
1 February 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

TrustRAG: Enhancing Robustness and
Trustworthiness in RAG

Huichi Zhou1, Zhonghao Zhan1, Zhenhao Li1, Hamed Haddadi1, Emine Yilmaz2

1. Imperial College London, United Kingdom; 2. University College London, United Kingdom

Retrieval-Augmented Generation (RAG) systems enhance large language models (LLMs) by integrating

external knowledge sources, enabling more accurate and contextually relevant responses tailored to user

queries. However, these systems remain vulnerable to corpus poisoning attacks that can significantly

degrade LLM performance through the injection of malicious content. To address these challenges, we

propose TrustRAG, a robust framework that systematically filters compromised and irrelevant contents

before they are retrieved for generation. Our approach implements a two-stage defense mechanism: At the

first stage, it employs K-means clustering to identify potential attack patterns in retrieved documents

using cosine similarity and ROUGE metrics as guidance, effectively isolating suspicious content. Secondly,

it performs a self-assessment which detects malicious documents and resolves discrepancies between the

model’s internal knowledge and external information. TrustRAG functions as a plug-and-play, training-

free module that integrates seamlessly with any language model, whether open or closed-source. In

addition, TrustRAG maintains high contextual relevance while strengthening defenses against corpus

poisoning attacks. Through extensive experimental validation, we demonstrate that TrustRAG delivers

substantial improvements in retrieval accuracy, efficiency, and attack resistance compared to existing

approaches across multiple model architectures and datasets. We have made TrustRAG available as open-

source software at https://github.com/HuichiZhou/TrustRAG.

Corresponding authors: Huichi Zhou, h.zhou24@imperial.ac.uk; Emine Yilmaz, emine.yilmaz@ucl.ac.uk

1. Introduction

Imagine asking an advanced Large Language Model (LLM) who runs OpenAI and receiving a confidently

stated but incorrect name—”Tim Cook.” While such misinformation might seem concerning, it represents a

broader, more systemic vulnerability in modern AI systems. Retrieval-Augmented Generation (RAG) was

developed to enhance LLMs by dynamically retrieving information from external knowledge databases[1][2]

[3], providing more accurate and up-to-date responses. This approach has been widely adopted in prominent

Qeios

qeios.com doi.org/10.32388/Z4DWHQ 1

https://github.com/HuichiZhou/TrustRAG
mailto:h.zhou24@imperial.ac.uk
mailto:emine.yilmaz@ucl.ac.uk
https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

applications including ChatGPT[4], Microsoft Bing Chat[5], Perplexity AI[6], and Google Search AI[7].

However, recent incidents have exposed critical weaknesses in these systems, from inconsistent Google

Search AI results[8] to dangerous malicious code injections[9], underscoring the real-world consequences of

their vulnerabilities.

At the heart of this problem lies a fundamental challenge: while RAG systems aim to enhance accuracy by

connecting LLMs to external knowledge, they remain vulnerable to corpus poisoning attacks that can

compromise this very capability of RAG. A growing body of research[10][11][12][13][14] has documented how

adversaries can exploit these systems by introducing malicious documents designed to hijack the retrieval

process. These attacks are particularly stealthy because they can lead LLMs to generate incorrect or deceptive

information with high confidence, effectively undermining the core purpose of RAG systems—to provide

more reliable and accurate responses.

This vulnerability of RAG systems is caused by two factors. First, there is a significant amount of noise and

even misinformation in the content available on the Internet, which poses challenges to retriever (e.g. search

engines) in accurately retrieving desirable knowledge. Second, LLMs suffer from unreliable generation

challenges, as they can be misled by incorrect information contained in the context. Recent work has

demonstrated how malicious instructions injected into retrieved documents can override original user

instructions and mislead LLM to generate their expected information[10] or how query-specific adversarial

prompts (adversarial prefix and adversarial suffix) can be optimized to mislead both retrievers and LLMs[12].

For example, PoisonedRAG[13] injects malicious documents into the knowledge base to induce incorrect RAG

responses. Additionally, there are real-world examples such as the ’glue on pizza’ fiasco in Google Search

AI[8]. In another case, a retrieval corruption attack led to a loss of $2.5k when ChatGPT generated code that

contained malicious code snippets from a compromised GitHub repository[9]. These RAG failures raise the

important question of how to safeguard an RAG pipeline.

