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Abstract

This paper presents an extension of the results obtained in previous work
concerning the application of global optimization techniques and an impor-
tant theorem of Richard McKelvey to the design of finite strategic games
with mixed strategies. In that publication the Fuzzy ASA global optimiza-
tion method was applied to many examples of synthesis of strategic games
with one previously specified Nash equilibrium, evidencing its ability in find-
ing payoff functions whose respective games present those equilibria, possibly
among others. That is to say, it was shown it is possible to establish in ad-
vance a Nash equilibrium for a generic finite state strategic game and to
compute payoff functions that will make it feasible to reach the chosen equi-
librium, allowing players to converge to the desired profile, considering that
it is an equilibrium of the game as well. Going beyond this state of affairs,
the present article shows that it is possible to ”impose” multiple Nash equi-
libria to finite strategic games by following the same reasoning as before, but
with a fundamental change: using the same McKelvey’s theorem, modifying
the originally prescribed objective function and globally minimizing it. The
proposed method, in principle, is able to find payoff functions that result in
games featuring an arbitrary number of Nash equilibria, paving the way to
a substantial number of potential applications.
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1. Introduction

Although game theory has been traditionally used in the investigation of eco-
nomic systems, in recent years its importance is being evidenced in several
fields, like network protocol design and analysis [8], computational resources
allocation and several other phenomena [1]. This trend may be explained by
the fact that game theory is all about modelling interactions among agents
and respective results, and this type of context can be frequently found al-
most everywhere and in several kinds of scenarios. Often the decision of
a single player may affect drastically the result of a given game. In order
to model players’ benefits (or losses) when acting during the game, payoff
functions are used, and to cope with uncertainty, mixed strategies are em-
ployed, representing the belief opponents have with respect to possible moves
of other participants. In this fashion, and as a significant analytical tool, it
was endowed with the concept of Nash equilibrium, which has been and is
considered a good model for stable outcomes of strategic games. So, despite
the existence of other equilibrium concepts in the literature, John Nash’s one
is typically considered the most interesting and/or useful.
Being a condition that may be described as a set of strategies representing
optimal responses to other players’ strategic decisions [11, 12], it catches a
special type of stable condition in which each player acts selfishly, searching
for the maximum gain and holding supposedly right expectations with re-
spect to other agents’ decisions.
As expected, computing Nash equilibria of nontrivial finite normal form
games is often a hard problem and, over the years, many powerful meth-
ods have been developed to address this issue [11, 12, 22]. In general, the
most adequate approach for computing Nash equilibria of strategic games
depends on several factors, as whether the the objective is to obtain pure or
mixed strategy equilibria, or it is necessary to find all existing equilibria.

The present article intends to introduce an optimization-based method
of strategic game design aimed at obtaining payoff functions whose resulting
games have previously established multiple Nash equilibria. That is to say, it
becomes possible to specify in advance a set of Nash equilibria for a generic
finite state, normal form game and the proposed algorithm computes payoff
functions that will realize the desired equilibria - this work may be viewed as
the continuation and extension of [21], that solved the problem for a single
Nash equilibrium.

Although any effective evolutionary global optimization approach could
be used to find the desired payoff functions, the Fuzzy Adaptive Simulated
Annealing method [6] is again the chosen algorithm, considering its amazing
performance and flexibility in preliminary simulations. Among the successful
initiatives for finding Nash equilibria of finite games are those using global
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optimization techniques [11, 12, 23]. One of them, due to R.D. McKelvey
[11], may be used not only in the ”given game => Nash equilibria” direction,
but also in the opposite one: ”given Nash equilibria => new game” - this
viewpoint was explored in [21] and in this paper as well, demonstrating the
large potential of the original result. That point of view makes it possible
to synthesize games with not only one, but several previously established
Nash equilibria. This possibility is due to the way optimization-based design
takes place - every design objectives and constrants must be translated into
parametric functions that, when optimzed, conduct to the optimal result.
Accordingly, in order to impose several equilibria to one single strategic game,
it is sufficient to insert additional terms to the overall cost function, each
one corresponding to a distinct Nash equilibrium - this approach was used
to solve the inverse problem in [21], but using only one term, considering
that there was just one given equilibrium, and the statement of the original
theorem is compatible with this context. Here, we will show the reasons why
it is possible to obtain even more, with the only inconvenient that objective
functions get more and more complex, needing very powerful GO methods
to find their global minima.

In the sequence, the paper will briefly describe the Fuzzy ASA paradigm,
its application to the underlying problem and the obtained results.

