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Abstract

Finite probability theory is enriched by introducing the mathematical notion (no physics
involved) of a superposition event ΣS–in addition to the usual discrete event S (subset of the
outcome space U = (u1, ..., un)). Mathematically, the two types of events are distinguished using
n×n density matrices. The density matrix ρ (S) for a discrete event is diagonal and the density
matrix ρ (ΣS) is obtained as an outer product |s⟩ ⟨s| of a normalized vector |s⟩ ∈ Rn. Probabili-
ties are defined using density matrices as Pr (T |ρ) = tr [PT ρ] where T ⊆ U and PT is the diagonal
projection matrix with diagonal entries χT (ui). Then for the singleton {ui} ⊆ U , the probabil-
ity of the outcome ui conditioned by the superposition event ΣS is Pr ({ui} |ΣS) = ⟨ui|s⟩2, the
Born Rule. Thus the Born Rule arises naturally from the mathematics of superposition when
superposition events are added to ordinary finite probability theory. No further explanation is
required when the mathematics uses Cn instead of Rn except that the square ⟨ui|s⟩2 is the
absolute square |⟨ui|s⟩|2.
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0.1 Introduction

The purpose of this paper is to expand ordinary finite probability theory by introducing superposition
events in addition to the usual discrete events (subsets of the outcome space) and then to show that
the Born Rule naturally arises mathematically with superposition events. A superposition event or
subset is a purely mathematical notion–although obviously inspired by the notion of a superposition
state in quantum mechanics (QM). As a mathematical notion, it could have been (but was not)
introduced centuries before QM. The thesis is that the Born Rule is not a bug that needs to be
“explained” or “justified”; it is just a feature of the notion of a superposition event in this expanded
probability theory.

0.2 Superposition events

The outcome (or sample) space is a set U = {u1, ..., un} which has point probabilities p = (p1, ..., pn).
An event S is a subset S ⊆ U with the probability Pr (S) =

∑
ui∈S pi. For T ⊆ U , the conditional

probability of T given S is Pr (T |S) = Pr(T∩S)
Pr(S) so the conditional probability of a singleton event

{ui} is Pr ({ui} |S) = pi

Pr(S) if ui ∈ S, else 0.

In an (ordinary) event S, the atomic outcomes or elements of S are considered as perfectly
discrete and distinguished from each other; in each run of the “experiment” or trial conditioned on
S, one of the discrete outcomes in S is chosen. The intuitive idea of the corresponding superposition
state, denoted ΣS, is that the outcomes in the state are not distinguished but are blobbed or cohered
together as indefinite event. In each run of the “experiment” or trial conditioned on ΣS, the indefinite
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state is sharpened to a less indefinite state which maximally is one of the outcomes in S [4]. In the
case of a singleton event S = {ui}, the ordinary event S = {ui} is the same as the superposition
event ΣS = Σ {ui} = {ui} = S.

For a suggestive visual example, consider the outcome set U as a pair of isosceles triangles that
are distinct by the labels on the equal sides and the opposing angles.

Figure 1: Set of distinct isosceles triangles

The superposition event ΣU is definite on the properties that are common to the elements of U , i.e.,
the angle a and the opposing side A, but is indefinite where the two triangles are distinct, i.e., the
two equal sides and their opposing angles are not distinguished by labels..

Figure 2: The superposition event ΣU .

It might be noted that this notion of superposition and the notion of abstraction are essentially
flip-side viewpoints of the same idea of extracting from a set an entity that is definite on the com-
monalities of the elements of the set and indefinite on where the elements differ [3]. The two flip-side
viewpoints are like seeing a glass half-empty (superposition) or seeing a glass half-full (abstraction).

What is a mathematical model that will distinguish between the ordinary event S and the su-
perposition event ΣS? Using n-ary column vectors in Rn, the ordinary event S could be represented
by the column vector, denoted |S⟩, with the ith entry χS (ui), where χS : U → {0, 1} is the char-
acteristic function for S, i.e., χS(ui) = 1 if ui ∈ S, else 0. But to represent the superposition event
ΣS we need to add a dimension to use two-dimensional n × n matrices to represent the blobbing
together or cohering of the elements of S in the superposition even ΣS.

An incidence matrix for a binary relation R ⊆ U×U is the n×nmatrix In (R) where In (R)jk = 1
if (uj , uk) ∈ R, else 0. The diagonal ∆S is the binary relation consisting of the ordered pairs
{(ui, ui) : ui ∈ S} and its incidence matrix In (∆S) is the diagonal matrix with the diagonal elements
χS (ui). The superposition state ΣS could then be represented as In (S × S), the incidence matrix
of the binary relation S × S ⊆ U × U , where the non-zero off-diagonal elements represent the
cohering or blobbing together of the corresponding diagonal elements. That incidence matrix could
be constructed as the outer product |S⟩ (|S⟩)t = |S⟩ ⟨S| = In (S × S) (where ⟨S| = (|S⟩)t is the
transpose).

