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Abstract

This paper develops a simplified pedagogical or toy model of (finite-dimensional non-relativistic)
quantum mechanics (QM). The model uses vector spaces over Z2 = {0, 1}, where the 0, 1-vectors
can also be interpreted as sets, so the model is “quantum mechanics over sets” or QM/Sets. At
the level of sets, the key notion is that of a partition or, equivalently, an equivalence relation.
Partitions are the logical-level notions to model distinctions versus indistinctions, definiteness
versus indefiniteness, or distinguishability versus indistinguishability. Those pairs of concepts
are the key to understanding the non-classical ‘weirdness’ of QM. The key non-classical notion
in QM is the notion of superposition, i.e., the notion of a state that is indefinite between two
or more definite- or eigen-states. As Richard Feynman emphasized, all the weirdness of QM is
illustrated in the double-slit experiment so the QM/Sets version is used to make the key points.
The simplified model provides an explanation and intuitive picture to answer the key question:
“How can the particle get to the detection wall without passing through one slit or the other?”
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1 Introduction

This paper develops a highly simplified (also known as a pedagogical or toy) model of (finite-
dimensional non-relativistic) quantum mechanics (QM)–which is called “quantum mechanics over
sets” and abbreviated as “QM/Sets.” Using the simplest form of calculations modulo 2 (where
1 + 1 = 0), the model nevertheless can illustrate the usual ‘paradoxes’ and weirdness of QM in
a skeletal form–without any of the high-powered mathematics of the usual quantum theory. The
integers modulo 2 are denoted as Z2 = {0, 1} and the rules for adding and multiplying 0 and 1 differ
only in that 1 + 1 = 0. One could think of addition in terms of a clock dial with a 0 at the top and
a 1 at the bottom as the only two times so adding 1 time unit to 1 time unit takes one back to 0.

2 Vector spaces over Z2

We form a vector space using Z2 by using columns of the 0’s and 1’s as the vectors. For instance,

Z3
2 is the 3-dimensional vector space of column vectors such as

01
0

. The column vectors add to-

gether component-wise, i.e., each of the first, second, or third components adds to the corresponding
component of the other vector modulo 2, e.g.,11

0

+

01
1

 =

10
1

.
One very useful way to interpret these 3-dimensional column vectors is to see each component

as the presence or absence of an element of a three-element set such as U = {a, b, c}. This we have:

{a} =

10
0

, {b} =

01
0

, and {c} =

00
1

.
Then the above addition would be {a, b}+ {b, c} = {a, c}. This addition operation on sets is called
the symmetric difference; it is performed by taking the union of the sets and then taking away the
overlap or intersection of the sets. For instance, the union of {a, b} and {b, c} is {a, b, c} and then
taking way the intersection {b} gives {a, c}. We will henceforth use this set-interpretation of Z3

2 or,
in general, Zn2 for the n-dimensional case of QM/Sets.

In the vector space Z3
2, there are 8 vectors since each of the three components can be 0 or 1 so

there are 23 = 8 possible vectors with the special vector with all zeros is the zero vector. When we
interpret the vectors as sets, then each vector corresponds to a certain subset. The set of all possible
subsets of a set {a, b, c} is its power set ℘ ({a, b, c}) which has the eight members in correspondence
to the eight vectors where the empty set ∅ corresponds to the zero vector:

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.
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If we pair the subsets in ℘ ({a, b, c}) with the vectors in Z3
2 by [1, 0, 0]

t
(the superscript t indicates

the transpose interchanging rows and columns) being paired with {a}, [0, 1, 0]t with {b}, and so
forth, then there is an isomorphism of vector spaces: Z3

2
∼= ℘ ({a, b, c}).

The choice of 3-dimensions Z3
2 or a 3-element universe set U = {a, b, c} was only illustra-

tive. The corresponding operations extend to n-dimensional vectors or n-element universes U =
{u1, u2, ..., un}.

In the quantum interpretation, the single-element or singleton subsets represent definite-states
or eigen-states of a quantum particle, and the multiple-element subsets represent indefinite-states
or superposition states of the (always quantum) particle. The zero vector or empty set does not
represent a state.

The definite states like {a}, {b}, or {c} form a basis for the vector space in the sense that all
the other subsets (= states) can be obtained by sums of them. But there are other basis sets so that
all the other subsets can be obtained as sums of them. For instance, consider U ′ = {a′, b′, c′} where
{a′} = {a, b}, {b′} = {a, b, c}, and {c′} = {b, c}. This is easily seen by showing how to obtain the
U -basis from them:

{a′, b′} = {a, b}+ {a, b, c} = {c},
{a′, b′, c′} = {a, b}+ {a, b, c}+ {b, c} = {b}, and
{b′, c′} = {a, b, c}+ {b.c} = {a}.
It should be noted that whether a state is a definite eigenstate or a superposition state depends

on the basis in which it is represented. For instance the state {a′, b′} = {c} is a superposition state
in the U ′-basis but a definite state in the U -basis. There in fact are many different basis sets for Z3

2

(28 in all); four of them are listed in Table 1.

U = {a, b, c} U ′ = {a′, b′, c′} U ′′ = {a′′, b′′, c′′} U∗ = {a∗, b∗, c∗}
{a, b, c} {b′} {a′′, b′′, c′′} {a∗, c∗}
{a, b} {a′} {b′′} {a∗, b∗}
{b, c} {c′} {b′′, c′′} {c∗}
{a, c} {a′, c′} {c′′} {a∗, b∗, c∗}
{a} {b′, c′} {a′′} {a∗}
{b} {a′, b′, c′} {a′′, b′′} {b∗}
{c} {a′, b′} {a′′, c′′} {b∗, c∗}
∅ ∅ ∅ ∅

Table 1: four different basis sets for Z3
2

It is useful to consider a vector abstracted from its representation in a certain basis and such
abstract vectors, called kets in QM and symbolized |v⟩ in the Dirac notation, are identified as
the rows in a ket table like Table 1 in the 3-dimensional case of Z3

2. Not all sets of three vectors
in ℘ (U) form a basis. For instance, {a, b}, {a, c}, and {b, c} just cycle among themselves when
added, e.g., {a, b}+ {a, c} = {b, c}, so they do not generate the whole space. A subspace of a vector
space is a set of vectors that are closed under addition (including the zero vector or empty set)
so {∅, {a, b} , {a, c} , {b, c}} is a subspace of ℘ (U). Also any subset S ⊆ U , generates the subspace
℘ (S) ⊆ ℘ (U).

In the ket notation, |{a, b}⟩ stands for the abstract vector (row in ket table) that is {a, b} in the U -
basis. Operations in the vector space have the same outcome regardless of the basis used. For instance,
|{a, b}⟩+ |{b, c}⟩ = |{a, c}⟩ (cancellation of {b}) but in the U ′-basis, it is |{a′}⟩+ |{c′}⟩ = |{a′, c′}⟩
and |{a′, c′}⟩ = |{a, c}⟩.

In the Dirac notation of QM, there is also the bra ⟨v′| so that the bra-ket or bracket ⟨v′|v⟩ is the
inner product of v′ and v. But there are no inner products in vector spaces over finite fields such as
Z2, so we have to look at the interpretation of the ⟨v′|v⟩ in QM. The inner product of normalized
vectors in QM is interpreted as the overlap of the two states so that ⟨v′|v⟩ = 0 means no overlap,
i.e., the vectors are orthogonal, and ⟨v′|v⟩ = 1 means complete overlap. In Zn2 or ℘ (U), there is a
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natural notion of overlap, namely the cardinality of the intersection of two sets which takes values
outside of Z2 in the natural numbers N.1 For two zero-one column vectors w, v ∈ Zn2 , we can form
the scalar product wt · v =

∑n
i=1 wivi (w

t is the transpose of w into a row vector) taking values in N
which computes the overlap of ones in the two vectors. Since the kets represent the abstract vector
regardless of basis, the computation of the overlap as the size of the intersection of the two sets
expressed in the same basis, we will make the bras basis-dependent as indicated by the subscript
⟨T |U so that for S, T ⊆ U , the bra-ket or bracket in QM/Sets is:

⟨T |US⟩ = |T ∩ S|.

For basis vectors ui ∈ U , ⟨{ui} |S⟩ = |{ui} ∩ S| = χS (ui) ,where χS : U → {0, 1} is the
characteristic function for the subset S ⊆ U such that χS (ui) = 1 if ui ∈ S and 0 otherwise. The ket-
bra |{ui}⟩ ⟨{ui}|U is an operator ℘ (U) → ℘ (U) that takes |S⟩ to |{ui}⟩ ⟨{ui}|U S⟩ = χS (ui) |{ui}⟩. A
projection operator is an operator P that is idempotent in the sense the P 2 = P . Hence |{ui}⟩ ⟨{ui}|U
is a projection operator:

|{ui}⟩ ⟨{ui}|U {ui}⟩⟨{ui} |U = |{ui}⟩ ⟨{ui}|U

since ⟨{ui} |U {ui}⟩ = χ{ui} (ui) = 1. The sum of these projections over the basis is the identity
operator I : ℘ (U) → ℘ (U) since:∑n

i=1 |{ui}⟩ ⟨{ui}|U S⟩ =
∑n
i=1 χS (ui) |{ui}⟩ =

∑
ui∈S |{ui}⟩ = |S⟩.

Hence any bracket ⟨T |US⟩ can be resolved by inserting the identity operator:∑n
i=1 ⟨T |U {ui}⟩ ⟨{ui}|U S⟩ =

∑n
i=1 χT (ui)χS (ui) = |T ∩ S| = ⟨T |US⟩.