2. The global optimization method

The global optimization method used in this paper is Fuzzy ASA [19], based
on the simulated annealing paradigm and introducing a large set of dynamic
and static control possibilities, which contribute for its good performance.
Among its most significant features it is possible to cite re-annealing, quench-
ing and several parameters that make it possible to change the behavior of
the optimization process even in runtime, allowing the construction of control
mechanisms aimed at improving the convergence process. It was designed
so that users have the possibility to change the dynamics of the simulations,
driving optimization sessions with enormous freedom. Other simple but very
useful features of the original ASA method include the ability of adjusting
each dimension of hyperrectangular domains and generating candidates with
full control of each parametric dimension. Although the use of quenching
may provoke the convergence to suboptimal regions, the Fuzzy ASA con-
troller [17, 19] usually is effective in avoiding such an inadequate behavio,
making it possible to reach global minima. Actually, the original ASA struc-
ture is viewed as a dynamical system, and the added code implements a
feedback loop by sampling the current value of the cost function, changing
its inputs according to a control law that simulates a sort of rational behavior.
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In summary, fuzzy control and built-in ASA mechanisms conduct tem-
perature profiles, avoiding premature convergence.

3. Contribution of the present paper, motivation and related defi-
nitions

Although the problem of finding Nash equilibria of finite strategic games re-
ceived a great deal of attention during the last decades and many solutions
nowadays exist, the inverse problem of obtaining a complete set of payoff
functions that realize one desired Nash equilibrium, with preestablished num-
ber of agents and individual strategies is new, having already some proposals
for finding solutions, obtained by means of evolutionary techniques [21]. The
present work aims to go further, also using stochastic global optimization
to obtain games with multiple and predefined equilibria. To that end, some
associated concepts must be precisely established.
It is worth saying that this problem is closely related to important issues
addressed in mechanism design theory [2, 5, 4, 9, 10, 14, 15].

3.1. Motivation and significance

Eric Maskin highlights in [9] the importance of the notion of Nash equilibrium
as a solution concept in game theory. Besides, despite presenting limitations
in some scenarios, the possible shortcomings are not really significant in the
setting of mechanism design. The expression ”mechanism design” is related
to a previous specification of a certain goal (Nash equilibrium or equilibria,
representing favorable results) and a mechanism (here, a finite, normal-form
game) that must be designed in order to achieve the desired result. In ad-
dition, in [9] it is stated that, in mechanism design, a set of preestablished
constraints may be imposed, as having a unique Nash equilibrium [10].

3.2. Finite normal form games

In principle, finite, normal form games are models for interactions between
agents. Each agent owns a number of alternatives to choose from a set of
possible decisions. The benefits or gain a given player may receive when
taking initiatives are established by means of payoff functions, quantifying
the effect of actions of all decision makers.

A finite normal form game with pure strategies is formed by:
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� A finite set {1, 2, ..., N} of agents or players.

� The action sets Si, containing pure strategies for each player - a finite
group of alternatives.

Si = {si1 , ..., simi
},

being mi the number of actions available to agent i.

By a−i is denoted the strategic profile (a1, ..., ai−1, ai+1, ..., aN) obtained
from (a1, ..., ai−1, ai, ai+1, ..., aN)

by excluding the action of player i. Besides, the notation (ai, a−i)
represents the original profile of actions.

� N payoff functions

ui : S → R , i ∈ {1, 2, ..., N}

S = S1 × S2 × ...× SN ,

associating real values to profiles.

3.3. Nash equilibrium - definition and some digressions

The study of strategic games is typically related to the need of predicting
decisions agents will make in the most diverse contexts. Predominantly, the
general belief is that players will follow the most (materially) favorable route,
with best decisions depending on the other players’ actions and, at decision
time, they create a set of possibilities about the likelihood of other players’
possible decisions. In this fashion, a method by means of which this can
be made is necessary. A good starting point is the estimation of degrees of
possibility for pure strategies, obtained from past experiences - this informa-
tion should be enough to make predictions of how other players will choose
their future actions - this will produce the mixed strategies, representing a
refinement and creating an additional dimension of uncertainty handling.

The definition of Nash (mixed) equilibrium includes all these components
and it is possible to say that it is a decision profile such that players are not
able to individually benefit from changing their present state - intuitively,
when a game reaches a Nash equilibrium, no agent would have advantages
with unilateral moves. From another viewpoint, Nash equilibria can be said
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to represent stable states, in which no agent wishes to abandon the respective
position. Now, some formal definiitions are needed:

� ∆i is the set of probability mass functions on Si

� ∆
∆
=

∏N
i=1∆i , ∆ ⊂ Rm (m =

∑N
i=1mi)

� The elements of ∆i are pi : Si → R ,
satisfying

∑
sij∈Si

pi(sij) = 1 , with pi(sij) ≥ 0.