If we divided In (∆S) and In (S × S) through by their trace (sum of diagonal elements) |S|, then
we obtain two density matrices ρ (S) = In(∆S)

|S| and ρ (ΣS) = In(S×S)
|S| = 1√

|S|
|S⟩ ⟨S| 1√

|S|
over the

reals R. In general, a density matrix ρ over the reals R (or the complex numbers C) is a symmetric
matrix ρ = ρt (or conjugate symmetric matrix ρ = (ρ∗)

t
in the case of C) with trace tr [ρ] = 1 and

all non-negative eigenvalues. A density matrix ρ is pure if ρ2 = ρ, otherwise a mixture.
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Consider the partition π = {B1, B2} = {{♢,♡} , {♣,♠}} on the outcome set U = {♣,♢,♡,♠}
with equiprobable outcomes like drawing cards from a randomized deck. For instance, the superposi-
tion event associated with B1 = {♢,♡}, has a pure density matrix since (rows and columns labelled
in the order {♣,♢,♡,♠}):

ρ (ΣB1) =
1√
|Bi|


0
1
1
0

 [
0 1 1 0

]
1√
|B1|

= 1
|B1|


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 =


0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0


equals its square, but density matrix for the discrete set B1:

ρ (B1) =


0 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 0


is a mixture since it does not equal its square.

Intuitively, the interpretation of the superposition event represented by ρ (ΣB1) = ρ (Σ {♢,♡})
is that it is definite on the properties common to its elements, e.g., in this case, being a red suite, but
indefinite on where the elements differ. The indefiniteness is indicated by the non-zero off-diagonal
elements that indicate that the diamond suite ♢ is blurred, cohered, or superposed with the hearts
suite ♡ in the superposition state Σ {♢,♡}.

The next step is to bring in the point probabilities p = (p1, ..., pn) where those two real den-
sity matrices ρ (S) and ρ (ΣS) defined so far correspond to the special case of the equiprobable
distribution on S with 0 probabilities outside of S.

0.3 Density matrices with general probability distributions

Let the outcome space U = {u1, ..., un} have the probabilities p = {p1, ..., pn}. The conditional

probability distribution on S ⊆ U is Pr ({ui} |S) = Pr({ui}∩S)
Pr(S) = pi

Pr(S) if ui ∈ S, else 0. The

density matrix ρ (S) for the classical or discrete event S is then the diagonal matrix with the entries
Pr ({ui} |S)χS (ui) =

pi

Pr(S)χS (ui).

Given two column vectors |s⟩ = (s1, ..., sn)
t
and |t⟩ = (t1, ..., tn)

t
in Rn, their inner product is

the sum of the products of the corresponding entries and is denoted ⟨t|s⟩ = (|t⟩)t |s⟩ =
∑n

i=1 tisi.

Their outer product is the n × n matrix denoted as |s⟩ ⟨t| = |s⟩ (|t⟩)t. A vector |s⟩ is normalized if
⟨s|s⟩ = 1. Let |ui⟩ be the n-ary column vector with the ith entry 1 and otherwise 0.

To construct the density matrix ρ (ΣS) for the superposition event ΣS, we may first construct
the normalized column vector |s⟩ where the ith entry, denoted ⟨ui|s⟩ = (|ui⟩)t |s⟩, is the “amplitude”:√

pi

Pr(S) if ui ∈ S, else 0. In the case of the equiprobable distribution 1
|S| on S, then |s⟩ = 1√

|S|
|S⟩.

Then the density matrix for the superposition event ΣS is the outer product:

ρ (ΣS) = |s⟩ ⟨s|.

The density matrices for the classical event S and for the superposition event ΣS have quite
different properties. The density matrix ρ (ΣS) is pure since ρ2 = ρ, while the density matrix ρ (S) is
a mixture (except in the special case when S = {ui} is a singleton so that ρ ({ui}) = ρ (Σ {ui})). For
ρ (S), the eigenvalues are just the conditional probabilities Pr ({ui} |S) = Pr({ui}∩S)

Pr(S) = pi

Pr(S)χS (ui).