To defend against these attacks, prior works have proposed advanced RAG frameworks[15][16][17] that

mitigate noisy information through majority-vote mechanisms across retrieved documents and carefully

engineered prompts. However, these approaches become ineffective when attackers inject multiple

malicious documents that outnumber clean ones[13]. Even in scenarios with less aggressive poisoning, RAG

systems often struggle with noisy or irrelevant content, which significantly impacts their ability to generate

reliable answers[17][1].

To address these vulnerabilities, we propose TrustRAG, the first defense framework specifically designed to

maintain robust and trustworthy responses in scenarios where multiple malicious documents have

contaminated the retrieval corpus. Our approach operates in two distinct stages, as illustrated in Figure 1. We

qeios.com doi.org/10.32388/Z4DWHQ 2

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

reveal that most of attackers[12][13] optimization setup constrains the malicious documents to be tightly

clustered in the embedding space. Because the initial malicious documents for a target query are generated

using LLM with different temperature settings, leading to inherent semantic similarity. Furthermore, to

ensure that the optimized adversarial examples are imperceptible and natural, their embeddings are

constrained to remain within a small distance of the original malicious documents. As a result, the malicious

documents form a dense and distinct region in the embedding space compared to normal, clean documents,

indicating that K-means clustering can effectively identify the malicious group. However, we observed that

using similarity metrics filters out some clean documents. To address this, we utilize the ROUGE score[18] to

measure the overlap, which effectively preserves the clean documents.

Figure 1. The TrustRAG framework protects RAG systems from corpus poisoning attacks using a two-stage

process. In Stage 1, it (1) identifies malicious documents via K-means clustering and (2) filters malicious content

based on embedding distributions. In Stage 2, it (3) extracts internal knowledge to ensure accurate reasoning, (4)

resolves conflicts by grouping consistent documents and discarding irrelevant or conflicting ones, and (5)

generates a reliable final answer based on self-assessment.

After Clean Retrieval stage, since the majority of malicious documents are filtered out, the original problems

could be simplified to the scenario that the clean documents occupies a large portion of the rest of

documents.[17] claim that roughly 70% retrieved documents do not directly contain true answers, leading to

the impeded performance of LLM with RAG systems. It could be even worse in corpus poisoning attack,

because the attacker may induce malicious documents contain wrong answers for a target query. Inspired by

the works of [19][20], and [17], the internal knowledge of LLM is beneficial to RAG systems. We leverage LLM

itself to combine consistent information, identify conflicting information, and filter out malicious or

qeios.com doi.org/10.32388/Z4DWHQ 3

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

irrelevant information. Finally, TrustRAG generates answers based on consolidated information and internal

knowledge, then self-assesses to determine which should be used for the final response.

We extensively experimented with three datasets NQ, HotpotQA and MS-MARCO, and three open-source and

close-source LLMs, Llama-3.1-8B[21], Mistral-Nemo-12B[22] and GPT-4o[4]. Our major contributions are as

follows:

We propose the first defense framework to effectively defend corpus poisoning attack where the number

of poisoned documents exceeds the number of clean ones.

TrustRAG decreases attack success rate while maintains high response accuracy on different popular RAG

benchmarks and attack settings.

We conduct an extensive evaluation for TrustRAG on multiple knowledge databases and LLMs.

Additionally, we compare TrustRAG with advanced RAG systems and achieve State-of-the-Art

performance.

2. Related Work

Retrieval augmented generation. RAG is a framework for improving the trustworthiness and facticity of

LLMs through retrieving relevant information integrated with user query from an external knowledge

database and grounding LLMs on the retrieved knowledge for conditional generations[23]. The workflow of

RAG involves two steps: retrieval and generation[3][24][25]. With the emergence of LLMs, there is a variety of

methods to improve the ability of RAG, such as query rewriter[26][27], retrieval reranking[28] and document

summarization.[29][30].