� sij denotes a strategy pi ∈ ∆i for which pi(sij) = 1 (pure strategy
profile)

� (sij, p−i) is the global profile in which the agent i chooses pure strategy
sij.

The concept of mixed strategies is fundamental for the practical quantitative
use of the perception of players with respect to the behavior of opponents.
In this direction, probability mass funcions (pi) are the devices by means
of which this information is made effective - players are able to associate
importances to each possible action of each player. By using them it is
possible to compute expected payoffs for each agent. The corresponding
formula for player i is:

Ui(p)
∆
=

∑
s∈S

p(s)ui(s) (1)

for

p(s)
∆
=

N∏
i=1

pi(si) (2)

s = (s1, s2, . . . , sN) (3)

A collective mixed strategy profile p∗ = (p∗1, p
∗
2, . . . , p

∗
N) ∈ ∆ is a Nash equi-

librium if

Ui(pi, p
∗
−i) ≤ Ui(p

∗)

for all i = 1, ..., N and pi ∈ ∆i.

Accordingly, for a Nash equilibrium p∗, no player has alternative actions
that may result in higher gains than received by p∗i , provided the others fix
their positions in p∗j (j ̸= i).
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3.4. The key proposition

As cited above, an amazing result due to McKelvey [11], relating global
minimization of a specific function and Nash equilibria of the corresponding
strategic game, made it possible to solve nontrivial finite normal form games
by finding even certain unknown equilibria by means of evolutionary global
minimization techniques [20]. The main cost function is founded on three
matrix functions, defined below. Namely:

xij(p)
∆
= Ui(sij, p−i) (4)

zij(p)
∆
= xij(p)−Ui(p) (5)

gij(p)
∆
= max(zij(p), 0) (6)

where p ∈ ∆.

The final cost function is

v(p)
∆
=

N∑
i=1

mi∑
j=1

(gij(p))
2, p ∈ ∆. (7)

The original statement and use of the proposition may be expressed as:

p∗ ∈ ∆ is a Nash equilibrium if and only if it is a global minimum of function
v in ∆ (refs.[11, 12, 23]).

3.5. The problem of attributing multiple Nash equilibria to a single game

Given a preestablished generic strategic game structure (number of players
and alternatives available to each player), the problem of synthesizing payoff
functions which realize one desired Nash equilibrium has been successfully
addressed in [21]. However, in many practical settings it may be convenient
to impose several mixed equilibria upon a single game in order to model real
world scenarios. Hence, a proposal for attaining that goal follows.

4. Proposed method

Considering the previous proposition, relating a mixed profile which is a
global minimizer of function v to a Nash equilibrium of the game that orig-
inated v (where the object to be found is a mixed profile), the problem to
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be solved now is: departing from a finite set of mixed profiles, would it be
possible to find payoff functions whose associated game has those profiles as
its Nash equilibria ? As noted above, if there is only one Nash equilibrium
to be treated, the answer is affirmative if at least one associated global min-
imizer exists, as found in [21] - this is also tacitly conveyed by the original
proposition, as highlighted in the just cited work.

But another subtle interpretation of the theorem is worth noting: by
constructing not one, but many ”v functions”, one for each desired Nash
equilibrium, and summing them, one obtains a new ”collective” cost function
V - it happens that a global minimizer for V is also a global minimizer for
each individual v, making all of them Nash equilibria for the same game,
specified by the optimal parameters representing the payoff functions. Hence,
as in so many other optimization-based design tasks, the global optimization
process produces solutions in an automatic way. As before, the optimization
method used gives the designer the possibiity of limiting the values of each
component of payoff functions.

As expected, additional numerical conditions may be ensured by means
of constraints so as to customize solutions for several types of problems.

4.1. Approach for solution

It is worth noting that, although the theoretical foundations of the proposed
method are sound, its successful practical implementation totally depends on
the good quality of the available global minimization apparatus. That said,
the algorithm is now described (using Fuzzy ASA):

� Departing from the chosen game structure, compute the dimension of
the configuration space;

� Find, for each imposed Nash equilibrium, the function corresponding
to (7);

� Construct the expression of the overall objective function by summing
all functions obtained in the previous step;

� Adjust Fuzzy ASA parameters;

� Start a new minimization session [Step N];

� Global minimum found or maximum allowed
number of iterations reached ?

