,000 synthetic images, whereas the test dataset consists of just 457 real images. A unique challenge

that is often overlooked but fairly common, especially in robotics[102][103][104].

Data Augmentations. Regardless of the trained model, we apply random cropping with a crop size of

756   756 pixels on all datasets except NYUv2, which uses 630   476 pixels, and random horizontal

�ipping with a �ip chance of 50%. For testing purposes, we use the original image resolutions as shown

by Table 1.

Metrics. For quantitative evaluations of the metric depth estimation, we report all common metrics:

root mean squared error (RMSE), absolute relative error (AbsRel), logarithmic root mean squared error

(log10), and three threshold-based accuracies ( ,  ,  ).

To evaluate the uncertainty quality, we exploit the following uncertainty evaluation metrics proposed

by[34]:

×

×

×

×

×

× ×

δ1 δ2 δ3
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1. p(accurate|certain): The probability that the model is accurate on its output given that the

uncertainty is below a speci�ed threshold.

2. p(uncertain|inaccurate): The probability that the uncertainty of the model exceeds a speci�ed

threshold given that the prediction is inaccurate.

3. PAvPU: The combination of metrics 1 and 2.

Despite the fact that these metrics have originally been proposed for semantic segmentation[34], they

can also be used to evaluate the depth regression uncertainties[105][86]. To determine whether a depth

prediction is accurate or inaccurate, we use the strictest threshold-based accuracy  :

To simulate real-world employment, we set the threshold to determine whether a pixel is certain or

uncertain to the median uncertainty of a given image[86].

Uncertainty Quanti�cation. Unless stated otherwise, for MCD and SE, the �nal depth map and

corresponding uncertainty are computed using ten samples or ten depth heads, respectively, in

accordance with the �ndings in[42][106][31][36].

δ1

max( , ) = < 1.25.
y

ŷ

ŷ

y
δ1 (7)
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5.2. Quantitative Evaluation

NYUv2 (indoor)
Trainable Parameters

[M] 

FLOPs

[G] 

Training Time

[mm:ss] 

Inference Time

[ms]  FPS 

ViT-S

Baseline 24.8 66.82 00:27 12.9  0.1 77.5

TTA 24.8 66.82 00:27 40.0  0.9 25.0

LC 24.8 66.83 00:27 12.9  0.2 77.5

GNLL 24.8 66.83 00:27 12.9  0.2 77.5

SE 49.3 177.29 00:29 36.5  0.5 27.4

MCD 24.8 66.82 00:30 128.4  0.5 7.8

ViT-B

Baseline 97.5 217.49 00:48 24.9  0.5 40.2

TTA 97.5 217.49 00:48 75.5  1.2 13.2

LC 97.5 217.50 00:49 25.1  0.5 39.8

GNLL 97.5 217.50 00:49 25.0  0.7 40.0

SE 195.5 608.09 00:52 61.9  0.8 16.2

MCD 97.5 217.49 00:54 248.4  2.7 4.0

ViT-L

Baseline 335.3 741.40 02:11 57.1  3.5 17.5

TTA 335.3 741.40 02:11 172.6  11.6 5.8

LC 335.3 741.41 02:14 57.0  3.9 17.5

GNLL 335.3 741.41 02:13 57.1  3.3 17.5

SE 613.8 2204.07 02:17 131.6  5.2 7.6

MCD 335.3 741.40 02:26 569.8  24.3 1.8

Table 2. E�ciency comparison between the �ve chosen uncertainty quanti�cation methods: Test-Time

Augmentation (TTA), Learned Con�dence (LC), Gaussian Negative Log-Likelihood (GNLL), Sub-Ensemble

(SE), and MC Dropout (MCD) for three di�erent encoder sizes: ViT-S, ViT-B, ViT-L on the

NYUv2[19] dataset. We compare the number of trainable parameters, FLOPs, training time per epoch on a

↓ ↓ ↓ ↓ ↑

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±
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single A100 GPU, inference time per image, and the respective FPS. The mean inference time and

corresponding standard deviation are based on 1000 forward passes.