Vulnerability of RAG. The majority of existing RAG attacks focus on compromising retrieval systems with the

goal of tricking them into retrieving adversarial documents. These attacks can be divided into following

categories: 1) prompt injection attack modifies the text input fed to the LLM directly to cause the LLM to

generate outputs that satisfy some adversarial objective[31][32], 2) corpus poisoning attack, attacker adds

multiple crafted documents to the database, making the system retrieve adversaries and thus generate

incorrect responses to specific queries[12][13][14][33][34][11] and 3) backdoor attack, which introduces

optimized backdoor triggers into the LLM’s long-term memory or RAG knowledge base, ensuring malicious

responses are retrieved when specific triggers are found in inputs[35][36]. These attacks require varying levels

of access to the retrievers and/or the LLMs, such as white-box or black-box. However, all of these attacks

need access to inject poisoned data into the underlying data corpus used by the RAG system. Additionally,

almost all of them are targeted attacks, aimed at a particular subset of data, rather than indiscriminately

qeios.com doi.org/10.32388/Z4DWHQ 4

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

affecting the entire dataset. In this sense, RAG attacks can essentially be regarded as targeted data poisoning

attacks against the retrievers.

Robustness of RAG. To defend against above adversarial attacks on RAG,[15] first propose a defense

framework, designing keyword-based and decoding-based algorithms for securely aggregating

unstructured text responses.[14] use perplexity-based detection[37], query paraphrasing[38] and increasing

context size to defense the adversarial attacks. However, these methods fail to notice the nature of

adversarial attack on RAG. The main problems are that, 1) majority-based voting will not work when the

majority of the data is poisoned, 2) PPL between malicious and clean documents is not significantly

different, and 3) query paraphrasing and increasing context size cannot essentially address the problem of

corpus poisoning attacks. To address above issues, we propose TrustRAG to further enhance the robustness

of RAG.

3. TrustRAG: Defense Framework

3.1. Problem Formulation

Defense Objective. Our objective is to defense the malicious attacks of RAG systems, filter the malicious and

irrelevant documents retrieved by retriever, ultimately producing more accurate and reliable responses from

LLMs. Notably, this defense framework is orthogonal to prior work on improving the retriever, LLMs, or

conducting adaptive retrieval, which are mainly preliminary steps.

Attack Goals. An attacker selects an arbitrary set of questions, denoted as . For each

question , the attacker will set an arbitrary attacker-desired response for it. For instance, the could be

“Who the the CEO of OpenAI?” and the could be “Tim Cook”. In this attack scenario, we formulate corpus

poisoning attacks to RAG systems as a constrained optimization problem. We assume an attacker can inject

 malicious documents for each question into a knowledge database . We use to denote the

 malicious document for the question , where and . Attacker’s goal is to

construct a set of malicious documents such that the LLM in a RAG

system produce the answer for the question when utilizing the documents retrieved from the poisoned

knowledge database as the context. Formally, we have the following optimization problem:

M Q = [, , … ,]q1 q2 qM

qi ri qi

ri

N qi D p
j
i

jth qi i = 1, 2, … , M j = 1, 2, … , N

Γ = { i = 1, 2 …, M; j = 1, 2, … , N}p
j
i
∣∣

ri qi k

D ∪ Γ

s.t.,

⋅ I(LLM(;E(;D ∪ Γ)) =),max
Γ

1

M
∑
i=1

M

qi qi ri

E(;D ∪ Γ) = Retrieve(, , ,D ∪ Γ),qi qi fq ft

i = 1, 2, ⋯ , M,

(1)

(2)

(3)

qeios.com doi.org/10.32388/Z4DWHQ 5

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

where is the indicator function whose output is 1 if the condition is satisfied and 0 otherwise,

 is a set of texts retrieved from the corrupted knowledge database for the target question

, and represents the embedding model for the query and text, respectively. The objective function is large

when the answer produced by the LLM based on the retrieved texts for the target question is the target

answer.

3.2. Overview of TrustRAG

TrustRAG is a framework designed to defend against malicious attacks that poison RAG systems. It leverages

K-means clustering and collective knowledge from both the internal knowledge of the LLM and external

documents retrieved to generate more trustworthy and reliable responses. As shown in Figure 1, attackers

optimize malicious documents for a target question and a target answer. The retriever retrieves relevant

documents from the knowledge database, and K-means filters out malicious documents. The LLM then

generates information about the query from its internal knowledge and compares it with the external

knowledge to remove conflicts and irrelevant documents. Finally, the output is generated based on the most

reliable knowledge.