� If not, go to [Step N] above;

8



� In positive case, obtain the payoff functions and finish.

4.2. Numerical evidences

In order to illustrate the efficacy of the proposed paradigm, a small but
representative group of tests was selected and may be used to obtain nu-
merical results. The presented examples also demonstrate the power of the
optimization-based design.

Comparing with the related literature it is possible to observe that in this
paper (as in [21]) the opposite direction is taken, that is, the equilibria are
given and one compatible game is obtained.

In terms of performance, in all tests Fuzzy ASA was able to reach global
minimizers, furnishing the guarantee that proper payoff functions (and re-
spective games) were found. This is so despite the fact that each cost function
evaluation during the optimization process demands the creation and assess-
ment of a different game - even so, most synthesis sessions have demonstrated
low demand of computational resources. As usual, the Gambit software pack-
age [13] ( http://www.gambit-project.org ) was (and may be) used to com-
pute sets of equilibria for games produced by the new algorithm, although in
a few cases Gambit was not able to find all equilibria. Specifications compat-
ible with Gambit are provided in a different file so that the given information
may be easily confirmed by means of an independent tool. It is very impor-
tant to note that the numerical patterns of each Nash equilibrium in the
examples have been chosen so that it would be probabilistically infeasible
to find the associated strategic games by means of ”brute force” methods in
the direction [game → equilibrium], that is, the validation is done by using
regular configurations of probabiilities, mainly in the mixed equilibria.

Example 1. This test uses the structure of a generic two player game, each
one having 4 pure strategies. Five groups of simultaneous Nash equilibria
were employed, each one giving rise to 2 different sets of payoff functions, as
shown below:

With two simultaneous equilibria
(Search interval for each parameter = [0,6] and CF final value = 0) :

� ( 1.0 , 0.0 , 0.0 , 0.0 , 0.0 , 1.0 , 0.0 , 0.0 ) [pure]

� ( 0.1 , 0.2 , 0.3 , 0.4 , 0.4 , 0.3 , 0.2 , 0.1 ) [mixed]

With three simultaneous equilibria
(Search interval for each parameter = [0,6] and CF final value = 0) :
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� ( 1.0 , 0.0 , 0.0 , 0.0 , 0.0 , 1.0 , 0.0 , 0.0 ) [pure]

� ( 0.1 , 0.2 , 0.3 , 0.4 , 0.4 , 0.3 , 0.2 , 0.1 ) [mixed]

� ( 0.0 , 0.5 , 0.5 , 0.0 , 0.0 , 0.0 , 1.0 , 0.0 ) [mixed]

With three simultaneous equilibria
(Search interval for each parameter = [0,6] and CF final value = 7.46069825961309788E-
18) :

� ( 1.0 , 0.0 , 0.0 , 0.0 , 0.0 , 1.0 , 0.0 , 0.0 ) [pure]

� ( 0.1 , 0.2 , 0.3 , 0.4 , 0.4 , 0.3 , 0.2 , 0.1 ) [mixed]

� ( 0.0 , 0.5 , 0.5 , 0.0 , 0.0 , 0.5 , 0.5 , 0.0 ) [mixed]

With four simultaneous equilibria
(Search interval for each parameter = [0,2] and CF final value = 2.90248E-16)
:

� ( 0.0 , 2.0/3.0 , 0.0 , 1.0/3.0 , 0.25 , 0.0 , 0.0 , 0.75 ) [mixed]

� ( 0.2 , 0.4 , 0.3 , 0.1 , 0.1 , 0.1 , 0.1 , 0.7 ) [mixed]

� ( 0.0 , 0.1 , 0.9 , 0.0 , 0.01 , 0.0 , 0.99 , 0.0 ) [mixed]

� ( 1.0 , 0.0 , 0.0 , 0.0 , 0.0. , 0.0 , 0.0 , 1.0 ) [pure]

With five simultaneous equilibria
(Search interval for each parameter = [0,2] and CF final value = 2.123774890853668789e-
16) :

� ( 0.0 , 2.0/3.0 , 0.0 , 1.0/3.0 , 0.25 , 0.0 , 0.0 , 0.75 ) [mixed]

� ( 0.2 , 0.4 , 0.3 , 0.1 , 0.1 , 0.1 , 0.1 , 0.7 ) [mixed]

� ( 0.0 , 0.1 , 0.9 , 0.0 , 0.01 , 0.0 , 0.99 , 0.0 ) [mixed]

� ( 1.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 1.0 ) [pure]