E�ciency. As shown by Table 2, training times are comparable to the baseline for all methods, with LC

and GNLL matching it exactly in both training and inference time. SE and MCD increase training times

by around 5% - 10%. While SE nearly triples inference time and roughly doubles the trainable

parameters, MCD requires roughly 10 times the inference time due to the costly sampling process that

roughly scales linearly with the amount of samples. TTA also triples inference time as it requires three

forward passes. Overall, LC and GNLL are the most e�cient approaches as they do not require any

additional computational overhead compared to the baseline. These experiments were conducted on

the NYUv2 dataset only, so exact numbers may vary across datasets, but the general �ndings should be

representative.
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NYUv2 (indoor) RMSE  AbsRel  log10        p(acc|cer)  p(unc|ina)  PAvPU 

ViT-S

Baseline 0.340 0.093 0.039 0.928 0.988 0.997 - - -

TTA 0.399 0.111 0.049 0.881 0.984 0.997 0.903 0.602 0.522

LC 0.343 0.090 0.039 0.930 0.988 0.997 0.920 0.369 0.490

GNLL 0.342 0.094 0.040 0.924 0.987 0.997 0.953 0.846 0.529

SE 0.340 0.092 0.039 0.926 0.988 0.997 0.937 0.704 0.511

MCD (10%) 0.422 0.121 0.050 0.867 0.973 0.992 0.900 0.692 0.533

ViT-B

Baseline 0.307 0.080 0.034 0.948 0.991 0.998 - - -

TTA 0.359 0.099 0.435 0.910 0.988 0.998 0.924 0.599 0.514

LC 0.314 0.085 0.036 0.943 0.991 0.998 0.926 0.292 0.483

GNLL 0.305 0.079 0.034 0.949 0.991 0.998 0.966 0.826 0.517

SE 0.309 0.080 0.034 0.947 0.991 0.998 0.955 0.698 0.507

MCD (10%) 0.339 0.091 0.039 0.925 0.986 0.997 0.952 0.774 0.527

ViT-L

Baseline 0.270 0.068 0.030 0.964 0.993 0.998 - - -

TTA 0.324 0.087 0.039 0.938 0.992 0.998 0.944 0.598 0.507

LC 0.275 0.069 0.030 0.963 0.993 0.998 0.946 0.268 0.483

GNLL 0.285 0.072 0.031 0.959 0.992 0.998 0.980 0.912 0.521

SE 0.280 0.070 0.030 0.961 0.993 0.998 0.969 0.734 0.508

MCD (10%) 0.339 0.091 0.039 0.925 0.986 0.997 0.967 0.798 0.522

Table 3. Quantitative comparison on the NYUv2[19] dataset between the �ve chosen uncertainty

quanti�cation methods: Test-Time Augmentation (TTA), Learned Con�dence (LC), Gaussian Negative

Log-Likelihood (GNLL), Sub-Ensemble (SE), and MC Dropout (MCD) for three di�erent encoder sizes: ViT-

S, ViT-B, ViT-L. Best results for RMSE and the three uncertainty metrics are marked in bold for each

encoder.

↓ ↓ ↓ δ1 ↑ δ2 ↑ δ3 ↑ ↑ ↑ ↑
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NYUv2. Table 3 shows a quantitative comparison for the NYUv2 dataset[19]. LC, GNLL, and SE maintain

depth quality similar to the baseline, with SE and GNLL even surpassing it for the ViT-S and ViT-B

encoders, respectively. TTA and MCD exhibit a slight degradation but remain competitive.

Regarding the uncertainty quality, GNLL emerges as the top-performing method, consistently

outperforms all others in terms of p(acc|cer) and p(unc|ina) across all three encoder sizes, achieving

impressive values of up to 98.0% and 91.2%, respectively. For PAvPU, both GNLL and MCD deliver the

best results. While all other methods are somewhat competitive with each other, LC clearly falls behind

with regard to p(unc|ina), achieving only 26.8% for ViT-L.
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Cityscapes (outdoor) RMSE  AbsRel  log10        p(acc|cer)  p(unc|ina)  PAvPU 