3.3. Clean Retrieval – Stage 1

In the Clean Retrieval stage, we employ K-means clustering () to differentiate between clean and

potentially malicious documents based on their embedding distributions. Different from the previous work,

they only consider the attack scenario of single injection, TrustRAG is designed to handle both single and

multiple injection attacks.

We formally define the attacker’s optimization objective as:

where represents the similarity score (e.g., cosine similarity), and are the text encoders for the

query and retrieved document respectively. represents the malicious document, attacker’s optimize

the to maximize the similarity between the query and the malicious document. is the context of target

answer predefined by the attacker, causing the LLM to generate incorrect answers. Due to the discrete nature

of language, the attacker uses HotFlip[39] to optimize and .

Here is the second optimization goal for the attacker:

where represents the minimum probability threshold for the LLM to generate the attacker’s desired

response given the poisoned input.

I(⋅)

E(;D ∪ Γ)qi k D ∪ Γ

qi f

k

k = 2

S = arg Sim((), (⊕ I)),max
S ′

fq qi ft S ′ (4)

Sim(⋅, ⋅) fq ft

S ⊕ I

S I

S I

= arg P (LLM(, S ⊕) =) ≥ η,I ′ max
I ′

qi I ′ ri (5)

η

ri

qeios.com doi.org/10.32388/Z4DWHQ 6

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

To ensure the optimized text maintains malicious semantic similarity while still misleading the LLM, the

following constraints must be satisfied:

where represents the norm and is a small constant controlling the maximum allowed semantic

deviation.

The initial text is generated with different temperature settings to create multiple diverse malicious

documents. These texts inherently share high similarity due to their common generation process, and

become even more tightly clustered in the embedding space after optimization under the constraint in Eq. 6.

To defend against such attacks, we propose a two-stage framework.

K-means Clustering. In the first stage, we apply the K-means clustering algorithm to analyze the

distribution of text embeddings generated by and identify suspicious high-density clusters that may

indicate the presence of malicious documents. In cases of multiple injections, our first-stage defense

strategy effectively filters most malicious groups or pairs due to their high similarity.

N-gram Preservation. In consideration of single injection attacks, we proposed using ROUGE-L score[18] to

compare intra-cluster similarity, aiming to preserve the majority of clean document for Conflict Removal

information consolidation, which robustly filter single malicious document. From Figure 3, it was observed

that the ROUGE-L scores significantly differ when comparing pairs of clean documents, pairs of malicious

documents, and pairs of clean and malicious documents. Utilizing this property, we can decide not to filter

groups containing only one malicious document among clean documents, thereby reducing information loss.

Instead, these groups can proceed to Conflict Removal, which focuses on identifying and removing single

injection attacks.

3.4 Conflict Removal – Stage 2

In the Remove Conflict stage, we leverage the internal knowledge of the LLM, which reflects the consensus

from extensive pre-training and instruction-tuning data. This internal knowledge can supplement any

missing information from the limited set of retrieved documents and even rebut malicious documents,

enabling mutual confirmation between internal and external knowledge.

Internal Knowledge Extract. After the Clean Retrieval stage, where most of the malicious documents have

been filtered out, we further enhance the trustworthiness of the RAG system. First, we prompt the LLM to

generate internal knowledge (see Appendix D.1), following the work of [40], which emphasizes the

importance of reliability and trustworthiness in generated documents. To achieve this goal, we enhance the

original method with constitutional principles[40]. However, unlike the works[19][20][17], which generate

≤ ϵ,| (S ⊕) − (S ⊕ I)|ft I ′ ft p
(6)

| ⋅ |p Lp ϵ

I

ft

qeios.com doi.org/10.32388/Z4DWHQ 7

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

multiple diverse documents using different temperature settings and may lead to hallucination or

incorrectness, we only perform a single LLM inference. This approach is not only more reliable but also cost-

efficient.

Knowledge Consolidation. We employ the LLM to explicitly consolidate information from both documents

generated from its internal knowledge and documents retrieved from external sources. Initially, we combine

document from both internal and external knowledge sources . To filter the

conflict between clean and malicious documents, we prompt the LLM using prompt (See Appendix D.2) to

identify consistent information across different documents, detect malicious information. This step would

regroup the unreliable knowledge in input documents into fewer refined documents. The regrouped

documents will also attribute their source to the corresponding input documents.

