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Abstract

The Born Rule plays a critical role in quantum mechanics (QM) since it supplies the link between the mathematical

formalism and experimental results in terms of probabilities. The Born Rule does not occur in ordinary probability

theory. Where then does it come from? This has been a topic of considerable controversy in the literature. We take the

approach of asking what is the simplest extension of ordinary probability theory where the Born rule appears. This is

answered by showing that the Born Rule appears by adding the notion of superposition events (in addition to the

ordinary discrete events) to finite probability theory. Hence the rule does not need any physics-based derivation. It is

simply a feature of the mathematics of superposition when only superposition events are added to ordinary probability

theory.
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1. Introduction

In quantum mechanics (QM), the Born Rule provides the all-important link between the mathematical formalism (e.g., the

wave function) and experimental results in terms of probabilities. The rule does not occur in ordinary classical probability

theory. Where does the Born Rule come from? Can it be derived from the other postulates of QM or must it be assumed

as an additional postulate? There is a vast and sophisticated literature debating these questions--see [1] and [2] and the

articles cited therein.

In this paper, a different approach is taken. What is the simplest extension to classical probability theory where the Born

Rule appears? We expand ordinary finite probability theory by introducing superposition events in addition to the usual

discrete events (subsets of the outcome space) and then we show that the Born Rule naturally arises in the mathematics

of superposition events. A superposition event is a purely mathematical notion--although obviously inspired by the notion

of a superposition state in quantum mechanics. As a mathematical notion, it could have been (but was not) introduced

centuries before QM. The thesis is that the Born Rule is not a bug that needs to be “explained” or “justified”; it is just a

feature of the notion of a superposition event in this minimally expanded probability theory.

2. Superposition events

In classical finite probability theory, the outcome} (or sample) space is a set U = u1, . . . , un  with point probabilities 

p = p1, . . . , pn . An (ordinary) event S is a non-empty subset S ⊆ U. In an (ordinary) event S, the atomic outcomes or

elements of S are considered as perfectly discrete and distinguished from each other; in each run of the “experiment” or

trial, there is the probability Pr (S) occuring and the probability Pr (T |S) of an event T ⊆ U occurring given the S occurs

(including the case of a specific outcome T = ui ).

The intuitive idea of the corresponding superposition state, denoted ΣS, is that the outcomes in the state are not

distinguished but are blobbed or cohered together as an indefinite event. In each run of the “experiment” or trial

conditioned on ΣS, the indefinite state is sharpened to a less indefinite state which is maximally sharpened to one of the

definite outcomes in S. In the case of a singleton event S = ui , the ordinary event S = ui  is the same as the

superposition event ΣS = Σ ui = ui = S. 

For a suggestive visual example, consider the outcome set U as a pair of isosceles triangles that are distinct by the labels

on the equal sides and the opposing angles.
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Figure 1. Set of distinct isosceles triangles

The superposition event ΣU is definite on the properties that are common to the elements of U, i.e., the angle a and the

opposing side A, but is indefinite where the two triangles are distinct, i.e., the two equal sides and their opposing angles

are not distinguished by labels
[3].

Figure 2. The superposition event ΣU.

It might be noted that this notion of superposition and the notion of abstraction are essentially flip-side viewpoints of the

same idea of extracting from a set an entity that is definite on the commonalities of the elements of the set and indefinite

on where the elements differ [4]. The two flip-side viewpoints are like seeing a glass half-empty (superposition) or seeing a

glass half-full (abstraction).

What is a mathematical model that will distinguish between the ordinary event S and the superposition event ΣS? Using n-

ary column vectors in Rn, the ordinary event S could be represented by the column vector, denoted |S⟩, with the ith entry 

χS ui , where χS :U → {0, 1} is the characteristic function for S, i.e., χS(ui) = 1 if ui ∈ S, else 0. But to represent the

superposition event ΣS we need to add a dimension to use two-dimensional n × n matrices to represent the blobbing

together or cohering of the elements of S in the superposition even ΣS.