In QM, the magnitude or norm of a vector |ψ⟩ is often denoted |ψ| =
√

⟨ψ|ψ⟩ but that conflicts
with our notation |S| for cardinality, so we will use ∥ψ∥ =

√
⟨ψ|ψ⟩ for the norm in QM and the

corresponding norm in QM/Sets is:

∥S∥U =
√

⟨S|US⟩ =
√
|S|

which takes values in the reals R.
In QM, a vector can be normalized at any time, but in QM/Sets the only normalization is in the

calculation of probabilities. In QM, when a not normalized state |ψ⟩ is measured in the measurement
basis of {|vi⟩}ni=1, the probability of getting the outcome |vi⟩ is:

Pr (vi|ψ) = ∥⟨vi|ψ⟩∥2

∥⟨ψ|ψ⟩∥2 .

Hence the corresponding formula in QM/Sets is:

Pr (ui|S) = ∥⟨ui|US⟩∥2

∥⟨S|US⟩∥2 = ⟨ui|US⟩
⟨S|US⟩ = |{ui}∩S|

|S| =

{
1/ |S| if ui ∈ S

0 if ui /∈ S

which is the conditional probability of outcome ui given the event S when the outcomes are equiprob-
able.

1In constructing a toy model of QM, there is always the question of “what to leave in and what to leave out?” in
going from full QM to the model. In the Schumacher-Westmoreland model of QM with the base field Z2 [30], they
decide to “leave in” the brackets taking values in the base field so in their model of “Modal QM”, the brackets have
only the modal values of 1 (possible) and 0 (impossible).
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3 Numerical attributes as observables

A (real-valued) numerical attribute (or observable) on U = {u1, ..., un} is a function f : U → R from
U to the real numbers. It assigns a real number to each element of U . If it takes only the values of 0
and 1, then it is an attribute and is represented in the special notation as a characteristic function
χS : U → 2 = {0, 1} where S = {ui ∈ U |χS (ui) = 1} = χ−1

S (1), the set of elements taking on the
value of 1. The set of real numbers that have an element of U mapped to them by f is the image or
spectrum of f , denoted f (U) ⊆ R. Each number r ∈ f (U) in the spectrum of f is a definite-value
or eigenvalue of f . The inverse image subset f−1 (r) ⊆ U of U is the set of elements of U mapped
to an eigenvalue r, i.e., f−1 (r) = {ui ∈ U |f (ui) = r}. That inverse image generates a subspace
℘
(
f−1(r

)
) ⊆ ℘ (U) called the eigenspace associated with the eigenvalue r. Thus if f : {a, b, c} → R

had f (a) = f (b) = 3 and f (c) = −5, then f−1 (3) = {a, b} and ℘
(
f−1 (3)

)
= {∅, {a} , {b} , {a, b}} is

the eigenspace associated with the eigenvalue of 3. The non-zero vectors in the eigenspace for r are
also called definite-states or eigenstates of f . All the non-empty subsets in ℘

(
f−1 (r)

)
are constant

sets of f , i.e., subsets of U on which f has the same value of r.
A partition π on U is a set of non-empty subsets π = {B1, ..., Bm}, called the blocks of π, such

that the blocks are disjoint, i.e., Bj ∩Bk = ∅ for j ̸= k, and their union is all of U , i.e., ∪mj=1Bj = U .

Each numerical attribute f : U → R determines a partition f−1 =
{
f−1 (r) |r ∈ f (U)

}
on U called

the inverse-image of f . Each block f−1 (r) of the partition f−1 generates an eigenspace ℘
(
f−1 (r)

)
.

The set of eigenspaces of f ,
{
℘
(
f−1 (r)

)}
r∈f(U)

form a direct-sum decomposition (DSD) of ℘ (U) in

the sense that every non-zero vector (i.e., every non-empty subset of U) can be uniquely represented
as the sum of non-zero vectors from the subspaces in the DSD. For instance, in the example f :
{a, b, c} → R, the vector or subset {a, c} is the sum of {a} ∈ ℘

(
f−1 (3)

)
and {c} ∈ ℘

(
f−1 (−5)

)
. A

DSD of a vector space is the vector space version of a partition on a set.
In QM, every observable or Hermitian operator F has a set of eigenspaces Vλ that form a direct-

sum decomposition of the Hilbert space V . In QM/Sets, the eigenspace for an eigenvalue r of a
numerical attribute f : U → R is ℘

(
f−1 (r)

)
, which also form a DSD of ℘ (U). In QM, different

eigenspaces Vλ and Vλ′ for λ ̸= λ′ are ‘disjoint’ is the sense that their intersection is the zero space.
Similarly, for eigenvalues r ̸= r′, the intersection of ℘

(
f−1 (r)

)
and ℘

(
f−1 (r′)

)
is only the empty

set subspace {∅}. In QM, the projections Pλ : V → V to the eigenspaces Vλ are complete in the
sense that the sum of the projections is the identity operator:

∑
λ Pλ = I : V → V . In QM/Sets,

the corresponding projections are: f−1 (r) ∩ () : ℘ (U) → ℘ (U) and the union of the images on any
S ∈ ℘ (U) is: ∪r∈f(U)

(
f−1 (r) ∩ S

)
= S as illustrated in Figure 1.

Figure 1: Subset S expressed as union over r ∈ f (U) of disjoint intersections f−1 (r) ∩ S

Since the sets in the union are disjoint, the union translates into a sum in the vector space ℘ (U)
[where the sum is S + T = S ∪ T − (S ∩ T )] so we have:

∑
r∈f(U) f

−1 (r) ∩ () = I : ℘ (U) → ℘ (U).
To approach the probability calculus for numerical attributes f : U → R, the QM equation:

∥ψ∥2 = ⟨ψ|ψ⟩ =
∑
λ ∥Pλ (ψ)∥

2
is expressed in QM/Sets as: ∥S∥2U = ⟨S|US⟩ =

∑
r∈f(U)

∥∥f−1 (r) ∩ S
∥∥2
U
=
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∑
r∈f(U)

∣∣f−1 (r) ∩ S
∣∣ = |S|. Then we normalize to have probabilities that sum to one:

∑
λ

∥Pλ(ψ)∥2

∥ψ∥2 =

1 for ψ ̸= 0 in QM, and
∑
r∈f(U)

∥f−1(r)∩S∥2

U

∥S∥2
U

=
∑
r
|f−1(r)∩S|

|S| = 1 for S ̸= ∅ in QM/Sets. Then

when measuring ψ by the observable F , the probability of getting the eigenvalue λ is:

Pr (λ|ψ) = ∥Pλ(ψ)∥2

∥ψ∥2

and the corresponding probability for getting the eigenvalue r of the numerical attribute f when
conditioned by S is:

Pr (r|S) = ∥f−1(r)∩S∥2

U

∥S∥2
U

=
|f−1(r)∩S|

|S| .

These probabilities are for equiprobable outcomes; the machinery for the general case is devel-
oped below.

Table 2 starts building the connections or translation dictionary between the pedagogical model
of QM/Sets and QM (where {|ui⟩}ni=1 is an orthonormal (ON) basis for V and α∗

i is the complex
conjugate of αi).

QM/Sets QM

⟨{ui} |S⟩ = χS (ui) |ψ⟩ =
∑
i αi |ui⟩; ⟨ui|ψ⟩ = αi∑n

i=1 |{ui}⟩ ⟨{ui}|U S⟩ =
∑n
i=1 χS (ui) |{ui}⟩ = |S⟩

∑n
i=1 |ui⟩ ⟨ui|ψ⟩ = |ψ⟩

⟨T |US⟩ =
∑n
i=1 χT (ui)χS (ui) = |T ∩ S| ⟨ψ|ψ′⟩ =

∑n
i=1 α

∗
iα

′
i

∥S∥U =
√
⟨S|US⟩ =

√
|S| ∥ψ∥ =

√
⟨ψ|ψ⟩

Pr (ui|S) = ∥⟨ui|US⟩∥2

∥⟨S|US⟩∥2 = |{ui}∩S|
|S| Pr (vi|ψ) = ∥⟨vi|ψ⟩∥2

∥⟨ψ|ψ⟩∥2

Numerical attribute f : U → R Hermitian F : V → V

r ̸= r′; ℘
(
f−1 (r)

)
∩ ℘

(
f−1 (r′)

)
= {∅} λ ̸= λ′; Vλ ∩ Vλ′ = {0}∑

r∈f(U) f
−1 (r) ∩ () = I : ℘ (U) → ℘ (U)

∑
λ PVλ

= I : V → V∑
r∈f(U)

∥f−1(r)∩S∥2

U

∥S∥2
U

=
∑
r
|f−1(r)∩S|

|S| = 1
∑
λ

∥Pλ(ψ)∥2

∥ψ∥2 = 1

Pr (r|S) = ∥f−1(r)∩S∥2

U

∥S∥2
U

=
|f−1(r)∩S|

|S| Pr (λ|ψ) = ∥Pλ(ψ)∥2

∥ψ∥2

Table 2: Initial connections between QM/Sets and QM

4 The Yoga of Linearization

We have been implicitly using a bit of mathematical folklore, that we will call the Yoga of Lin-
earization. It connects set concepts with the corresponding vector space concepts. The idea is to
first look at U as just a set to which a set concept may be applied (e.g., .the notion of subset,
numerical attribute, or partition on a set). Then take U to be a basis set of a vector space V , and
the corresponding vector space notion is the notion generated by the set concept applied to the
basis set. For instance, the notion of a subset S of a basis set generates the notion of a subspace
[S] generated by S so the Yoga connects the notion of a subset S ⊆ U and the notion of a sub-
space [S] ⊆ V . If we apply a set partition to a basis set U , then each block in the partition of
U generates a subspace, and the set of subspaces generated by the blocks of the partition form a
direct-sum decomposition of the vector space so the Yoga connects the set notion of a partition to
the vector space notion of a DSD. A numerical attribute on a set f : U → R defines a linear operator
F : V → V (assuming V is a vector space over a field containing the reals) which on the basis set U
is given by Fui = f (ui)ui where the ui ∈ U are basis vectors and the definition of a linear operator
on a basis set extends linearly to the whole space. Thus the Yoga connects a real-valued numerical
attribute with a linear operator on a vector space over a field containing the reals, e.g., the complex
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numbers, where the operator has real eigenvalues r ∈ f (U). If the vector space such as V = Zn2
is over a field Z2 not containing the reals, then the inverse image partition f−1 =