Self-Assessment of Retrieval Correctness. In its final step, TrustRAG prompts the LLM to perform a self-

assessment by evaluating its internal knowledge against the retrieved external documents (See

Appendix D.3). This process identifies conflicts, consolidates consistent information, and determines the

most credible sources, ensuring that the final answer is both accurate and trustworthy. This self-assessment

mechanism is key to enhancing the robustness of TrustRAG, enabling it to maintain high accuracy.

4. Experiment

4.1. Setup

In this section, we discuss our experiment setup. All of our inference architectures are implemented by

LMDeploy1.

Datasets. We use three benchmark question-answering datasets in our defense framework: Natural

Questions (NQ)[41], HotpotQA[42], and MS-MARCO[43], where each dataset has a knowledge database. The

knowledge databases of NQ and HotpotQA are collected from Wikipedia, which contains 2.6M and 5.2M

documents, respectively. The knowledge database of MS-MARCO is collected from web documents using the

MicroSoft Bing search engine, which contains 8.8M documents.

Attackers. We introduce two kinds of popular RAG attacks to verify the robustness of our defense framework.

(1) Corpus Poisoning Attack: PoisonedRAG[13] create poisoned documents by directly appending poisoned

text to the adversarial queries. (2) Prompt Injection Attack: PIA[11][10] propose a attack, in which a malicious

user generates a small number of adversarial passages by perturbing discrete tokens to maximize similarity

with a provided set of training queries.

= ∪ ∪ ΓD0 Dexternal Iinternal

qeios.com doi.org/10.32388/Z4DWHQ 8

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Evaluation Metrics. Following previous work, we adopt several metrics to evaluate the performance of

TrustRAG: (1) Accuracy () represents the response accuracy of RAG system. (2) Attack Successful Rate (

) is the number of incorrect answer generated by the RAG system when misled by attackers.

4.2. Results

We conduct comprehensive experiments compared with different defense frameworks and RAG systems

under PIA[11] and PoisonedRAG[13] and evaluate the performance across three LLMs. The more detailed

results of PoisonedRAG in different poison rate can be found in the Appendix A (Table 4, Table 5, and

Table 6).

ACC

ASR

qeios.com doi.org/10.32388/Z4DWHQ 9

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Models Defense

HotpotQA[42] NQ[41] MS-MARCO[43]