� ( 0.7 , 0.0 , 0.3 , 0.0 , 0.0 , 0.3 , 0.0 , 0.7 ) [mixed]
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As expected, each global equilibrium has two probability mass functions and
four probabilities assigned to each one, corresponding to four pure strategies.
Each payoff function is formed by sixteen entries, and the game needs a total
of 32 parameters to be defined. The respective Gambit specifications for the
obtained games are:

NFG 1 R ”4x4 coordination game” { ”Player 1” ”Player 2” } { 4 4 }

0.98267224427866 4.21395317499410 4.45924895751567 3.72676363915463
4.95287782771976 0.74554895736572 5.90894720126257 5.03363507876793
4.90879611771289 5.10058338470355 0.98138660134146 3.90117603900288
1.84313155798613 3.42478969101750 0.18734463294673 2.71534077251105
3.13416415173927 3.99677337520616 4.38020969853245 2.95940398682505
0.51173901028550 4.15321282880840 1.63333367136465 2.91586186813719
5.79721049897973 3.72865242409535 1.18104088354410 5.61055432167966
4.35823201800598 3.96402619911103 3.25812748755708 1.79920703203677

NFG 1 R ”4x4 coordination game” { ”Player 1” ”Player 2” } { 4 4 }

2.19190732275435 3.59382681741100 3.92178637890438 1.25236559367649
3.50527333099260 4.14811766856772 3.45224297323453 0.32717782098832
5.63810903953332 5.51902806589179 3.21182071078489 0.90022948279260
3.60219877640239 2.82830987194108 3.16653995044072 1.01180140355985
0.41064997398857 3.59396167641395 0.41727390069669 1.29652996430380
0.41727390375206 4.14453938585969 0.03225639393592 0.30774552320562
1.09936892013825 2.85103299403893 1.44547133649356 1.22396158210748
1.94038845277630 2.68366429471404 4.22952134769444 1.62541814528757

NFG 1 R ”4x4 coordination game” { ”Player 1” ”Player 2” } { 4 4 }

2.47673529403952 0.61967466403382 3.31059538286365 1.50927992332563
2.82769949014882 1.82951784910409 4.98132065964718 4.07449183235372
5.46562766022071 4.06384407428594 2.33874338228706 1.36027999548710
3.81778287717519 2.39135696885551 0.40939350562141 2.86657026041609
0.89730821732603 1.71005745783477 4.02419258549284 2.19019967476280
2.54515344409012 1.56143736992105 4.11122847173052 3.66249681163535
2.26397215093938 3.46043685750669 2.05541576135265 1.45107670708347
2.50795990612965 0.61806402549496 0.98649200930137 4.30199353335779
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NFG 1 R ”4x4 coordination game” { ”Player 1” ”Player 2” } { 4 4 }

0.15877001900309 0.84001937046689 1.64390862296053 0.65821454704507
0.98845032177355 0.84440341596286 1.06017512109401 0.59873441240232
0.73556658254596 1.36174768319683 1.49130410488584 0.35273463909088
1.35705798833897 0.84865412448053 0.84309006650862 0.76444532715671
0.79821032091653 1.01060684555844 0.97790022009455 0.45350618661411
0.98452101754703 0.86715057858854 0.84780304703714 1.00815120406471
1.29359859652837 1.57535046426617 0.94780348660830 0.91396877511062
1.05967264725668 0.18367982657270 1.14238129676957 0.08722602119876

NFG 1 R ”4x4 coordination game” { ”Player 1” ”Player 2” } { 4 4 }

0.66894605336500 0.48195922204941 0.89060423222173 1.00000304116267
0.98008100337764 0.73160073332938 0.97247549882239 1.26515465975231
0.34603630032437 1.32509198788646 0.12426716447978 1.02072255928597
0.75493088363963 0.15650204831742 0.45527047033130 1.22130759686060
0.20643777330041 1.03149346736749 0.71399560581207 0.64455542006802
0.71309182798410 0.77109649000536 0.49215394143855 1.46938988942684
0.68282303819701 1.37986654012774 0.61033064125703 1.15645480342609
0.50758251817803 0.02869483549246 0.58304023123923 0.95225129155605

Example 2. This example uses a game structure with 3 players and 3 al-
ternatives available to each one. One group of two equilibria is employed to
illustrate the method:

With two simultaneous equilibria
(Search interval for each parameter = [0,6] and CF final value = 5.115906944666653114e-
17) :

� ( 0.65 , 0.35 , 0 , 0.8 , 0.2 , 0 , 0 , 0 , 1) [partially mixed]

� ( 0.999 , 0.001 , 0 , 0.5 , 0.3 , 0.2 , 0.85 , 0.03 , 0.12 ) [mixed]

presenting three probability mass functions and three probabilities attributed
to each one. Each payoff function has 27 entries, and the game, 81 parame-
ters to adjust.