{
f−1 (r)

}
r∈f(U)

defines a DSD in the vector space which may have many of the main properties of a linear operator
(see next section). For a numerical attribute f : U → R, let “f ↾ S = rS” stand for the statement
that f restricted to a subset S has the constant value r on that subset. This the Yoga connects
that equation to the eigenvalue/eigenvector equation Fui = rui. Then constant sets of a numerical
attribute f : U → R correspond to eigenvectors of the linear operator F : V → V defined on the
basis set U by Fui = f (ui)ui and the constant value r on a constant set corresponds to the eigen-
value of the eigenvector. When the numerical attribute is a characteristic function χS : U → {0, 1},
then the corresponding linear operator defined by P[S]ui = χS (ui)ui is the projection operator P[S]

onto the subspace [S] generated by S = χ−1
S (1) ⊆ U . In the general case of f : U → R defining

F : V → V , there is a ‘spectral decomposition’ of f in terms of the characteristic functions for{
f−1 (r)

}
r∈f(U)

, i.e., f =
∑
r∈f(U) rχf−1(r), that corresponds to the usual spectral decomposition

of the linear operator F as F =
∑
r∈f(U) rP[f−1(r)].

In this manner, the Yoga builds up a translation dictionary of set concepts and the corresponding
vector space concepts as in Table 3.

Set concepts of QM/Sets Vector-space concepts of QM

Subset S ⊆ U Subspace [S] ⊆ V
Cardinality |S| of S Dimension of [S]

Numerical attribute f : U → R Obs. F : V → V defined Fui = f (ui)ui
Direct sum U = ⊎r∈f(U)f

−1 (r) Direct sum V = ⊕r∈f(U)

[
f−1 (r)

]
Partition

{
f−1 (r)

}
r∈f(U)

DSD
{[
f−1 (r)

]}
r∈f(U)

f ↾ S = rS Fui = rui
Constant set S of f Eigenvector ui of F

Value r on constant set S Eigenvalue r of eigenvector ui
Set of r-constant sets ℘

(
f−1 (r)

)
Eigenspace Vr =

[
f−1 (r)

]
of r-eigenvectors

Characteristic fcn. χS : U → {0, 1} Projection operator P[S]u = χS(u)u
Spectral Decomp. f =

∑
r∈f(U) rχf−1(r) Spectral Decomp. F =

∑
r∈f(U) rP[f−1(r)]

Table 3: Set concepts and corresponding vector space concepts

Our simplified model of QM is based on set notions and, where possible, the set notions connected
by the Yoga to the vector spaces ℘ (U) over Z2. When the vector space V is a finite-dimensional
Hilbert vector space over C, then the Yoga shows how the machinery in the simplified model cor-
responds to the full-blown mathematical machinery of QM [13]. But when V = Zn2 , then only a
characteristic function χS : U → {0, 1} defines a linear operator P[S] : Zn2 → Zn2 , but a general

numerical attribute f : U → R still defines a partition f−1 on U and the DSD
{
℘
(
f−1 (r)

)}
r∈f(U)

of Zn2 . The same holds for any other basis set for Zn2 . For instance, for the U ′-basis of Table 1, the
numerical attribute g : U ′ → R given by g (a′) = g(c′) = 1 and g (b′) = 2, induces the partition
{{a′, c′} , {b′}} on U ′ and the DSD:

{{∅, {a′} , {c′} , {a′, c′}} , {∅, {b′}}} = {{∅, {a, b} , {b, c} , {a, c}} , {∅, {a, b, c}}}

where the DSD expressed in terms of the U -basis is not generated by a partition on U .
As we will see in the next section, for many purposes, the important notion for an observable is

not the Hermitian linear operator itself but its DSD of eigenspaces.

5 Commutativity and conjugacy of observables

In full-blown QM, the observables are represented by Hermitian linear operators F : V → V on a
Hilbert space over the complex numbers C. One of the features of QM in contrast with classical
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mechanics is that these operators for different observables might commute, not commute, or even be
conjugate like position and momentum. A linear operator is determined by its definition on a basis
set; each basis vector is assigned a number in the base field and in the case of Hermitian operators,
those assigned values are always real numbers R ⊆ C. But in our pedagogical model QM/Sets, the
only linear operators Ŝ : ℘ (U) → ℘ (U) are those that assign a element of the field Z2 = {0, 1} to
the elements of U , i.e., the characteristic functions χS : U → Z2 = {0, 1}.

Hence the question arises of how can we represent commutativity, non-commutativity, and con-
jugacy in QM/Sets for numerical attributes f : U → R? The answer is that each Hermitian operator
F : V → V in QM determines the DSD of its eigenspaces, and the commutativity properties depend
solely on the DSDs.

The first step in working this out is to notice that the notion of a subspace or a DSD of
subspaces is basis-independent. In the previous example of f : U → R, we had the eigenspace
℘
(
f−1 (3)

)
= {∅, {a} , {b} , {a, b}}. But that subspace can equally well expressed in the U ′-basis as

{∅, {b′, c′} , {a′, b′, c′} , {a′}}. Since a DSD is a certain type of collection of subspaces, it is also a
basis-independent notion–even though it may be first defined using some particular basis. The point
is that the commutativity properties can be defined in QM and in QM/Sets solely in terms of the
DSDs of eigenspaces.

Suppose we have two different basis sets, U and U ′ for Zn2 and two numerical attributes f :
U → R and g : U ′ → R which then define two DSDs

{
℘
(
f−1 (r)

)}
r∈f(U)

and
{
℘
(
g−1 (s)

)}
s∈g(U ′)

.

For two partitions π = {B1, ..., Bm} and σ = {C1, ..., Cm′} on the same set U , their join π ∨ σ
is the partition whose blocks are the non-empty intersections Bj ∩ Cj′ of blocks from π and σ.
Since DSDs can be seen as the vector space versions of partitions, we would like to perform a
join-like operation on two DSDs. Since a subspace can be represented in any basis we need to
represent the subspaces of two DSDs in the same basis before we can the intersection of the subspaces
which serves as the blocks in the vector space partitions. Hence instead of

{
℘
(
f−1 (r)

)}
r∈f(U)

and{
℘
(
g−1 (s)

)}
s∈g(U ′)

, we abstractly consider two DSDs {Wj}mj=1 and {Vj′}m
′

j′=1 (which could be the

DSDs of eigenspaces of two observables in QM), and then perform a join-like operation to get
the set {Wj ∩ Vj′ |Wj ∩ Vj′ ̸= {0} ; j = 1, ...,m′; j′ = 1, ...,m′} of non-zero subspaces (using the fact
that the intersection of subspaces is a subspace). In terms of the original numerical attributes
f : U → R and g : U ′ → R, the non-zero vectors in an intersection Wj ∩ Vj′ , e.g., in an intersection
℘
(
f−1 (r)

)
∩ ℘

(
g−1 (s)

)
(with subsets represented in the same basis), are eigenvectors (or constant

sets) of both f and g which are called “simultaneous eigenvectors” in QM. Then we take the sums of
all those simultaneous eigenvectors to generate a subspace SE of the space Zn2 . The commutativity
properties of the observables in QM and the numerical attributes in QM/Sets can then be defined
solely in terms of the DSDs of eigenspaces in both cases:

{Wj}mj=1 and {Vj′}m
′

j′=1 commute if SE is the whole space (V in QM or Zn2 in QM/Sets), and

{Wj}mj=1 and {Vj′}m
′

j′=1 are conjugate if SE is the zero space (in QM {0} and in QM/Sets {∅}).

The join-like operation of taking all the non-zero subspaces Wj ∩ Vj′ only creates another DSD
in the commutative case when SE = V or Zn2 , and it is only then that the operation is properly
called the join of DSDs. As Hermann Weyl put it when referring to the vector space partitions or
DSDs as “gratings”; the “combination of two gratings presupposes commutability. . . .” [36, p. 257]

Commutativity example: Any two numerical attributes defined on the same basis set will
commute but that is not necessary. Let f : {a, b, c} → R have f (a) = 1 and f (b) = f (c) = 0. On
the U∗-basis of Table 1, let g : U∗ → R be defined by g (a∗) = 2, g (b∗) = 3, and g (c∗) = 4. Then
the DSD defined by f is

{
℘
(
f−1 (1)

)
, ℘

(
f−1 (0)

)}
= {{∅, {a}} , {∅, {b} , {c} , {b, c}}} and the DSD

defined by g is
{
℘
(
g−1 (2)

)
, ℘

(
g−1 (3)

)
, ℘

(
g−1(4

)}
= {{∅, {a∗}} , {∅, {b∗}} , {∅, {c∗}}}. To consider

the intersections of the subspaces in the DSDs, we need to express them both in the same basis so
taking the U -basis as the ‘computational basis’, we have the two DSDs as:
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{{∅, {a}} , {∅, {b} , {c} , {b, c}}} for f ,
and

{{∅, {a}} , {∅, {b}} , {∅, {b, c}}} for g.

Then taking all the possible intersections between the subspaces in the two DSDs, we see that the
simultaneous eigenvectors are {a}, {b}, and {b, c}. These simultaneous eigenvectors form a basis so
they generate by their sums all the vectors or subsets in the whole space ℘ (U) so those two DSDs
commute.