PIA PoisonedRAG Clean PIA PoisonedRAG Clean PIA PoisonedRAG Clean

ACC

/ ASR

ACC

/ ASR
ACC

ACC

/ ASR

ACC

/ ASR
ACC

ACC

/ ASR

ACC

/ ASR
ACC

Mistral

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE

RAG

TrustRAG

TrustRAG

Llama

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE

RAG

TrustRAG

TrustRAG

GPT Vanilla RAG

RobustRAG

↑

↓

↑

↓
↑

↑

↓

↑

↓
↑

↑

↓

↑

↓
↑

Nemo-12B

43.0
/49.0

1.0/97.0 78.0 45.0
/50.0

10.0/88.0 69.0 47.0
/49.0

6.0/93.0 82.0

Keyword

55.0
/25.0

26.0/70.0 54.0 55.0
/4.0

28.0/60.0 57.0 75.0
/6.0

37.0/53.0 72.0

ICL

31.0
/64.0

9.0/89.0 73.0 53.0
/41.0

11.0/88.0 65.0 57.0
/37.0

13.0/84.0 83.0

59.0
/28.0

30.0/61.0 76.0 62.0
/19.0

44.0/46.0 72.0 72.0
/24.0

37.0/59.0 84.0

stage 1

37.0
/51.0

69.0/8.0 74.0 45.0
/43.0

57.0/3.0 66.0 42.0
/54.0

75.0/6.0 79.0

stage 2

77.0

/9.0
70.0/4.0 77.0 66.0

/8.0
64.0/1.0 66.0 81.0

/9.0
79.0/7.0 81.0

3.1-8B

3.0/95.0 1.0/99.0 71.0 4.0/93.0 2.0/98.0 71.0 2.0/98.0 3.0/97.0 79.0

Keyword

55.0
/4.0

3.0/93.0 52.0 44.0
/11.0

1.0/68.0 45.0 69.0
/15.0

3.0/95.0 72.0

ICL

64.0
/27.0

26.0/73.0 83.0 55.0
/19.0

27.0/69.0 68.0 57.0
/19.0

44.0/54.0 89.0

51.0
/28.0

48.0/41.0 65.0 70.0
/14.0

61.0/29.0 75.0 71.0
/25.0

26.0/73.0 83.0

stage 1

28.0
/61.0

54.0/6.0 70.0 40.0
/52.0

67.0/6.0 65.0 31.0
/67.0

77.0/7.0 81.0

stage 2

73.0

/3.0
59.0/6.0 71.0 83.0

/2.0
81.0/2.0 81.0 86.0

/7.0
87.0/3.0 88.0

4o 60.0
/37.0

8.0/92.0 82.0 52.0
/41.0

20.0/80.0 76.0 67.0
/28.0

29.0/66.0 81.0

Keyword

60.0
/8.0

5.0/76.0 54.0 40.0
/38.0

1.0/61.0 45.0 48.0
/29.0

2.0/63.0 56.0

qeios.com doi.org/10.32388/Z4DWHQ 10

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Models Defense

HotpotQA[42] NQ[41] MS-MARCO[43]

PIA PoisonedRAG Clean PIA PoisonedRAG Clean PIA PoisonedRAG Clean

ACC

/ ASR

ACC

/ ASR
ACC

ACC

/ ASR

ACC

/ ASR
ACC

ACC

/ ASR

ACC

/ ASR
ACC

InstructRAG

ASTUTE

RAG

TrustRAG

TrustRAG

Table 1. Main Results show that different defense frameworks and RAG systems defend against two kinds of

attack methods based on three kinds of large language models.

As shown in Table 1, all the previous methods fail to effectively handle the scenario of multiple malicious

documents injected into the knowledge database, under PoisonedRAG attack, the can range from 24%

to 97% and the can range from 1% to 76%. It is worth noticing that RobustRAG, which defense

framework using aggregating and voting strategies. It fails the number of malicious documents exceed the

number of benign one, they failed. However, benefiting from the K-means filtering strategy, TrustRAG

significantly reduces malicious documents during retrieval, and only a small portion of malicious documents

are used in Conflict Removal stage. After Conflict Removal, TrustRAG can integrate with internal knowledge,

use the information of consistent groups, and self-assess the whether to use the information from the RAG.

The results show that TrustRAG can effectively enhance the robustness of RAG systems.

Regarding PIA attack, which will use the strongly induced document to mislead the LLM to generate

incorrect answer. We consider this situation as equivalent to the scenario where the number of poisonings is

set to . Our method can also effectively defense this attack using Conflict Removal, outperforming previous

work by a large margin.