An incidence matrix for a binary relation R ⊆ U × U is the n × n matrix In(R) where In(R)jk = 1 if uj, uk ∈ R, else 0. The

diagonal ΔS is the binary relation consisting of the ordered pairs ui, ui :ui ∈ S  and its incidence matrix In(ΔS) is the

diagonal matrix with the diagonal elements χS ui . The superposition state ΣS could then be represented as In(S × S),

the incidence matrix of the binary relation S × S ⊆ U × U, where the non-zero off-diagonal elements represent the

equating, cohering, or blobbing together of the corresponding diagonal elements.1 Given two column vectors 

|s⟩ = s1, . . . , sn
t and |t⟩ = t1, . . . , tn

t in Rn (where ()t is the transpose), their inner product is the sum of the products of

the corresponding entries and is denoted ⟨t |s⟩ = (|t⟩)t|s⟩ = ∑n
i=1tisi. Their outer product is the n × n matrix denoted as 

( )

( )
{ ( ) }

( )

( ) ( )
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|s⟩⟨t| =  |s⟩(|t⟩)t. A vector |s⟩ is normalized if ⟨s |s⟩ = 1. That incidence matrix In(S × S) could be constructed as the outer

product |S⟩(|S⟩)t = |S⟩⟨S| = In(S × S).

If we divided In(ΔS) and In(S × S) through by their trace (sum of diagonal elements) |S|, then we obtain two density

matrices ρ(S) =

In (ΔS )
|S |  and ρ(ΣS) =

In (S×S )
|S | =

1

√ |S |
|S⟩⟨S|

1

√ |S |
 over the reals R. In general, a density matrix ρ over the

reals R (or the complex numbers C) is a symmetric matrix ρ = ρt (or conjugate symmetric matrix ρ = ρ∗ t in the case of 

C) with trace tr[ρ] = 1 and all non-negative eigenvalues. A density matrix ρ is pure if ρ2 = ρ, otherwise a mixture.

Consider the partition π = B1, B2 = {{♢,♡}, {♣, ♠}} on the outcome set U = {♣,♢,♡, ♠} with equiprobable outcomes like

drawing cards from a randomized deck. For instance, the superposition event associated with B1 = {♢,♡}, has a pure

density matrix since (rows and columns labelled in the order {♣,♢,♡, ♠}):

ρ ΣB1 =

1

B1

0
1
1
0

0 1 1 0

1

B1
=

1

B1

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

=

0 0 0 0

0

1
2

1
2 0

0

1
2

1
2 0

0 0 0 0

equals its square, but density matrix for the discrete set B1:

ρ B1 =

0 0 0 0

0

1
2 0 0

0 0

1
2 0

0 0 0 0

is a mixture since it does not equal its square.

Intuitively, the interpretation of the superposition event represented by ρ ΣB1 = ρ(Σ{♢,♡}) is that it is definite on the

properties common to its elements, e.g., in this case, being a red suite, but indefinite on where the elements differ. The

indefiniteness is indicated by the non-zero off-diagonal elements that indicate that the diamond suite ♢ is blurred,

cohered, or superposed with the hearts suite ♡ in the superposition state Σ{♢,♡}.

The next step is to bring in the point probabilities p = p1, . . . , pn  where those two real density matrices ρ(S) and ρ(ΣS)

 defined so far correspond to the special case of the equiprobable distribution on S with 0 probabilities outside of S.

3. Density matrices with general probability distributions

( )

{ }

( )
√ | |[ ][ ]
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Let the outcome space U = u1, . . . , un  have the strictly positive probabilities p = p1, . . . , pn . The probability of a

(discrete) subset S is Pr (S) = ∑ui∈Spi and the conditional probability of T ⊆ U given S is: Pr (T |S) =

Pr (T∩S )
Pr (S ) . But we

have now reformulated both the usual discrete event S and the new superposition event ΣS in matrix terms. Hence we

need to reformulate the usual conditional probability calculation in matrix terms and then apply the same matix operations

to define the conditional probabilities for the superposition events.