Conjugacy example: Take f : U → R as f (a) = 1, f (b) = 2, and f (c) = 3, and take
g : U ′ → R as g (a′) = 4, g (b′) = 5, and g (c′) = 6 (U ′ is as in Table 1). Then the DSD de-
termined by f is {{∅, {a}} , {∅, {b}} , {∅, {c}}} and the DSD determined by g is in the U ′-basis,
{{∅, {a′}} , {∅, {b′}} , {∅, {c′}}} which translated into the U -basis gives the following two DSDs:

{{∅, {a}} , {∅, {b}} , {∅, {c}}} for f ,
and

{{∅, {a, b}} , {∅, {a, b, c}} , {∅, {b, c}}} for g.

In this case, there no simultaneous eigenvectors so SE = {0} and thus those two DSDs are conjugate.
Recalling that being a definite-state (i.e., an eigenstate) or an indefinite-state (i.e., a superposition
state) depends on the basis, the key feature that determined conjugacy in this case is that all the
definite-states or eigenstates in one basis were indefinite-states or superpositions in the other basis
(see Table 1) and both numerical attributes assigned different numbers to different eigenstates.
Hence, like the conjugate observables of position and momentum in QM, there is no non-zero vector
that is a definite-state or eigenstate of both numerical attributes. If any vector or state is an eigenstate
or definite-state of one numerical attribute, then it has to be a superposition or indefinite-state for
the other numerical attribute.

Since in all cases, the DSDs are determined by the numerical attributes, we may also say that
those numerical attributes are commutative or conjugate as the case may be.

The join of the two inverse-image partitions f−1 and g−1 always exist if they are compatible
in the sense of being defined on the same universe set. That is the QM/Sets version of commuting
observables in QM. The QM/Set version of Dirac’s Complete Set of Commuting Observables (CSCO)
[8] is easily constructed.

QM/Sets: Let f, g, ..., h : U → R be numerical attributes on U . They are said to be a Complete
Set of Compatible Attributes (CSCA) if the join of their (inverse-image) partitions is a partition
with all subsets of cardinality one. Then each element ui ∈ U can be uniquely characterized by the
ordered set of values f (ui) , g (ui) , ..., h (ui).

QM: Let F,G, ...,H : V → V be commuting observables on V . They are said to be a Complete Set
of Commuting Observables (CSCO) if the join of their vector space partitions (DSDs) is a DSD with
all subspaces of dimension one. Then each simultaneous eigenvector can be uniquely characterized
by the ordered set of their eigenvalues. If U = {u1, ..., un} is a basis of simultaneous eigenvectors
and f : U → R, g : U → R,..., h : U → R are the eigenvalue functions assigning the eigenvalues
to the simultaneous eigenvectors of the observables F,G, ...,H respectively, then the ordered set of
eigenvalues that characterize the eigenvectors ui ∈ U is f (ui) , g (ui) , ..., h (ui).

This is a paradigm example of the translation or correlation dictionary between QM/Sets and
full QM.

6 The lattice of partitions

Given a set U (|U | ≥ 2), recall that a partition π on U = {u1, ..., un} is a set of non-empty subsets
π = {B1, ..., Bm} that are pairwise disjoint and jointly exhaustive of U . It is interesting to note that
a partition can be given a DSD-type definition as a set of non-empty subsets π = {B1, ..., Bm} so
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that any non-empty subset S ⊆ U can be uniquely represented as the union of subsets of the blocks
B1, ..., Bm. If the blocks were not disjoint, say S = Bj∩Bk ̸= ∅, then that non-empty subset S would
have two representations as a subset of the blocks so uniqueness fails. And if the blocks were not
jointly exhaustive, then the non-empty subset S = U − ∪mj=1Bj would have no representation as a
union of subsets of the blocks. The unique representation of S is given by the union of the projection
operators Bj ∩ () : ℘ (U) → ℘ (U), i.e., ∪mj=1 (Bj ∩ S) = S. Thus a set partition is the set version

of a vector space DSD. Moreover, when sets are treated as vectors in ℘ (U), then {℘ (Bj)}mj=1 is a

DSD of the vector space ℘ (U) iff {B1, ..., Bm} is a partition of U .
An indistinction or indit of π is an ordered pair of elements (ui, uk) that in the same block of

π. The set of all indits is the indit set indit (π) = ∪mj=1 (Bj ×Bj) ⊆ U ×U , which is the equivalence
relation associated the partition π. A distinction or dit of π is an ordered pair of elements (ui, uk) in
different blocks of π so the set of all dits, the ditset dit (π), is just the complement of the equivalence
relation indit(π) in U × U .

Let Π (U) be the set of all partitions on U . There is a partial order on Π (U) given by the
inclusion of ditsets. That is, for partitions π = {B1, ..., Bm} and σ = {C1, ..., Cm′}, the partial order
is: σ ≾ π if dit (σ) ⊆ dit (π). This is also the refinement partial ordering where π refines σ if for
every block Bj ∈ π, there is a block Cj′ ∈ σ such that Bj ⊆ Cj′ . In the partial order on Π (U), there
is a maximum or top partition which is the discrete partition 1U = {{ui}}ni=1 where all the blocks
are the singletons of the elements ui ∈ U . And there is a minimum or bottom partition which is the
indiscrete partition 0U = {U} where there is only one block which is all of U .

For π, σ ∈ Π(U), join operation gives the least upper bound on π and σ in the refinement
ordering. There is also a meet or greatest lower bound of two partitions π and σ. When two blocks
Bj ∈ π and Cj′ ∈ σ have a non-empty intersection, they ‘blob’ together like two touching drops
of water. Eventually, blobs will form of blocks from both partitions until they intersect no other
blocks of the other partition. Those minimal unions of π-blocks and σ-blocks are the blocks of the
meet π ∧ σ.2 The join and meet operations on partitions were known in the nineteenth century
(e.g., Richard Dedekind and Ernst Schröder) and they turn Π (U) into a lattice (a partial order with
joins and meets). The lattice of partitions on U = {a, b, c} is given in Figure 2. The lines between
partitions indicate refinement with no partitions in between.

Figure 2: Lattice of partitions on U = {a, b, c}

7 Superposition subsets and density matrices

Given a basis U for a vector space V , any vector has the form of a linear combination of the basis
vectors

∑n
i=1 αiui where the αi are scalars from the field, e.g., C in QM and Z2 in QM/Sets. The

support of the vector is the set of basis vectors with non-zero coefficients αi. We can think of taking
the support of a vector as ‘skeletionizing’ it to yield a set S ⊆ U of basis vectors. If the support is

2The indiscrete partition 0U is nicknamed “The Blob” since like in the eponymous Hollywood movie, it absorbs
everything it meets: 0U ∧ π = 0U .
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a singleton, then the vector is a definite state or an eigenstate (perhaps not normalized) and if the
support is a multiple-element subset of U , then the vector is a superposition or indefinite state. But
now we need to mathematically distinguish between two types of subsets of U , the ordinary ‘discrete
subsets’ S ⊆ U where the elements are perfectly distinct from one another, and the ‘superposition
subsets’, denoted ΣS, where the elements are blobbed or blurred together in an indefinite state
which represents the support of a superposition state in QM.

One way to mathematically distinguish between these two types of subsets is to move from
representing subsets as one-dimensional vectors to using two-dimensional matrices. We start by
using incidence matrices of binary relations. A subset R ⊆ U × U is a binary relation on U and
it can be represented by the n × n incidence matrix In (R) where each entry in the matrix is
In (R)ij = 1 if (ui, uj) ∈ R and otherwise 0. Then for each subset S ⊆ U , we use the diagonal
∆S = {(ui, ui) |ui ∈ S} as the binary relation to represent the discrete subset S and we use the
Cartesian product S × S as the binary relation to represent the superposition subset ΣS. Then for
U = {a, b, c}, the subset {a, c} gives the two incidence matrices:

In (∆S) =

1 0 0
0 0 0
0 0 1

and In (S × S) =

1 0 1
0 0 0
1 0 1

.
The matrix In (∆S) is always a diagonal matrix and In (S × S) has the same diagonal but also has
non-zero off-diagonal elements to indicate which elements of U are blobbed, blurred, or cohered
together in the superposition subset ΣS. In the case of a singleton S = {ui}, then the superposition
set is the same as the discrete set since there are no multiple elements to blob together in an indefinite
state, and, accordingly, ∆S = S × S in the case of singletons.

The inner product of a 1×n row vector and a n× 1 column vector is a 1× 1 scalar number, but
the outer product (reverse order) of a n× 1 column vector and a 1× n row vector is a n× n matrix.
A better way to construct the matrix representation In (S × S) of the superposition set ΣS is the
outer product of the column vector representing S (with column entries χS (ui)) and its transpose
row vector. For instance, for S = {a, c} in the example,10

1

 [
1 0 1

]
=

1 0 1
0 0 0
1 0 1

 = In (S × S).

If the column vector representing S is written as a ‘ket’ |S⟩ and its transpose as the ‘bra’ ⟨S|, then
|S⟩ ⟨S| = In (S × S).

To bring density matrices from QM into the pedagogical model, we allow the matrix entries to
be real numbers. Then by dividing |S⟩ ⟨S| = In (S × S) through by its trace (= sum of the diagonal
elements), we arrive at the density matrix representation ρ (ΣS) of ΣS which in the example is:

ρ (ΣS) =

 1
2 0 1

2
0 0 0
1
2 0 1

2

.
Moreover, if we normalize |S⟩ as |s⟩ = 1√

|S|
|S⟩, then we obtain the important formula for the density

matrix of superposition sets:

ρ (ΣS) = |s⟩ ⟨s|.
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8 Probabilities and the Born rule

The diagonal entries in a density matrix are always non-negative and sum to one so they should
be seen as probabilities. Let the universe set U = {u1, ..., un} have the (always positive) point
probabilities p = (p1, ..., pn). For a partition π = {B1, ..., Bm} on U , the blocks are always viewed as
superposition sets so we can construct their density matrix (over the reals) ρ (ΣBj) = |bj⟩ ⟨bj | from
the normalized column vector |bj⟩ whose ith entry is the ‘amplitude’

√
pi/Pr (Bj) if ui ∈ Bj and 0

otherwise.
There has been some controversy in QM about the origin of the Born rule. Does it follow from

other assumptions of QM or must it be an extra postulate? One way to approach that question
is to ask: what is the simplest mathematical framework in which the Born rule appears? We have

seen in QM/Sets that: Pr (ui|S) = |{ui}∩S|
|S| in the case of equal probabilities. In the general case of

point probabilities, the conditional probability is Pr (ui|S) = pi
Pr(S)χS (ui). Taking S = Bj , we have:

ρ (ΣS) = |s⟩ ⟨s| where the ith entry of |s⟩ is ⟨ui|s⟩ =
√

pi
Pr(S)χS (ui) and then we immediately have:

⟨ui|s⟩2 = pi
Pr(S)χS (ui) = Pr (ui|S) = |{ui}∩S|

|S|
The Born rule.