The corresponding Gambit specification for the obtained game is:
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NFG 1 R ”3 players with 3 alternatives each - payoff functions have 27 ele-
ments (total = 81 parameters)”

{ ”Player 1” ”Player 2” ”Player 3” } { 3 3 3 }

4.87730799152229 3.28347123536406 4.19022799303256 5.03945808654530 3.75626602044382
2.36356144705913 2.79307406680758 1.03560672799776 0.71043231752848 4.15912462035912
3.20876613885584 3.23709524493038 1.83092331432987 1.88478608994127 0.99619382569040
3.40255543255050 0.01155429977109 2.59500535001506 1.27770663303709 3.43126639071127
4.16123800949969 4.04815456019240 5.35715880794089 1.86609311693128 5.85772181878253
3.70577263358947 4.08064018613775 2.74518568567186 1.17827099221037 4.89948502493694
4.30734889361273 4.41362543083864 4.93291061635495 0.22302814776210 3.66751545732906
4.59141858009954 4.06806067042159 2.06028844493351 1.73026028046544 2.70945325293788
4.81154384143595 3.76436062284467 4.67958624543570 5.22058262048351 4.41165686782695
3.87407385479868 1.95780166785328 4.63898337123355 3.77377553388769 2.40938367341950
0.64588924213741 4.07293809725935 4.06908562514580 3.61010521940686 2.97976272358055
2.01933554486692 4.17859841323923 3.09324345160248 4.52108961111780 5.58013913264098
2.74974663346853 2.86022729450489 5.56556815410852 5.17343002806785 2.34176191381577
5.27850904561861 4.71950765829178 3.92229779292374 4.23576260064333 0.15436222580867
4.97988824033411 3.60924187076557 2.18345588574352 0.76568104079887 1.11338162363681
4.38056187814023 5.56141218115571 3.76033251691326 4.93558325114978 4.81228113741681
4.46676815533804

Example 3. Here the game structure features 3 players, with 2 alternatives
each - two groups of Nash equilibria were chosen with 2 different strategic
games to be found. The equilibria sets are:

With two simultaneous equilibria
(Search interval for each parameter = [0,2] and CF final value = 6.0e-17)

� ( 0.1 , 0.9 , 0.75 , 0.25 , 0.999 , 0.001 ) [mixed]

� ( 0.55 , 0.45 , 0.9 , 0.1 , 1.0 , 0.0 ) [partially mixed]

With three simultaneous equilibria
(Search interval for each parameter = [0,50] and CF final value = 5.0e-15)

� ( 0.1 , 0.9 , 0.75 , 0.25 , 0.999 , 0.001 ) [mixed]

� ( 0.55 , 0.45 , 0.9 , 0.1 , 1.0 , 0.0 ) [partially mixed]
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� ( 0.5 , 0.5 , 0.3 , 0.7 , 0.0 , 1.0 ) [partially mixed]

with 3 probability mass functions and 2 probabilities assigned to each one.
Payoff functions have eight entries, and the game has twenty four parameters
to be found.

The Gambit specifications for the obtained games are, respectively:

NFG 1 R ”2x2x2 - 3 players - 2 alternatives each ” { ”Player 1” ”Player 2”
”Player 3” } { 2 2 2 }

0.68654068362563 1.20415785256587 0.16005644417248 0.68551523430569
0.21672288341703 0.72385626457349 0.94603041180153 1.20603499802767
0.82080724343005 0.95525932309452 0.21442854297666 0.59440384714411
1.58811995784320 0.00481222342603 0.07862032235506 0.00000000000034
0.00097451632240 0.74864277513768 1.38174997318192 0.93952070938722
0.72140928873838 0.00000000000088 1.98080243831927 0.55823388580237

NFG 1 R ”2x2x2 - 3 players - 2 alternatives each ” { ”Player 1” ”Player
2” ”Player 3” } { 2 2 2 }

11.33245988562835 17.49457489995949 18.78946857407635 11.33865066419950
11.37933304228297 21.37036001412119 9.62275990779322 17.49340852482133
3.27692016945539 9.56703810301457 11.38075918471280 1.59187344512556
9.65352003480766 14.19000148397084 16.95160185411393 24.08544722227705
24.58865378097980 9.63780578169272 26.47126922932137 15.64675855182206
32.88898628214248 20.28615808100198 23.13189684373731 34.11192550617629

5. Interpretation of results and recommendations for independent
testing

Once more we remind the readers that the problem and solution presented
in this work are new and, as such, can not be compared to previous results,
considering they simply do not exist. Despite this, the furnished Gambit
specifications make it possible to easily verify that the synthesized games
have the initially given equilibria. Another important fact is that, in all
cases, the final objective functions’ values were under 10−15, that is, global
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minima were reached in practice.