But for the pure density matrix ρ (ΣS), there is one eigenvalue of 1 with the rest of the eigenvalues
being zeros (since the sum of the eigenvalues is the trace). Given just ρ (ΣS), the vector |s⟩ is
obtained as the normalized eigenvector associated with the eigenvalue of 1 and ρ (ΣS) = |s⟩ ⟨s|.1

1This is by the spectral decomposition of that density matrix as a Hermitian operator.
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A partition π = {B1, ..., Bm} on U is a set of non-empty subsets, called blocks, Bj ⊆ U that
are disjoint and whose union is U . Taking each block Bj = S, then there is the normalized column

vector |bj⟩ whose ith entry is
√

pi

Pr(Bj)
χBj (ui) and the density matrix ρ (ΣBj) = |bj⟩ ⟨bj | for the

superposition subset ΣBj . Then the density matrix ρ (π) for the partition π is just the probability
sum of those pure density matrices for the superposition blocks:

ρ (π) =
∑m

j=1 Pr (Bj) ρ (ΣBj).

The eigenvalues for ρ (π) are the m probabilities Pr (Bj) with the remaining n−m values of 0.
Given two partitions π = {B1, ..., Bm} and σ = {C1, ..., Cm′}, the join is the partition σ ∨ π

whose blocks are the non-empty intersections Bj ∩ Cj′ of the blocks of π and σ. To construct the
meet σ ∧ π, form the undirected graph on U where there is a link between uj and uk if they are
in the same block of π or in the same block of σ. Then the blocks of the meet are the connected
components of that graph. The partition π refines the partition σ, written σ ≾ π, if for each block
Bj ∈ π, there is a block Cj′ ∈ σ such that Bj ⊆ Cj′ . Then the partitions on U form a lattice
Π (U) with the refinement partial order. The maximal partition or top of the lattice is the discrete
partition 1U = {{ui}}ni=1 where all the blocks are singletons and the minimal partition or bottom
is the indiscrete partition 0U = {U} with only one block U . Then the density matrices for these top
and bottom partitions are just the density matrices for the discrete set U and the superposition set
ΣU :

ρ (1U ) = ρ (U) and ρ (0U ) = ρ (ΣU).

0.4 Probabilities using density matrices

A (real-valued) random variable on the outcome space U is a function f : U → R with distinct
values of {ϕ1, ..., ϕm}. The inverse image of f is a partition π = {Bj}mj=1 where Bj = f−1 (ϕj).
In ordinary classical probability theory, the conditional probability of getting the value ϕj given

the event S in a trial is Pr (ϕj |S) =
Pr(Bj∩S)

Pr(S) . But now we have two versions of S, the discrete

event and the superposition event. Since they have different density matrices, we can take the given
conditioning event as a density matrix ρ. Let PT for T ⊆ U be the diagonal projection matrix with
the diagonal entries (PT )ii = χT (ui). Projection matrices are idempotent, i.e., PTPT = PT and
equal their transpose PT = P t

T . The usual conditional probability of the classical event T given the
classical event S can be computed as:

Pr (T |S) := Pr(S∩T )
Pr(S) = tr [PT ρ (S)].

Starting with the conditioning event being the superposition event ΣS, that probability is defined
as:

Pr (ϕj |ρ (ΣS)) := tr
[
PBj

ρ (ΣS)
]
=

Pr(Bj∩S)
Pr(S) =

∑
f(ui)=ϕj

Pr({ui}∩S)
Pr(S) .

It is particularly notable that the probabilities for the values of a random variable (or any given
event T ) are the same if the conditioning event is the classical event S represented by the mixed
ρ (S) or the superposition event ΣS represented by the pure ρ (ΣS):

Pr (ϕj |ρ (ΣS)) = tr
[
PBj

ρ (ΣS)
]
=

Pr(Bj∩S)
Pr(S) = tr

[
PBj

ρ (S)
]
= Pr (ϕj |ρ (S)).

But the interpretation is quite different. The classical trial starting with the subset S represented by

ρ (S) picks out the subset Bj∩S with probability Pr (ϕj |S) = tr
[
PBjρ (S)

]
=

Pr(Bj∩S)
Pr(S) . However, the

‘measurement’ or trial conditioned by the superposition event ΣS represented by ρ (ΣS) ‘sharpens’
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or projects that indefinite event to the more definite superposition event Σ (Bj ∩ S) with probability
Pr (ϕj |ρ (ΣS)) = tr

[
PBjρ (ΣS)

]
.

In either case, the follow-up trial or ‘measurement’ returns the same value ϕj with probability
1, i.e., Pr (ϕj |Bj ∩ S) = tr

[
PBj

ρ (Bj ∩ S)
]
= 1 = tr

[
PBj

ρ (Σ (Bj ∩ S))
]
. In the classical case, all

the elements of a non-empty Bj ∩ S have the value ϕj so ϕj occurs conditioned on the classical
event Bj ∩ S with probability 1. In the superposition case, the property of having the value ϕj is a
commonality, i.e., is definite, on the superposition event Σ (Bj ∩ S) represented by ρ (Σ (Bj ∩ S)),
so no ‘sharpening’ occurs and probability of a trial returning that definite value ϕj is 1.