The square in the Born rule comes from taking the representation of a superposition set as the two-
dimensional ρ (ΣS) obtained as the outer product |s⟩ ⟨s| of the one-dimensional ‘amplitude’ vector
|s⟩ with its (conjugate) transpose ⟨s|. Thus |s⟩ corresponds to the state vector |ψ⟩ of amplitudes in
QM such that the density matrix representation of that state vector is: ρ (ψ) = |ψ⟩ ⟨ψ|. The Born
rule in QM is that the probability of getting |ui⟩ in a maximal measurement of |ψ⟩ is the absolute

square |⟨ui|ψ⟩|2 (where {|ui⟩}ni=1 is the orthonormal measurement basis). Tracing the origin of the
Born rule back to the simplest example in QM/Sets (enriched with density matrices), we see that
it arises out of superposition–which should be no surprise since “ superposition, with the attendant
riddles of entanglement and reduction, remains the central and generic interpretative problem of
quantum theory.” [6, p. 27]

Returning to ρ (ΣBj)ik =
√
pipk

Pr(Bj)
if ui, uk ∈ Bj , and otherwise 0, the density matrix ρ (π) for the

partition π is the probabilistic sum of the ρ (ΣBj) for the probabilities Pr (Bj) =
∑
ui∈Bj

pi:

ρ (π) =
∑m
j=1 Pr (Bj) ρ (ΣBj) =

∑m
j=1 Pr (Bj) |bj⟩ ⟨bj |.

Then ρ (π)ik =
√
pipk if (ui, uk) ∈ indit (π), and 0 otherwise. Thus the non-zero entries of ρ (π)

represent the equivalence relation indit (π) and the zero entries represent the ditset dit (π). Those
non-zero off-diagonal entries represent the superposition of the corresponding diagonal entries and
hence “the off-diagonal terms of a density matrix ... are often called quantum coherences because
they are responsible for the interference effects typical of quantum mechanics that are absent in
classical dynamics.” [2, p. 177]

As in QM, in QM/Sets we say that a density matrix ρ is a pure state if it is idempotent, i.e.,
ρ2 = p, and otherwise a mixed state. All the density matrices ρ (ΣBj) represent pure states. The
only partition as a whole in Π (U) that represents a pure state is the indiscrete partition 0U ; all the
other partitions π ∈ Π(U) represent mixed states.

For example, consider U = {a, b, c} with the point probabilities p = (pa, pb, pc) =
(
1
2 ,

1
3 ,

1
6

)
.

Then for the partition π = {B1, B2} = {{a, c} , {b}}, the superposition state {a, c} is represented by

the pure state density matrix |b1⟩ ⟨b1| where |b1⟩ =
[√

1/2
2/3 , 0,

√
1/6
1/3

]t
=

[√
3
2 , 0,

1
2

]t
:

ρ (Σ {a, c}) = |b1⟩ ⟨b1| =


√
3
2
0
1
2

[√
3
2 , 0,

1
2

]
=

 3
4 0

√
3
4

0 0 0√
3
4 0 1

4
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and

ρ (π) =
∑2
j=1 Pr (Bj) ρ (ΣBj) =

2
3

 3
4 0

√
3
4

0 0 0√
3
4 0 1

4

+ 1
3

0 0 0
0 1 0
0 0 0

 =

 1
2 0 1

2
√
3

0 1
3 0

1
2
√
3

0 1
6

.
The indit set of π is indit (π) = {(a, a) , (b, b) , (c, c) , (a, c) , (c, a)} which corresponds to the non-zero
entries in ρ (π) and the ditset is dit (π) = {(a, b) , (b, a) , (b, c) , (c, b)} which corresponds to the zeros
in ρ (π).

In general for an partition π on U , the diagonal entries are the point probabilities and the
eigenvalues of ρ (π) are the block probabilities and zeros, i.e., Pr (B1) , ...,Pr (Bm) , 0, ..., 0 (with
n−m zeros).

9 Projective measurement

By enriching the QM/Sets model with these density matrices over the reals, we can deal with any
point probabilities on U and have simplified models of a broader range of results in QM such as
projective measurement.

A measurement (always projective) in QM turns a pure state into a mixed state (or a mixed
state into a more mixed state) according to the Lüders mixture operation ([25]; [2, p. 279]) and then
one of the states in the mixture is realized according to their probabilities. We take ρ (π) as the state
being measured. The measurement observable is given by a numerical attribute g : U → R whose
inverse-image partition is g−1 =

{
g−1 (s)

}
s∈g(U)

. The n×n projection matrix Pg−1(s) is the diagonal

matrix with the diagonal entries χg−1(s) (ui). Then the density matrix ρ (π) being measured is pre-
and post-multiplied by those projection matrices and then summed to give the post-measurement
density matrix ρ̂ (π):

ρ̂ (π) =
∑
s∈g(U) Pg−1(s)ρ (π)Pg−1(s)

Lüders mixture operation.

Continuing the example, let g (a) = 1 and g (b) = g (c) = 2 so that g−1 = {{a} , {b, c}}. Then
the Lüders calculation is:

ρ̂ (π) =

1 0 0
0 0 0
0 0 0

 1
2 0 1

2
√
3

0 1
3 0

1
2
√
3

0 1
6

1 0 0
0 0 0
0 0 0

+

0 0 0
0 1 0
0 0 1

 1
2 0 1

2
√
3

0 1
3 0

1
2
√
3

0 1
6

0 0 0
0 1 0
0 0 1


=

 1
2 0 0
0 1

3 0
0 0 1

6

 = ρ (1U ).

In this case, the more-mixed state is the density matrix for the discrete partition 1U . This measure-
ment operation is illustrated in Figure 3 where the change from ρ (π) to ρ̂ (π) is indicated by the
arrow from π to 1U . That movement from an indefinite state to a more definite state, like the arrow
in Figure 3, is the skeletal representation of the infamous quantum jump in full QM.
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Figure 3: Illustration of measurement as a join operation

It is easily shown in the general case [13], that:

ρ̂ (π) = ρ
(
π ∨ g−1

)
,

namely, that in QM/Sets, the projective measurement operation is just the partition join where one
partition represents the state being measured and the other partition represents the measurement
observable or numerical attribute.

10 Logical entropy

There is a natural notion of ‘classical’ and quantum entropy based on the notion of information
as distinctions or distinguishings. As Charles Bennett, one of the founders of quantum information
theory put it, “information really is a very useful abstraction. It is the notion of distinguishability
abstracted away from what we are distinguishing, or from the carrier of information....” [4, p. 155]
Ordinary logic is based on the Boolean logic of subset (usually presented in the special case of
propositional logic). The notion of a subset is category-theoretically dual to the notion of a partition,
and there is a dual logic of partitions [12]. The quantitative version of Boole’s logic of subsets started

as finite ‘logical’ probability theory [5] with equiprobable outcomes, i.e., Pr (S) = |S|
|U | , the normalized

number of elements in a subset or event. In the duality between subsets and partitions, distinctions
of a partition are dual to elements of a subset. Hence the quantitative notion of a partition is the
normalized number of distinctions and that is the first definition of logical entropy ([11]; [26]) with
equiprobable outcomes:

h (π) = |dit(π)|
|U×U | =

|U×U−Σj(Bj×Bj)|
|U×U | = 1−

∑
j

(
|Bj |
|U |

)2

= 1−
∑
j Pr (Bj)

2

where Pr (Bj) =
|Bj |
|U | in this equiprobable case. In the general case of point probabilities, Pr (Bj) =∑

ui∈Bj
pi and

h (π) = 1−
∑
j Pr (Bj)

2
=

∑
j ̸=j′ Pr (Bj) Pr (Bj′)

where the last equation holds since 1 =
(∑m

j=1 Pr (Bj)
)2

=
∑
j Pr (Bj)

2
+

∑
j ̸=j′ Pr (Bj) Pr (Bj′).

The logical entropy has a natural interpretation; just as Pr (S) =
∑
ui∈S pi is the probability

that one draw from U will yield an element of S, so h (π) is the probability that two random draws
from U with yield a distinction of π. The information in a partition π is reproduced in the density
matrix ρ (π), and the logical entropy can thus be calculated in terms of the density matrix:

h (π) = 1−
∑
j Pr (Bj)

2
= 1− tr

[
ρ (π)

2
]
= h (ρ (π))

i.e., as one minus the trace (sum of diagonal elements) of the density matrix squared–which is the

matrix version of 1−
∑
j Pr (Bj)

2
.

For our purposes at hand, the important thing is that logical entropy measures the increase
in information-as-distinctions that takes place in projective measurement. In general, the ditset of
a join is just the union of the ditsets of two partitions, i.e., dit (π ∨ σ) = dit (π) ∪ dit (σ). Thus
projective measurement will in general increase the logical entropy of the state being measured.
And since logical entropy is based on information-as-distinctions and the density matrix represents
distinctions as the zero entries, the increase in logical entropy can be calculated directly from the
new zero entries in the post-measurement density matrix ρ̂ (π) compared to pre-measurement ρ (π).
The “Measuring measurement theorem” in both the simplified pedagogical model and in the full
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QM version is that the increase in logical entropy due to a projective measurement is the sum of the
(absolute) squares of the non-zero entries in the pre-measurement density matrix that are zeroed in
the post-measurement density matrix.