ViT-S

Baseline 7.138 0.219 0.084 0.704 0.964 0.991 - - -

TTA 6.474 0.223 0.089 0.576 0.965 0.991 0.335 0.421 0.410

LC 7.492 0.206 0.078 0.733 0.958 0.991 0.658 0.619 0.611

GNLL 7.739 0.236 0.089 0.669 0.949 0.987 0.692 0.706 0.695

SE 7.714 0.234 0.088 0.681 0.954 0.990 0.658 0.654 0.649

MCD (10%) 8.527 0.307 0.113 0.417 0.920 0.984 0.328 0.525 0.516

ViT-B

Baseline 6.884 0.252 0.095 0.599 0.965 0.992 - - -

TTA 5.757 0.247 0.095 0.526 0.967 0.993 0.288 0.420 0.396

LC 7.711 0.285 0.107 0.434 0.958 0.991 0.329 0.506 0.502

GNLL 7.092 0.244 0.094 0.613 0.966 0.991 0.594 0.635 0.629

SE 7.824 0.271 0.102 0.534 0.957 0.991 0.490 0.587 0.588

MCD (10%) 8.268 0.288 0.107 0.488 0.939 0.989 0.449 0.579 0.583

ViT-L

Baseline 6.655 0.256 0.097 0.558 0.972 0.993 - - -

TTA 5.298 0.227 0.088 0.608 0.979 0.994 0.371 0.431 0.416

LC 7.392 0.280 0.105 0.416 0.969 0.993 0.292 0.488 0.488

GNLL 6.562 0.234 0.092 0.628 0.970 0.990 0.581 0.620 0.607

SE 7.522 0.272 0.103 0.500 0.966 0.993 0.446 0.568 0.570

MCD (10%) 8.268 0.288 0.107 0.488 0.939 0.989 0.480 0.584 0.584

Table 4. Quantitative comparison on the Cityscapes[21] dataset between the �ve chosen uncertainty

quanti�cation methods: Test-Time Augmentation (TTA), Learned Con�dence (LC), Gaussian Negative

Log-Likelihood (GNLL), Sub-Ensemble (SE), and MC Dropout (MCD) for three di�erent encoder sizes: ViT-

S, ViT-B, ViT-L. Best results for RMSE and the three uncertainty metrics are marked in bold for each

encoder.

↓ ↓ ↓ δ1 ↑ δ2 ↑ δ3 ↑ ↑ ↑ ↑
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Cityscapes. For the Cityscapes dataset[21], as shown by Table 4, TTA stands out by signi�cantly

outperforming the baseline across all three encoder sizes in terms of depth quality. In contrast, LC,

GNLL, and SE exhibit noticeable degradation, while MCD performs the worst.

For uncertainty quality, GNLL is the standout performer, decisively surpassing all other methods for all

three metrics and encoder sizes. It achieves remarkable values of 69.2% for p(acc|cer), 70.6% for

p(unc|ina), and 69.5% for PAvPU, setting a benchmark for reliability in this dataset. The remaining

methods deliver less consistent results, with TTA generally performing the worst, showing values as

low as 28.8% for p(acc|cer), 42.0% for p(unc|ina), and 39.6% for PAvPU. Interestingly, GNLL remains

resilient despite the observed uncertainty degradation with increasing encoder size for most other

methods.
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UseGeo (aerial) RMSE  AbsRel  log10        p(acc|cer)  p(unc|ina)  PAvPU 

ViT-S

Baseline 7.366 0.077 0.032 0.973 0.994 0.999 - - -

TTA 7.078 0.074 0.031 0.977 0.995 0.999 0.976 0.647 0.500

LC 8.213 0.086 0.036 0.958 0.995 1.000 0.963 0.481 0.506

GNLL 7.467 0.076 0.032 0.979 0.993 0.998 0.976 0.237 0.500

SE 7.259 0.076 0.032 0.976 0.994 0.999 0.971 0.467 0.495

MCD (10%) 6.682 0.068 0.029 0.982 0.994 0.998 0.982 0.672 0.501

ViT-B

Baseline 6.386 0.067 0.028 0.981 0.995 0.999 - - -

TTA 6.060 0.631 0.027 0.985 0.995 0.999 0.984 0.609 0.499

LC 6.612 0.068 0.029 0.975 0.995 1.000 0.967 0.454 0.492

GNLL 7.810 0.080 0.035 0.972 0.990 0.997 0.971 0.293 0.499

SE 6.491 0.068 0.028 0.980 0.994 0.999 0.981 0.559 0.502

MCD (10%) 6.641 0.070 0.029 0.978 0.994 0.999 0.982 0.657 0.504

ViT-L

Baseline 6.173 0.065 0.027 0.981 0.995 0.999 - - -

TTA 5.898 0.063 0.026 0.982 0.995 0.999 0.980 0.596 0.499

LC 5.406 0.056 0.024 0.986 0.995 1.000 0.985 0.477 0.500

GNLL 7.082 0.073 0.031 0.980 0.991 0.998 0.980 0.294 0.498

SE 6.260 0.067 0.028 0.980 0.995 1.000 0.977 0.577 0.497

MCD (10%) 6.697 0.071 0.029 0.981 0.995 0.999 0.982 0.669 0.501

Table 5. Quantitative comparison on the UseGeo[45] dataset between the �ve chosen uncertainty

quanti�cation methods: Test-Time Augmentation (TTA), Learned Con�dence (LC), Gaussian Negative