Let us illustrate this result with the case of flipping a fair coin. The classical set of outcomes
U = {H,T} is represented by the density matrix:

ρ (U) =

[
1
2 0
0 1

2

]
.

Figure 3: Classical event: trial picks out heads or tails

The superposition event ΣU , that blends or superposes heads and tails, is represented by the density
matrix:

ρ (ΣU) =

[
1
2

1
2

1
2

1
2

]
.

Figure 4: Superposition event: Trial sharpens to heads or tails.

The probability of getting heads in each case is:

Pr (H|ρ (U)) = tr
[
P{H}ρ (U)

]
= tr

[[
1 0
0 0

] [
1
2 0
0 1

2

]]
= tr

[
1
2 0
0 0

]
= 1

2

Pr (H|ρ (ΣU)) = tr
[
P{H}ρ (ΣU)

]
= tr

[[
1 0
0 0

] [
1
2

1
2

1
2

1
2

]]
= tr

[
1
2

1
2

0 0

]
= 1

2

and similarly for tails. Thus the two conditioning events U and ΣU cannot be distinguished by
performing an experiment or trial that distinguishes heads and tails. This is a feature, not a bug,
since the same thing occurs in quantum mechanics. For instance, a spin measurement along, say,
the z-axis of an electron cannot distinguish between the superposition state 1√

2
(|↑⟩+ |↓⟩) with a

density matrix like ρ (ΣU) and a statistical mixture of half electrons with spin up and half with spin
down with a density matrix like ρ (U) [1, p. 176].2

2In QM, they can only be distinguished by measurement in a different observable basis.
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0.5 Conclusion: The Born Rule

The Born Rule does not occur in ordinary classical probability theory because that theory does not
include superposition events. When superposition events are introduced into the purely mathematical
theory [2], then the Born Rule naturally emerges as a feature of the mathematical treatment of
superposition.

The pure density matrix ρ (ΣS) can be constructed as the outer product ρ (ΣS) = |s⟩ (|s⟩)t =
|s⟩ ⟨s| where |s⟩ is the n-ary column vector with the ith entry as ⟨ui|s⟩ =

√
pi

Pr(S)χS (ui) =
√

Pr({ui}∩S)
Pr(S) .

Or starting with the pure density matrix ρ (ΣS), then |s⟩ so that ρ (ΣS) = |s⟩ ⟨s| is obtained as the
normalized eigenvector associated with the eigenvalue of 1.

The probability of ui conditioned on the superposition event ΣS is:

Pr ({ui} |ρ (ΣS)) = tr
[
P{ui}ρ (ΣS)

]
= Pr({ui}∩S)

Pr(S) .

The point is that this same probability obtained conditioned by the two-dimensional density matrix
ρ (ΣS) could also be obtained from the one-dimensional vector |s⟩ as:

⟨ui|s⟩2 = Pr({ui}∩S)
Pr(S) = Pr ({ui} |ρ (ΣS)) = tr

[
P{ui}ρ (ΣS)

]
.

The Born Rule

In the case of the random variable f : U → R, Pr (ϕj |ρ (ΣS)) =
∑

f(ui)=ϕj
⟨ui|s⟩2.

The Born Rule does not occur in classical finite probability theory since the events S are all
discrete sets that can be represented by n-ary column vectors. The associated two-dimensional di-
agonal density matrix ρ (S) is not the outer product of a one-dimensional vector with itself (except
when S is a singleton). To accommodate the notion of a superposition event ΣS, it is necessary
to use two-dimensional density matrices ρ (ΣS) where the non-zero off-diagonal elements indicate
the blobbing or cohering together in superposition of the elements associated with the correspond-
ing diagonal entries. And mathematically those density matrices ρ (ΣS) can be constructed as the
outer product |s⟩ (|s⟩)t = |s⟩ ⟨s| of a one-dimensional vector |s⟩ with itself. Then the probability of
the individual outcomes ui conditioned by the superposition event ΣS is given by the Born Rule:
Pr ({ui} |ρ (ΣS)) = ⟨ui|s⟩2. Thus the Born Rule arises naturally out of the mathematics of proba-
bility theory enriched by superposition events.3 It does not need any more-exotic or physics-based
explanation. No physics was used in the making of this paper. The Born Rule is just a feature of
the mathematics of superposition.
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