In the example, the two logical entropies are:

h (ρ (π)) = 1− tr
[
ρ (π)

2
]
= 1− tr


 1

2 0 1
2
√
3

0 1
3 0

1
2
√
3

0 1
6

2 = 1− tr


 1

3 0
√
3
9

0 1
9 0√

3
9 0 1

9


 = 1− 5

9 = 4
9 and

h (ρ̂ (π)) = 1− tr [ρ̂ (π)] = 1− tr


 1

2 0 0
0 1

3 0
0 0 1

6

2
 = 1− tr

 1
4 0 0
0 1

9 0
0 0 1

36

 = 1− 14
36 = 11

18 .

In the transition from ρ (π) to ρ̂ (π), only two entries of 1
2
√
3
were zeroed so the sum of their squares

is 2
12 = 1

6 and the increase in logical entropy is h (ρ̂ (π)) − h (ρ (π)) = 11
18 − 8

18 = 3
18 = 1

6 .✓ These
results in QM/Sets enriched with density matrices are the simplified version of the corresponding
results in full QM [11, p. 83].

11 Quantum processes

John von Neumann famously divided quantum processes into two types. Type I was the process of
measurement which we have seen involves the making of distinctions to transform an indefinite state
into a more definite state. This is the quantum notion of “becoming.” The Type II processes were
the solutions to the time-dependent Schrödinger equation. But how might the Type II processes be
characterized using the notion of information-as-distinctions? Since the Type I processes make dis-
tinctions, the simplest description of Type II processes would be ones that do not make distinctions.
The extent to which two normalized states |ψ⟩and |ϕ⟩ in QM are distinguished is given by their
inner product ⟨ϕ|ψ⟩; if ⟨ϕ|ψ⟩ = 0, they are maximally distinct (i.e., orthogonal) and if ⟨ϕ |ψ|⟩ = 1,
they cannot be distinguished. Hence the natural description of Type II processes are ones that don’t
change the distinctness of quantum states, i.e., that preserve the inner product which are the uni-
tary transformations. The connection to the solutions of Schrödinger’s equation is given by Stone’s
Theorem [34].

One of the controversial aspects of the Type I measurement process is its indeterminancy. The
Lüder mixture operation turns a pure (or mixed) state being measured into a mixed (or more
mixed) state and then one of the states in the mixture occurs according to its probability. The
transformation from the pre-measurement state to the post-measurement state is not unitary; it is
a “state reduction.”3 In the previous example in QM/Sets, measurement turned the mixed state
π = {{b} , {a, c}} into the more mixed state 1U = {{a} , {b} , {c}}. There is no indeterminacy in
{b} ⇝ {b}; the indeterminacy is in {a, c} ⇝ {a} or {a, c} ⇝ {c}. This indeterminacy comes out
clearly at the set level in the notion of a “choice function” [18, p. 60].4 Given a set of non-empty sets,
a choice function takes each non-empty set to one of its elements. In QM, there is no indeterminacy
in the measurement of an eigenstate in the measurement basis; the result is that eigenstate with
probability one. Similarly, there is no indeterminacy in a choice function applied to a singleton,
e.g., {b} ⇝ {b}. The indeterminacy arises in set theory only when the choice is made out of a
multiple-element set, e.g., {a, c} ⇝ {c}.5 Similarly, the indeterminacy arises in QM only when the
measurement is made of a state that is a superposition (in the measurement basis). Perhaps this is

3It is known in misleading and archaic language as “collapse of the wave packet”.
4In axiomatic set theory, the axiom of choice states that for any set of non-empty sets, there is a choice function

for it.
5This indeterminacy can be seen as the basic reason why the Axiom of Choice has to be added as an independent

axiom in axiomatic set theory.
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a case where the set version of a QM operation helps to remove some of the ‘mystery’, e.g., in what
is called the “collapse postulate.”

What is the QM/Sets version of a unitary transformation since there are no inner products
in vector spaces over finite fields like Z2? A unitary transformation can be defined as a linear
transformation that takes an orthonormal basis to an orthonormal basis. Hence the corresponding
transformation for Zn2 would be a linear transformation that takes a basis set to a basis set–which is
simply a non-singular linear transformation. For instance, using the U -basis and the U ′-basis of Table
1, the transformation defined by {a}⇝ {a′} = {a, b}, {b}⇝ {b′} = {a, b, c}, and {c}⇝ {c′} = {b, c}
is a non-singular linear transformation that takes the U -basis to the U ′-basis. It might be noted that
such non-singular transformations do preserve the value of the brackets when we take into account
their basis-dependency. For instance, if the sets S, T ⊆ U of U -basis elements transform into the
corresponding sets S′, T ′ ⊆ U ′ in the U ′-basis, then ⟨S|UT ⟩ = ⟨S′|U ′T ′⟩. Such non-singular linear
transformations on Zn2 are the QM/Sets version of the Type II quantum processes. The Type I
processes of becoming were represented in a skeletal form on the left-hand side, and the Type II
processes of evolution can be applied to pure or mixed states on the right-hand side in Figure 4.
The arrow on the right-hand side pictures the transformation of the mixed state {{b} , {a, c}} into
the mixed state {{b′} , {a′, c′}} = {{a, b, c} , {a, c}}.

Figure 4: Skeletal representation of Type I and Type II processes using partition lattices

The very important thing to notice about the Type II transformations is that they can operate
on pure state or mixed states involving superpositions like {a, c}; they do not just operate on
fully distinguished states like 1U ⇝ 1U ′ . As we will see in the QM/Sets treatment of the double-
slit experiment, that aspect is the key to understanding how a particle in the superposition state
|Slit 1⟩+ |Slit 2⟩ can evolve without first becoming the more-definite states of |Slit 1⟩ or |Slit 2⟩, i.e.,
can evolve without going through Slit 1 or through Slit 2. And it is that evolution of the superposition
that involves the characteristic interference effects.

12 The double-slit experiment in QM/Sets

We focus on the double-slit experiment since, according to Feynman, “it contains the only mystery”
and it illustrates “the basic peculiarities of quantum mechanics.” [17, sec. 1-1]

To model the essential aspects (and only those aspects), we consider the setup in Figure 5
where the three states in U = {a, b, c} stand for vertical positions. A particle is sent from {b}
towards a screen with two slits in it at positions {a} and {c}. The dynamics is the aforementioned
transformation of the U -basis into the U ′-basis each time period. One time period takes the particle
to the Screen and the next time period takes the particle to the wall.
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Figure 5: Setup for the two-slit experiment model in QM/Sets

In the first time period, the particle evolves {b} ⇝ {b′} = {a, b, c}. One-third of the time the
particle hits the barrier between the slits; we are concerned with the alternative case where the
particle is in the superposition state |Slit 1⟩ + |Slit 2⟩ which in the model is {a, c}. Then there are
two cases to consider: Case 1 of detection at the slits, and Case 2 of no detection at the slits–both
starting with {a, c} at the screen.

Case 1. With detection at the slits, the superposition state {a, c} is reduced to {a} (i.e., going
through Slit 1) with probability 1

2 or to {c}(i.e., going through Slit 2) with probability 1
2 so we have:

Pr ({a} at screen| {a, c}) = 1
2 = Pr ({c} | {a, c}) = |{a}∩{a,c}|

|{a,c}| .

Then in the next time period, we have either {a} evolving to {a′} = {a, b} and hitting the
detection wall at {a} or {b} each with probability 1

2 , or similarly, {c} evolves to {b, c} and hits the
wall at {b} or {c} each with probability 1

2 . Then the computation of the probabilities to reach the
three positions at the wall are as follows:

Pr ({a} at wall| {a, b} at wall) Pr ({a} at screen| {a, c})+Pr ({a} at wall| {b, c} at wall) Pr ({c} at screen| {a, c})
= |{a}∩{a,b}|

|{a,b}|
|{a}∩{a,c}|

|{a,c}| + |{a}∩{b,c}|
|{b.c}|

|{c}∩{a,c}|
|{a,c}| = 1

2 × 1
2 + 0× 1

2 = 1
4 ;

Pr ({b} at wall| {a.b} at wall) Pr ({a} at screen| {a, c})+Pr ({b} at wall| {b, c} at wall) Pr ({c} at screen| {a, c})
= |{b}∩{a,b}|

|{a,b}|
|{a}∩{a,c}|

|{a,c}| + |{b}∩{b,c}|
|{b.c}|

|{c}∩{a,c}|
|{a,c}| = 1

2 × 1
2 + 1

2 × 1
2 = 1

2 ;

Pr ({c} at wall| {b, c} at wall) Pr ({c} at screen| {a, c})+Pr ({c} at wall| {a, b} at wall) Pr ({a} at screen| {a, c})
= |{c}∩{b,c}|

|{b,c}|
|{c}∩{a,c}|

|{a,c}| + |{c}∩{a,b}|
|{a,b}|

|{a}∩{a,c}|
|{a,c}| = 1

2 × 1
2 + 0× 1

2 = 1
4 .

The resulting probability distribution is pictured in Figure 6.

Figure 6: Case 1 of probability distribution of hits at wall from detection at the slits

In Case 1, the detection at the slits forces the state reduction of {a, c} to either {a} (i.e., going
through slit 1) or {c} (i.e., going through slit 2), and then one or the other evolves respectively to
{a′} = {a, b} or {c′} = {b, c}. These state reductions (solid arrows) and evolutions (dashed arrows)
are illustrated in Figure 7.
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Figure 7: State reductions and evolutions in Case 1

Case 2. With no detection at the slits, the superposition state {a, c} evolves as an indefinite or
superposition state since there was no state reduction at the slits. Hence the evolution is:

{a, c}⇝ {a′, c′} = {a′}+ {c′} = {a, b}+ {b, c} = {a, c}.