The density matrix ρ(U) is the diagonal matrix with the point probabilties down the diagonal. Let PS be the diagonal

(projection) matrix with the diagonal entries χS ui . Then Pr (S) can be computed by replacing the summation ∑ui∈Spi

 with the trace formula: Pr (S) = tr[PSρ(U)]. The density matrix ρ(S) for S is defined as the diagonal matrix with diagonal

entries 

pi

Pr (S )  if ui ∈ S, else 0, which yields the mixture density matrix ρ(S) (aside from the case of a singleton S = ui ).

For ρ(S), the eigenvalues are just the conditional probabilities Pr ui |S =

Pr ui ∩S

Pr (S ) =

pi

Pr (S ) χS ui  for i = 1, . . . , n.

Then the conditional probability Pr (T |S) is reproduced in the matrix format as:

Pr (T |S) = tr PTρ(S) .

The previously constructed density matrix ρ(ΣS) =

1

√ |S |
|S⟩⟨S|

1

√ |S |
 was for the special case of equiprobable outcomes. In

the general case of point probabilities, the column vector 

1

√ |S |
|S⟩ is generalized to |s⟩ where the ith entry, symbolized 

ui |s , is 

pi

Pr (S )  if ui ∈ S, else 0, and then ρ(ΣS) = |s⟩⟨s| which is a pure density matrix. For the pure density matrix ρ(ΣS)

, there is one eigenvalue of 1 with the rest of the eigenvalues being zeros (since the sum of the eigenvalues is the trace).

Given just ρ(ΣS), the vector |s⟩ is recovered as the normalized eigenvector associated with the eigenvalue of 1 and 

ρ(ΣS) = |s⟩⟨s|.2

Then applying the same matrix operations to get probabilities as for discrete events, we have Pr (ΣS) = tr PSρ(ΣU)  and:

Pr (ΣT |ΣS) = tr PTρ(ΣS) .

It is the interpretation, not the probabilities, that are different for the two types of events. For discrete events, the given

discrete event S is reduced by conditionizing to the discrete event T ∩ S. For superposition events, the given

superposition event ΣS is sharpened (i.e., made less indefinite) to the superposition event Σ(T ∩ S) with the probability 

Pr (Σ(T ∩ S) |ΣS) = Pr (ΣT |ΣS) given the event ΣS.

A partition π = B1, . . . , Bm  on U is a set of non-empty subsets, called blocks, Bj ⊆ U that are disjoint and whose union

{ } { }

( )

{ }

({ } )
( { } )

( )
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is U. Taking each block Bj = S, then there is the normalized column vector bj  whose ith entry is 

pi

Pr Bj
χBj

ui  and the

density matrix ρ ΣBj = bj bj  for the superposition subset ΣBj. Then the density matrix ρ(π) for the partition π is just

the probability sum of those pure density matrices for the superposition blocks:

ρ(π) =

m

∑
j=1 Pr Bj ρ ΣBj .

The eigenvalues for ρ(π) are the m probabilities Pr Bj  with the remaining n − m values of 0.

Given two partitions π = B1, . . . , Bm  and σ = C1, . . . , Cm′ , the partition π refines the partition σ, written σ ≾ π, if for

each block Bj ∈ π, there is a block Cj′ ∈ σ such that Bj ⊆ Cj′. The partitions on U form a partial order under refinement.

The maximal partition or top of the order is the discrete partition 1U = ui
n
i=1

 where all the blocks are singletons and the

minimal partition or bottom is the indiscrete partition0U = {U} with only one block U. Then the density matrices for these

top and bottom partitions are just the density matrices for the discrete set U and the superposition set ΣU:

ρ 1U = ρ(U) and ρ 0U = ρ(ΣU).

Let us illustrate this result with the case of flipping a fair coin. The classical set of outcomes U = {H, T} is represented by

the density matrix:

ρ(U) =

1
2 0

0

1
2

.

Figure 3. Classical event: trial picks out heads or tails

The superposition event ΣU, that blends or superposes heads and tails, is represented by the density matrix:

| ⟩ √ ( ) ( )
( ) | ⟩⟨ |

( ) ( )
( )

{ } { }

{{ }}

( ) ( )

[ ]
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ρ(ΣU) =

1
2

1
2

1
2

1
2

.