Let us now comment the examples:

� In Example 1 it is presented a scenario with two actors deciding about
four distinct lines of action - this could be 2 food industries regulated
by a central management unit which is trying to establish the most con-
venient dynamics so that the proportion for production of 4 different
products of each one be given by 2, 3 , 4, or 5 possible and simul-
taneous Nash equilibria, representing multiple favorable consumption
configurations, for instance. In this fashion, with the help of the pro-
posed algorithm it is possible to open this possibility by positioning the
preestablished Nash equilibria group into the overall set of equilibria of
the resulting game.

� Example 2 represents a context with 3 agents and 3 distinct moves
available to each one - this setting may correspond to 3 firms forming
a productive cluster and controlled by a central office which considers
satisfactory to reach one out of 2 production profiles in the overall site
so that the proportion of the production level of 9 different products (3
x 3) be given by any one of the proposed Nash equilibria. The obtained
payoff functions contain the ”rewards” capable of making a certain set
of equilibria attractive and feasible.

� Example 3 corresponds again to the interaction among 3 players, this
time each one has 2 alternatives to choose from. As in the previous
examples, the 3 chosen profiles were chosen to demonstrate the diver-
sity of situations the proposed algorithm can handle and, moreover, the
regular numeric patterns help to evidence the precision and efficacy of
the reverse design. In this case, 2 experiments with 2 and 3 simulta-
neous Nash equilibria were used, conveying the desire of allowing the
occurrence of multiple satisfactory production profiles.

6. A possible application in marketing and sales

6.1. The original problem

In [3], Section 4.8, it is formulated a very interesting problem involving a
small group of large commercial firms (giant retailers) and their pricing poli-
cies in a given setting in space and time (USA/1989). The scenario to be
studied is described as a price competition between two firms and follows
some well-defined rules, including their approaches for attracting customers
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and improving their profits. In particular, normal and sale prices are fixed
and assumptions about customer behavior are established. After a detailed
explanation, it was possible to model the problem as a 2-player strategic
game and obtain payoff matrices for both agents. Each player has a two ele-
ment strategic set whose elements represent the decisions of charging normal
(NP=US$600) or sale prices (SP=US$500), with NP higher than SP. Also,
the unit cost of the goods to be sold is informed to be US$450. Finally, the
complete payoff matrix is shown to be

Giant 2

NP SP

Giant 1
NP 7500, 7500 7500, 8500

SP 8500, 7500 5500, 5500

Figure 1: Giant retailers’ price strategic game

Two pure and one mixed strategy Nash equilibria are found, and the mixed
one indicates the existence of a pricing cycle in the dynamical sales processes.
The meaning of this is: firms keep on alternating between normal and sale
prices obeying a certain proportion of time. Due to the symmetry of the
game, at the mixed equilibrium, each player keeps charging NP 2/3 of the
time, and SP 1/3 in the rest. Therefore, the expected payoff of each one
results in US$ 7500, exactly the same as in the (NP,NP) profile. So, in order
to stay operating at the mixed equilibrium both companies must sustain this
cyclic pricing behavior.

6.2. A derived problem

What if firm 1 decides to improve its expected profit and, at the same time,
to change the time proportions of charging NP and SP, not necessarily with
the same prices as before?

Suppose that it wants to reach an expected payoff of US$ 10000 and
practice a proportion of 5/7 for charging NP and 2/7 for charging SP, for
operational reasons, meaning that five days a week NP holds and in the
remaining two days, SP is practiced by agent 1. Also assume that firm 2
maintains the original scheme, that is, the desired mixed strategy equilil-
brium is {5.0/7.0, 2.0/7.0, 2.0/3.0, 1.0/3.0}. In principle, the solution is to
find a game that features at least such a Nash equilibrium and, once played,
is able to reach the preestablished conditions.