Then the probability distribution for the hits at the wall are as follows:

Pr ({a} at wall| {a, c} at wall) Pr ({a, c} at wall | {a, c}) = |{a}∩{a,c}|
|{a,c}|

|{a,c}∩{a,c}|
|{a,c}| = 1

2 × 1 = 1
2 ;

Pr ({b} at wall| {a, c} at wall) Pr ({a, c} at wall | {a, c}) = |{b}∩{a,c}|
|{a,c}|

|{a,c}∩{a,c}|
|{a,c}| = 0× 1 = 0;

Pr ({c} at wall| {a, c} at wall) Pr ({a, c} at wall | {a, c}) = |{c}∩{a,c}|
|{a,c}|

|{a,c}∩{a,c}|
|{a,c}| = 1

2 × 1 = 1
2 .

The resulting probability distribution is pictured in Figure 8.

Figure 8: Case 2 of probability distribution of hits at wall with no detection at the slits

Figure 8 shows the stripes characteristic of the interference pattern, i.e., {a, b} + {b, c} = {a, c},
resulting from no detection at the slits.

The hardest point to understand is that our classical intuitions insist that the particle has to go
through Slit 1 or Slit 2 (which would yield the Figure 6 distribution of hits) but the distribution is as
in Figure 8 showing the stripes resulting from interference. The problem with our classical intuitions
is that they operate at the classical level of all states being distinguished from each other (i.e., no
superpositions) so one or the other of the distinguished states “going through Slit 1” and “going
through Slit 2” has to occur. In the quantum notion of becoming, states are constructed from below,
as it were, by making distinctions to go from indefinite to more definite states. But the indefinite
state {a, c} was not distinguished in Case 2. The classical level evolution of the distinguished states
that do not occur in Case 2 is marked with an X in Figure 9. As Richard Feynman put it: “We
must conclude that when both holes are open it is not true that the particle goes through one hole
or the other.” [14, p. 536]
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Figure 9: The evolution of distinguished states {a} or {c} does not occur in Case 2

But with no distinguishing at the slits in Case 2, it is the non-classical superposition state |Slit 1⟩+
|Slit 2⟩, or {a, c} in the model, that evolves which incurs the cancellation in the linear non-singular
transformation resulting in the interference stripes of Figure 8:

{a, c} = {a}+ {c}⇝ {a′}+ {c′} = {a, b}+ {b, c} = {a, c}.

That is how the particle can ultimately hit the wall without going through one of the slits, i.e.,
without the state reductions {a, c} ⇝ {a} (going through slit 1) or {a, c} ⇝ {c} (going through
slit 2). Feynman considers the essential point in the “uncertainty principle” (better called the “in-
determinacy principle”) that distinguishing between the alternatives in an interaction involving a
superposition will wipe out any interference effects, i.e., will give Case 1 instead of Case 2.

We shall state the uncertainty principle as follows: Any determination of the alternative
taken by a process capable of following more than one alternative destroys the interference
between alternatives. [16, p. 9]

The lattice of partitions gives a skeletal representation of rising levels of definiteness going from
the bottom to the top. The top represents the fully definite or distinguished states. In Case 2,
the evolution takes place at a lower level, a level of indefiniteness where those states {a, c} are
not distinguished. In classical physics, all states are distinguished so classical evolution always take
definite states to definite states (as in the evolution marked by X in Figure 9). Here we see, in terms
of the simplified model, the answer to the key question: “How does the particle get to the detection
wall without passing through slit 1 or slit 2?”.

13 The Feynman rules

The formulation of QM that shows the fundamental role of distinctions or distinguishings was
developed by Richard Feynman [16] who encapsulated the rules for working with amplitudes in the
“Feynman rules” [33, pp. 314-5] such as the one involved in analyzing the double-slit experiment.

The probability of an event (in an ideal experiment where there are no uncertain external
disturbances) is the absolute square of a complex quantity called the probability ampli-
tude. When the event can occur in several alternative ways the probability amplitude
is the sum of the probability amplitude for each alternative considered separately.... If
an experiment capable of determining which alternative is actually taken is performed
the interference is lost and the probability becomes the sum of the probability for each
alternative. [14, p. 538]

John Stachel gives the application to the double-slit experiment.
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Feynman’s approach is based on the contrast between processes that are distinguishable
within a given physical context and those that are indistinguishable within that context.
A process is distinguishable if some record of whether or not it has been realized results
from the process in question; if no record results, the process is indistinguishable from
alternative processes leading to the same end result. In my terminology, a registration of
the realization of a process must exist for it to be a distinguishable alternative. In the two-
slit experiment, for example, passage through one slit or the other is only a distinguishable
alternative if a counter is placed behind one of the slits; without such a counter, these
are indistinguishable alternatives. Classical probability rules apply to distinguishable
processes. Nonclassical probability amplitude rules apply to indistinguishable processes.
[33, p. 314]

In QM/Sets, the ‘amplitudes’ are given by the vectors in the vector space over Z2 where the
cancellations occur, e.g., {a, b} + {b, c} = {a, c}, in the non-distinguished Case 2, and then the
probabilities are computed from the resulting amplitudes by the Born rule. In the distinguished
Case 1, the probabilities from the distinct alternatives are added, e.g., the probabilities of the two
distinct ways of {a, c} at the screen eventually resulting in {b} at the wall are added:

Pr ({b} at wall| {a.b} at wall) Pr ({a} at screen| {a, c}) +
Pr ({b} at wall| {b, c} at wall) Pr ({c} at screen| {a, c}) = 1

2
1
2 + 1

2
1
2 = 1

2 .

By following the Feynman rules, probabilities can be computed without “being confused by
things such as the ‘reduction of a wave packet’ and similar magic.” [15, p. 76] Using the rules
to calculate probabilities, of course, does not eliminate state reductions since “a registration of
the realization of a process must exist for it to be a distinguishable alternative.” [33, p. 314] The
point is what causes the state reduction, namely the distinguishability of the previously superposed
alternatives undergoing an interaction.

14 Weyl’s use of the Yoga

In his popular writing about QM, Arthur Eddington used the notion of a sieve.

In Einstein’s theory of relativity the observer is a man who sets out in quest of truth
armed with a measuring-rod. In quantum theory he sets out armed with a sieve. [9, p.
267]

Hermann Weyl quotes Eddington about the idea of a sieve which Weyl calls a “grating.” [36, p.
255] Weyl then in effect uses the Yoga of Linearization to develop the idea of a grating both as a
set partition (or equivalence relation) and as a vector space direct-sum decomposition (DSD) [36,
pp. 255-257]. He starts with a numerical attribute, e.g., g : U → R, which defines a partition on
a set or “aggregate [which] is used in the sense of ‘set of elements with equivalence relation’.” [36,
p. 239] Then he goes to the quantum case where the “aggregate of n states has to be replaced by
an n-dimensional Euclidean vector space” [36, p. 256. ”Euclidean” is older terminology for an inner
product space.]. He describes the vector space notion of a grating as the “splitting of the total vector
space into mutually orthogonal subspaces” so that “each vector −→x splits into r component vectors
lying in the several subspaces” [36, p. 256], i.e., a direct-sum decomposition of the space. Finally
Weyl notes that “Measurement means application of a sieve or grating” [36, p. 259]. In Figure 10,
this idea of measurement as a superposition state passing through a grating or sieve is illustrated (on
the left side) along with a similar image (on the right side) where no distinctions or distinguishings
take place so there is no measurement.
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Figure 10: Visual illustration of Feynman’s rule with measurement seen as applying a grating

The doughball-shaped figure at A visually illustrates the superposition of the definite-shapes in
the left-side grating. As the doughball falls through one of the holes, it “collapses” or reduces from
its indefinite or superposition state to one of the definite states. To get the total probability of going
from A to B, one has to add the three probabilities of each distinguishable path from A to B. On
the right-side of Figure 10, no distinctions are made at a ‘null-grating’ so the amplitudes to go from
A to B are added and the (absolute) square gives the probability.

15 Metaphors for the quantum world

There are a number of (always imperfect) metaphors that might help to better visualize the quantum
world as opposed to the classical world of fully definite or distinguished states.

• Flipping through a police mugbook, going from one definite face to another, is like change
in classical physics going from one definite state to another. There is no ‘becoming’ in the
classical world; all states are fully definite.

• A police sketchpad illustrates Type I quantum becoming starting from an indefinite picture of
a face and changing by witness in-form-ation to a more distinct and realistic face.

• Similarly, the painter starts with a white (= superposition of all colors) canvas and then
becomes a painting as white spaces are ‘collapsed’ into definite colors.

• Perhaps another metaphor for Type I process of becoming is the modern process of 3D printing.
The object is constructed or printed from below and becomes more definite as more layers are
printed.

Werner Heisenberg, in his more popular writings, was fond of formulating his philosophical
thinking in terms of ancient Greek philosophy, e.g., the Aristotelian notions such as substance and
form. “Just as the Greeks had hoped, so we have now found there is only one fundamental substance
of which all reality consists. If we have to give this substance a name, we can only call it ‘energy.’
But this fundamental ‘energy’ is capable of existence in different forms.” [20, p. 116] He saw this
energy-substance as “a kind of indefinite corporeal substratum, embodying the possibility of passing
over into actuality by means of the form.” [21, p. 148] This is a fine description of the Type I
process of quantum becoming more definite through in-form-ing the substance with information-as-
distinctions, illustrated on the right side of Figure 11, by moving up the lattice of partitions from the
pure unformed substance of the indiscrete partition at the bottom eventually to the fully in-formed

21



discrete partition at the top. Given the duality of elements and distinctions, the quantum notion of
becoming could be juxtaposed to the dual notion of becoming, illustrated on the left side of Figure
11, of moving from the bottom to the top of the Boolean lattice of subsets by the ex-nihilo creation
of fully-formed elements of substance.