Figure 4. Superposition event: Trial sharpens to heads or tails.

The probability of getting heads in each case is:

Pr (H |ρ(U)) = tr P {H}ρ(U) = tr
1 0
0 0

1
2 0

0

1
2

= tr

1
2 0
0 0

=

1
2

Pr (H |ρ(ΣU)) = tr P {H}ρ(ΣU) = tr
1 0
0 0

1
2

1
2

1
2

1
2

= tr

1
2

1
2

0 0
=

1
2

and similarly for tails. Thus the two conditioning events U and ΣU cannot be distinguished by performing an experiment or

trial that distinguishes heads and tails. This is a feature, not a bug, since the same thing occurs in quantum mechanics.

For instance, a spin measurement along, say, the z-axis of an electron cannot distinguish between the superposition state 
1

√2
(| ↑ ⟩ + | ↓ ⟩) with a density matrix like ρ(ΣU) and a statistical mixture of half electrons with spin up and half with spin

down with a density matrix like ρ(U) [[5], p. 176].3

4. Conclusion: The Born Rule

The Born Rule does not occur in ordinary classical probability theory because that theory does not include superposition

events. When superposition events are introduced into the purely mathematical theory, then the Born Rule naturally

[ ]

[ ] [[ ][ ]] [ ]
[ ] [[ ][ ]] [ ]
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emerges as a feature of the mathematical treatment of superposition.

The pure density matrix ρ(ΣS) can be constructed as the outer product ρ(ΣS) = |s⟩⟨s| where |s⟩ is the n-ary column vector

with the ith entry as ui |s =

pi

Pr (S ) χS ui =

Pr ui ∩S

Pr (S ) . Or starting with the pure density matrix ρ(ΣS), then |s⟩ so that 

ρ(ΣS) = |s⟩⟨s| is obtained as the normalized eigenvector associated with the eigenvalue of 1.

The probability of ui conditioned on the superposition event ΣS is:

Pr Σ ui |ΣS = tr P ui
ρ(ΣS) =

Pr ui ∩ S

Pr (S) .

The point is that this same probability conditioned by the two-dimensional density matrix ρ(ΣS) could also be obtained

from the one-dimensional vector |s⟩ as (where Σ ui = ui ):

ui |s
2 =

pi
Pr (S)χS ui = Pr Σ ui |ΣS = tr P ui

ρ(ΣS) . The Born Rule

The Born Rule does not occur in classical finite probability theory since the events S are all discrete sets that can be

represented by n-ary column vectors. The associated two-dimensional diagonal density matrix ρ(S) is not the outer

product of a one-dimensional vector with itself (except when S is a singleton). To accommodate the notion of a

superposition event ΣS, it is necessary to use two-dimensional density matrices ρ(ΣS) where the non-zero off-diagonal

elements indicate the blobbing or cohering together in superposition of the elements associated with the corresponding

diagonal entries. And mathematically those density matrices ρ(ΣS) can be constructed as the outer product |s⟩(|s⟩)t = |s⟩⟨s|

 of a one-dimensional vector |s⟩ with itself. Then the probability of the individual outcomes ui conditioned by the

superposition event ΣS is given by the Born Rule: Pr Σ ui |ΣS = ui |s
2. Thus the Born Rule arises naturally out of

the mathematics of probability theory enriched by superposition events.4 It does not need any more-exotic or physics-

based explanation. No physics was used in the making of this paper. The Born Rule is just a feature of the mathematics of

superposition.
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Footnotes

1On the universe set U, the binary relation U × U is the universal equivalence relation which equates all the elements of U.

⟨ ⟩ √ ( ) √ ( { } )

( { } ) [ { } ]
({ } )

{ } { }

⟨ ⟩ ( ) ( { } ) [ { } ]

( { } ) ⟨ ⟩
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Thus S × S is the universal equivalence relation on S which equates all its elements.

2This is by the spectral decomposition of that real density matrix as a Hermitian operator.

3In QM, they can only be distinguished by measurement in a different observable basis.

4In the vector spaces over the complex numbers C of quantum mechanics, the square ui |s
2 is the absolute square 

ui |s
2.
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