How can this type of problem be solved? What payoff matrix would be
capable of inducing these new desired conditions?
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6.3. The solution for the new scenario

Starting with the second answer, the payoff matrix which solves the overall
problem is

Giant 2

NP SP

Giant 1
NP 10002.3409155928, 9344.4170927629 9995.3181757527, 7995.7219972142

SP 9996.9561027821, 1396.4065089070 10006.0875898724, 4768.1437073481

Figure 2: Giant retailers’ new strategic game

If this game is played, the expected payoff of player 1 is 10000 and that
of player 2 is 7073.5567, corresponding to the new mixed Nash equilibrium
indicated above. There are other 2 pure Nash equilibria, equal to {1 0 1 0}
and {0 1 0 1}, corresponding to (NP, NP) and (SP, SP), respectively.

The first question may be answered by saying that the main presented
method is able to find a game with the new, desired Nash equilibrium. In
addition, by modifying the overall cost function it is (and was) possible to
impose the new expected payoff of player 1. This is done simply by adding
a term which becomes null when the expected payoff of player 1 reaches the
desired new value. Thus the global cost function is composed by terms that,
once assuming the value 0, automatically satisfy the corresponding condi-
tion. In order to illustrate the implementation for this particular constraint,
the code (in the C++ programming language) relative to the cited term is
shown below.

double aux ;

aux = PlayerPayoff [1][1][1] * VectorPMF1 [0] * VectorPMF1 [2] +

PlayerPayoff [1][1][2] * VectorPMF1 [0] * VectorPMF1 [3] +

PlayerPayoff [1][2][1] * VectorPMF1 [1] * VectorPMF1 [2] +

PlayerPayoff [1][2][2] * VectorPMF1 [1] * VectorPMF1 [3]

- 10000 ;

OverallCost += aux*aux ;

This code corresponds to the condition that player 1 must have expected
payoff equal to US$10000, and the variable OverallCost was already being
used as an accumulator for the objective function value in each iteration.
At this point it already holds the numerical conditions for the positioning
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of the desired equilibria, and the shown addition of aux2 combines the two
constraints. Array PlayerPayoff holds the payoff matrices and VectorPMF1
the proportions for the two types of prices.

6.4. Discussion for the example

This simple example shows very well how it is possible to reach certain results,
hardly obtainable by conventional means, using the proposed method. In this
fashion, it is possible to impose a certain set of Nash equilibria and, in many
occasions, other conditions, provided the overall cost function keeps its global
minimum value at zero. Although the problem demanded only one special
Nash equilibrium, it would be possible to have further ones by modifying
the existing cost function. Naturally, the resulting payoff matrix has to be
implemented in practice in order to make it feasible even the theoretical
existence of the equilibrium.
To do that, player 1 must adjust some parameters in order to reach found
payoff values. Although the number of buyers is one of the components
influencing payoff values, it is usually beyond the control of firms to set such
a variable. Therefore, NP and SP of player 1 are the control parameters that
can be changed to obtain the desired effect. By doing so, the symmetry of
the original game is commonly lost and some premises must be altered (or
abandoned) as well. In the present setting, it is certainly possible to get
adequate numbers which allow designers to arrive to the payoff matrix.

7. Conclusion

This work describes a new approach to synthesize finite strategic games with
given structure and pre-selected multiple Nash equilibria in an automatic
way, showing how that is possible by using an evolutionary global optimiza-
tion method. The new findings are based on two main pillars: a proposition
due to R. D. McKelvey, relating Nash equilibria and global minima of cer-
tain objective functions (Liapunov functions for specific dynamical systems,
as described in [11]) and the utilization of an effective evolutionary global
optimization algorithm (Fuzzy ASA). It is worth to highlight that the re-
sults here described could hardly be obtained without the flexible structure
of evolutionary methods, which make it possible to employ techniques that
may be considered infeasible when dealing with conventional, gradient-based
methods. The usefulness of the results resides in the possibility of not only
positioning several pre-set equilibria simultaneously, but also fine tuning the
frequency of the several alternatives available to each player. Other positive
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points are the easiness of implementation, independent tuning of the range of
payoff functions’ components and provision for inserting further constraints.

For the sake of better understanding presented results, a final example
describing a price competition game between two large retailers is explained,
including their approaches for attracting customers and improving sales. In
particular, normal and sale prices are initially fixed and premises about cus-
tomer behavior are established. After some reasoning, it was shown to be
possible to model the problem as a 2-player strategic game and obtain pay-
off matrices for both agents, as exposed in [3]. In order to apply the new
method, some significant modifications in player 1 behavior were proposed.
After submitting all requisites and previous conditions to the algorithm, new
payoff matrices were produced and they were able to satisfy all previously
stated constraints.
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