Figure 11: The two dual notions of becoming

In the partition notion of becoming (Type I process), a quantum state π is informed by the
information-as-distinctions of an observable g−1 to create the more-definite state of π∨g−1 with the
new distinctions of dit

(
g−1

)
− dit (π).6

Yet another metaphor is provided by Edwin Abbott’s Flatland fantasy [1] where creatures
living in a two-dimensional world (like the classical world) find changes brought about using the
third dimension (like the quantum world) to be unintuitive, if not incomprehensible.7 In the two-
dimensional world, consider Hegel’s Owl of Minerva, who only flies at night [19, p. 13], at point A
facing a fence with two gates or slits in it. During the daytime, one can see (like detection at the
slits in the double-slit experiment) which gate the Owl has to walk through to get to point B on the
other side as illustrated in Figure 12.

Figure 12: With measurement at the gates, the Owl of Minerva has to go through one gate or the
other

But at nighttime, it is like having no detection or observation at the slits in the double-slit
experiment, then the Owl has access to another realm of travel (like evolution in the quantum
world) to get from A to B–as illustrated in Figure 13.

6In cosmology, starting with the perfect symmetry [28] of the pre-Big Bang state, distinctions are created by
symmetry-breaking.

7Kastner [24] uses the flatlander metaphor to make similar points.
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Figure 13: The Owl of Minerva takes advantage of the extra dimension to get from A to B

Our classical-world intuitions correspond to the flatlander’s intuitions that the Owl has to go
through one gate or the other to get from A to B.

16 Discussion and conclusions

16.1 Whither waves?

This introduction8 to QM/Sets (including its density matrix enrichment) raises some interesting
questions that go far beyond its pedagogical use.

For many years, quantum mechanics was called “wave mechanics”–although this usage is now
largely in a welcome decline. The mathematics of QM is quite distinctive when compared to classical
mechanics. But one must differentiate between the aspects of QM math that are essential and
those that are more ‘incidental.’ One distinctive feature is that QM mathematics is formulated in
Hilbert spaces over the complex numbers. One might say the reason for this is that the complex
numbers are algebraically complete so that all observable operators will have a full set of eigenvectors.
‘Coincidentally’, as it were, the complex numbers are the natural mathematics to describe waves,
i.e., each complex number in its polar representation has an amplitude and a phase. Hence QM
mathematics abounds in wave-like machinery such as the Schrödinger wave equation and its wave-
function solutions. Yet, quantum theorists have largely given up on seeing the wave function as
a physical or ontic wave; it is only a “probability wave,” a computational device that allows the
computation of probabilities by the Born rule.9 As Feynman noted: “it must be emphasized that
the wave function that satisfies the equation is not like a real wave in space; one cannot picture
any kind of reality to this wave as one does for a sound wave.” [17, sec. 3.7] In this respect, the
classroom ripple-tank model of the two-slit experiment is seriously misleading. Those water waves
are matter waves; the ‘waves’ of the wave function are not. Moreover, in the absence of detection at
the slits, the particle does not “go through both slits” (like ‘the wave’ is pictured as doing); instead
the superposition evolves at a non-classical level of indefiniteness. The treatment of the double-slit
experiment in QM/Sets explains the results without using the misleading mathematical machinery
of waves–machinery that is necessarily there when working in a vector space over C instead of Z2.
Instead of the so-called “wave-particle duality,” a quantum particle is in an indefinite superposition
state or is in a definite- or eigen-state.

8Other applications include Bell’s Theorem. A treatment of Bell’s Theorem [7] intended for a popular audience
can be reworked into QM/Sets. Still more applications include the treatment of indistinguishable particles and group
representation theory. [13]

9Given these misleading aspects of so-called “wave mechanics,” Einstein’s famous saying that the “The Lord is
subtle, but not malicious” may need to be nuanced. If not malicious, He at least seems to be a trickster.
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I want to emphasize that light comes in this form–particles. It is very important to know
that light behaves like particles, especially for those of you who have gone to school,
where you were probably told something about light behaving like waves. I’m telling you
the way it does behave–like particles. [15, 15]

The wavy mathematics is, of course, necessary in full QM over C, but we have seen how so
much of the essential structure and relationships (e.g., double-slit experiment) can be expressed in
the simplified model of QM/Sets without any wave-math whatsoever. That gives some evidence as
to what is essential and what is incidental (as it were) in the QM mathematics.

16.2 Ontological intimations

The simplified model (QM/Sets extended with density matrices) is “Exhibit A” in the thesis [13] that
the distinctive mathematics of QM10 is the Hilbert space version of the mathematics of partitions–
with the Yoga of Linearization providing the main bridge from partition math to QM math. The
century-old problem with quantum mechanics is seeing the nature of the quantum level reality that
the theory seems to describe so well. Yet we know what the mathematical notion of a partition or
equivalence relation describes, namely what is described in different vocabularies as:

• distinctions versus indistinctions,

• definiteness versus indefiniteness, and

• distinguishability versus indistinguishability.

Hence the simplified model using partition math intimates that quantum reality is characterized
by the presence of indistinctions, indefiniteness, and indistinguishability, i.e., superpositions.

One way to see this is to consider the various metaphysical characterization of the world of
classical physics. That classical world is seen to be ‘definite all the way down’ in the sense that
by digging deep enough (i.e., by taking more and more joins of partitions), there is always some
attribute to distinguish different entities (i.e., the different entities end up in different blocks of a
partition). If there was no attribute to distinguish two seemingly different entities, then they were
the same entity. This was expressed in Leibniz’s Principle of Identity of Indistinguishables (PII) [3,
Fourth letter, p. 22].

The simplified model provides a ‘skeletal’ model of both classical and quantum reality in the
partition lattice (e.g., Figures, 2, 3, 4, 7, and 9). Using an iceberg metaphor, the tip of the iceberg [23,
p. 3] above the water represents the classical world with the unseen quantum world under the water.
In the lattice of partitions, the “tip of the iceberg” is the top of the lattice, the discrete partition
1U , with only singleton blocks and thus fully distinguished or classical states with no superposition.
Accordingly, the discrete partition gives the partition logic version of the PII as the characteristic
of classicality:

If u, u′ ∈ indit (1U ), then u = u′

Partition logic Principle of Identity of Indistinguishables.

That is, if u and u′in U are indistinguishable by the discrete partition, then they are the same
element of U . Mathematically, this is trivial since indit (1U ) = ∆ = {(ui, ui)}ui∈U . Every other
partition π has some multiple-element block so PII fails for it indicating its quantum nature as a
mixed or pure state containing at least one superposition state. In terms of density matrices, the
classical states are represented by diagonal density matrices with no non-zero off-diagonal elements.

10We are ‘cutting at the joints’ between the math and the physics of QM. The physics of QM involves Planck’s
constant which accordingly has no role in QM/Sets based on the distinctive mathematics of QM.
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In quantum physics, reality is not definite all the way down, so even when a definite state is
maximally specified by a CSCO, there is no further specification to distinguish quantum particles
(bosons) which have that same state.

In quantum mechanics, however, identical particles are truly indistinguishable. This is
because we cannot specify more than a complete set of commuting observables for each
of the particles; in particular, we cannot label the particle by coloring it blue. [29, p. 446]

Heisenberg [21], Shimony [32], Kastner [23], and many others have described a quantum-level
world in terms of real potentialities, and Margenau [27] and Hughes [22] have described such a world
in terms of latencies. In both cases, the potentialities and latencies are realized by the actual out-
come in a measurement. But in all the cases, the other characteristic of the potentiality-latency view
of the quantum world is the indefiniteness of superpositions. Even the non-philosophical practicing
quantum physicist recognizes that a superposition in the measurement basis does not have a definite
value prior to measurement. The potentiality-latency approach reformulated in terms of indefinite-
ness plus the widespread recognition of superpositions having indefinite values prior to measurement
point to the dominant characteristic of the quantum world, objective indefiniteness.

From these two basic ideas alone – indefiniteness and the superposition principle – it
should be clear already that quantum mechanics conflicts sharply with common sense. If
the quantum state of a system is a complete description of the system, then a quantity
that has an indefinite value in that quantum state is objectively indefinite; its value is not
merely unknown by the scientist who seeks to describe the system. Furthermore, since
the outcome of a measurement of an objectively indefinite quantity is not determined
by the quantum state, and yet the quantum state is the complete bearer of information
about the system, the outcome is strictly a matter of objective chance – not just a matter
of chance in the sense of unpredictability by the scientist. Finally, the probability of each
possible outcome of the measurement is an objective probability. Classical physics did
not conflict with common sense in these fundamental ways. [31, p. 47]

The simplified pedagogical model allows us to use the lattice of partitions to attach an intuitive
image to the classical world of fully distinguished states and the quantum ‘underworld’ of indefinite
states–as in Figure 14. This model uses the lattice of partitions on the four state universe U =
{a, b, c, d} where we have used a shorthand notation of removing the innermost curly brackets so
the partition {{a, b} , {c, d}} is represented simply as {ab, cd}. The logical entropies are for the
equiprobable case and show how logical entropy, as the measurement of information-as-distinctions,
increases as more distinctions are made moving up in the lattice.

Figure 14: The classical and quantum worlds skeletally represented in a partition lattice.
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The fact that the simplified model ‘works’ is corroboration for the thesis that the mathematical
machinery of full QM is the Hilbert space version of the mathematics of partitions that is expressed
in the model [13], and that view of the quantum world as ‘Indefinite World’ is also the Objective
Indefiniteness Interpretation of Quantum Mechanics.
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