Log-Likelihood (GNLL), Sub-Ensemble (SE), and MC Dropout (MCD) for three di�erent encoder sizes: ViT-

S, ViT-B, ViT-L. Best results for RMSE and the three uncertainty metrics are marked in bold for each

encoder.

↓ ↓ ↓ δ1 ↑ δ2 ↑ δ3 ↑ ↑ ↑ ↑
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UseGeo. For the UseGeo dataset[45], as presented by Table 5, the depth quality results are inconsistent,

with methods sometimes surpassing and at other times falling short of the baseline. TTA is the only

approach that consistently outperforms the baseline across all three encoder sizes.

In terms of uncertainty quality, all methods deliver near-perfect results for p(acc|cer) of at least

96.3%. For p(unc|ina) and PAvPU, MCD generally performs best with values of up 67.2% and 50.4%,

respectively. In contrast to the other datasets, GNLL signi�cantly lags behind the other methods on

UseGeo. This is likely due to the large depth values in UseGeo, which led to much higher absolute GNLL

loss values. The GNLL loss incorporates a logarithmic term that penalizes high uncertainty estimates,

and with large depth values, the uncertainties—and hence the loss—are naturally magni�ed. Notably,

no hyperparameter adjustments were made to address this, ensuring comparability but potentially

hindering GNLL’s optimization in this particular case.
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HOPE (robotics) RMSE  AbsRel  log10        p(acc|cer)  p(unc|ina)  PAvPU 

ViT-S

Baseline 0.263 0.265 0.115 0.537 0.821 0.942 - - -

TTA 0.264 0.262 0.114 0.539 0.818 0.943 0.421 0.564 0.552

LC 0.259 0.262 0.114 0.537 0.822 0.945 0.339 0.476 0.474

GNLL 0.277 0.287 0.124 0.492 0.795 0.929 0.404 0.575 0.567

SE 0.262 0.263 0.117 0.544 0.809 0.933 0.393 0.528 0.522

MCD (10%) 0.274 0.286 0.118 0.514 0.816 0.937 0.398 0.562 0.553

ViT-B

Baseline 0.222 0.232 0.094 0.616 0.892 0.969 - - -

TTA 0.221 0.230 0.093 0.621 0.891 0.968 0.462 0.573 0.558

LC 0.224 0.227 0.095 0.616 0.883 0.966 0.330 0.419 0.427

GNLL 0.223 0.225 0.094 0.619 0.892 0.972 0.497 0.622 0.596

SE 0.218 0.230 0.094 0.625 0.889 0.967 0.448 0.546 0.543

MCD (10%) 0.245 0.269 0.106 0.560 0.851 0.955 0.405 0.555 0.543

ViT-L

Baseline 0.223 0.238 0.096 0.588 0.906 0.980 - - -

TTA 0.217 0.232 0.094 0.599 0.904 0.980 0.436 0.576 0.557

LC 0.215 0.226 0.092 0.604 0.911 0.980 0.325 0.426 0.441

GNLL 0.229 0.244 0.099 0.588 0.888 0.973 0.460 0.608 0.586

SE 0.235 0.252 0.098 0.594 0.893 0.974 0.442 0.574 0.569

MCD (10%) 0.249 0.272 0.107 0.557 0.859 0.966 0.416 0.580 0.563

Table 6. Quantitative comparison on the HOPE[44] dataset between the �ve chosen uncertainty

quanti�cation methods: Test-Time Augmentation (TTA), Learned Con�dence (LC), Gaussian Negative

Log-Likelihood (GNLL), Sub-Ensemble (SE), and MC Dropout (MCD) for three di�erent encoder sizes: ViT-

S, ViT-B, ViT-L. Best results for RMSE and the three uncertainty metrics are marked in bold for each

encoder.

↓ ↓ ↓ δ1 ↑ δ2 ↑ δ3 ↑ ↑ ↑ ↑
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Table 6 shows the �nal quantitative comparison for the HOPE dataset[44]. In terms of depth quality,

there are only marginal di�erences between the baseline and all uncertainty approaches, with RMSE

values ranging between 0.215 to 0.277.

Regarding the uncertainty quality, GNLL once again asserts itself as the best option for all three metrics

across all three encoder sizes, with only one minor exception. GNLL achieves results of up to 49.7% for

p(acc|cer), 62.2% for p(unc|ina), and 59.6% for PAvPU. Mirroring its strong performance on NYUv2

(cf. Table 3), GNLL’s dominance is evident, while the other methods remain fairly competitive with

each other. LC, however, lags signi�cantly behind across all three uncertainty quality metrics,

underscoring GNLL’s reliability and consistency.

5.3. Qualitative Evaluation

We provide handpicked qualitative examples of four di�erent UQ methods with varying encoder sizes

for all four datasets in Figure 3, highlighting the potential for foundation model uncertainty in metric

MDE.

qeios.com doi.org/10.32388/YLJOS8 25

https://www.qeios.com/
https://doi.org/10.32388/YLJOS8


Figure 3. Qualitative examples for indoor[19], outdoor[21], aerial[45], and robotics[44] scenarios with varying

uncertainty quanti�cation approaches and encoder sizes. Red rectangles are added to highlight interesting

areas. Best viewed in color.

NYUv2. The �rst row displays the GNLL (ViT-S) results, demonstrating high prediction quality overall.

Uncertainty is notably elevated around object boundaries and the two open doors in the background,

suggesting these regions are likely edge cases. This likely stems from the model’s limited exposure to

such depth ranges during training since we limit the maximum depth to just 5m, which is common

practice on NYUv2.

Additionally, the second row presents results from TTA (ViT-S), revealing mixed results in terms of

prediction and uncertainty quality. While the model assigns high uncertainties to the background,

which includes some erroneous predictions, it fails to recognize its substantial prediction error on the

backrest of the chair at the bottom of the image. Based on this qualitative comparison, GNLL seems to

provide more meaningful uncertainties, corroborating the quantitative �ndings of Section 5.2.

Cityscapes. In the third row, the MCD (ViT-B) predictions exhibit multiple errors, particularly in the

top right corner. However, the predicted uncertainties in this area show a correlation between
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uncertainty and challenging regions, reinforcing the model’s awareness of its limitations.

UseGeo. The fourth row shows SE (ViT-B) results, where relative depth predictions are plausible

despite reduced accuracy in absolute terms. Across the entire image, especially in the bottom right,

uncertainties are heightened for the buildings, emphasizing that the model is aware of key areas where

depth errors are most likely.

HOPE. The �fth row presents LC (ViT-L) results, where the model struggles with the absolute depth of

the large foreground object. At the same time, the entire object is highlighted by high uncertainty,

re�ecting the model’s strong awareness of its own prediction error in this case.

6. Conclusion

Motivated by the need to bridge the gap between cutting-edge research and the safe deployment of

MDE models in real-world applications, we conducted a comprehensive evaluation of multiple UQ

methods in conjunction with the state-of-the-art DepthAnythingV2 foundation model. Our evaluation

covered �ve di�erent UQ approaches – Learned Con�dence, Gaussian Negative Log-Likelihood, MC

Dropout, Sub-Ensembles, and Test-Time Augmentation – and was carried out across four diverse

dataset, covering various domains relevant to real-world applications: NYUv2, Cityscapes, UseGeo, and

HOPE.

Our �ndings highlight �ne-tuning with GNLL as the most promising option, consistently delivering

high-quality uncertainty estimates while maintaining depth performance comparable to the baseline.

Its computational e�ciency, which matches that of the baseline, further underscores its practical

suitability for deployment.

This study emphasizes the importance and feasibility of integrating UQ into machine vision models,

demonstrating that achieving reliable uncertainty estimates need not come at the expense of predictive

performance or computational complexity. By addressing this critical aspect, we aim to inspire future

research that prioritizes not only performance but also explainability through uncertainty awareness,

fostering the development of safer and more reliable models for not only MDE but also other real-

world tasks, such as semantic segmentation or pose estimation.
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