↑

↓

↑

↓
↑

↑

↓

↑

↓
↑

↑

↓

↑

↓
↑

ICL

58.0
/41.0

1.0/98.0 86.0 63.0
/34.0

13.0/83.0 79.0 69.0
/28.0

15.0/81.0 81.0

74.0
/16.0

66.0/35.0 80.0 81.0
/4.0

76.0/24.0 81.0 86.0
/11.0

67.0/24.0 85.0

stage 1

56.0
/37.0

82.0/5.0 76.0 49.0
/41.0

79.0/6.0 76.0 63.0
/35.0

88.0/4.0 77.0

stage 2

83.0

/3.0
81.0/3.0 84.0 83.0

/1.0
81.0/1.0 84.0 91.0

/1.0
90.0/2.0 89.0

ASR

ACC

1

qeios.com doi.org/10.32388/Z4DWHQ 11

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

5. Detailed Analysis of TrustRAG

Dataset
Embedding

Model

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

F1

F1

/ CRR

F1

/ CRR

F1

/ CRR

F1

/ CRR

CRR

NQ

SimCSE

SimCSE

Bert

Bert

BGE

BGE

MS-

MARCO

SimCSE

SimCSE

Bert

Bert

BGE

BGE

HotpotQA

SimCSE

SimCSE

Bert

Bert

BGE

BGE

↑ ↑

↑

↑

↑

↑

↑

↑

↑

↑

97.5 92.6/92.0 94.3/91.5 84.9/89.0 3.1/86.2 85.0

w/o ROUGE

91.3 83.9/93.0 72.0/69.0 64.4/68.3 35.8/54.8 52.6

97.2 84.7/84.0 87.4/89.0 77.8/82.0 5.6/78.5 74.2

w/o ROUGE 52.0 73.2/80.0 63.4/61.0 51.7/58.0 35.5/55.8 52.0

98.1 90.8/92.0 96.9/93.0 89.5/91.0 3.0/86.3 87.6

w/o ROUGE 93.8 85.0/93.0 86.7/83.0 79.9/80.7 27.5/51.5 51.4

95.6 84.7/88.0 84.0/80.0 71.7/73.0 4.6/72.0 70.6

w/o ROUGE

89.4 77.3/84.0 69.6/60.5 58.1/61.7 17.0/47.5 52.4

95.2 83.0/85.0 77.8/73.0 66.8/71.7 5.8/70.0 70.4

w/o ROUGE 87.4 75.4/74.0 67.3/58.5 48.9/53.7 24.6/48.0 51.8

94.2 87.2/88.0 84.1/73.0 73.4/69.3 5.0/66.0 66.8

w/o ROUGE 91.4 81.5/78.0 73.2/59.0 64.9/66.3 17.9/46.5 47.8

99.2 95.6/91.0 95.2/84.0 90.0/80.6 6.5/80.0 81.8

w/o ROUGE

94.9 85.1/94.0 1.0/77.0 72.5/73.3 21.3/47.5 49.0

99.2 89.7/88.0 85.5/75.5 83.7/79.7 2.4/78.0 76.2

w/o ROUGE 88.5 79.4/88.0 64.1/61.0 48.1/55.3 25.8/49.5 49.0

99.6 91.9/90.0 95.6/84.0 90.2/82.3 9.7/80.5 81.0

w/o ROUGE 94.7 87.4/91.0 82.5/81.0 74.7/76.3 16.5/44.3 49.6

qeios.com doi.org/10.32388/Z4DWHQ 12

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Table 2. Results on various datasets with different Poisoning levels and embedding models. F1 score measures the

performance of detecting poisoned samples, while Clean Retention Rate (CRR) evaluates the proportion of clean

samples retained after filtering.

Figure 2. (1) The perplexity distribution density plot between clean and malicious documents. And the lines of

dashes represent the average perplexity values. (2) The bar plot of ablation study on accuracy in NQ dataset based

on the Llama . (3) The bar plot of ablation study on attack success rate in NQ dataset based on the Llama .

 # API Call MS-MARCO NQ HotpotQA

Vanilla RAG

InstructRAG

RobustRAG

ASTUTE RAG

TrustRAG

TrustRAG

Table 3. TrustRAG runtime analysis based on Llama for 100 queries in three different datasets.

3.1-8B 3.1-8B

1 8.9/1× 9.2/1× 9.6/1×

ICL 1 12.6/1.4× 13.1/1.4× 32.7/3.4×

Keyword 11 107.9/12.1× 107.7
/11.7×

107.9/11.2×

3 17.5/2.0× 17.3/1.9× 16.7/1.7×

K-means 1 12.3/1.4× 12.6/1.4× 12.5/1.3×

Conflict 3 18.4/2.1× 19.9/2.2× 21.7/2.3×

3.1-8B

qeios.com doi.org/10.32388/Z4DWHQ 13

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Figure 3. (1) The density plot of cosine similarity between three different groups. (2) The box plot of ROUGE Score

between three different groups.

Figure 4. (1) The line plot of accuracy between TrustRAG and Vanilla RAG on clean scenario. (2) The line plot of

accuracy between TrustRAG and Vanilla RAG on malicious scenario. (3) The line plot of attack successful rate

between TrustRAG and Vanilla RAG on malicious scenario. All the context windows set from to and the

malicious scenario includes malicious documents.

5.1. Effectiveness of K-means Filtering Strategy

Distribution of Poisoned Documents. As shown in Appendix Figure 5, we plot a case in which samples from

the NQ data set are used in different numbers of poisoned documents, we can see that in the scenario of

multiple malicious documents, the malicious documents are close to each other. By contrast, for a single

poisoned document, it will be mixed in the clean documents. Therefore, it is important to use the n-gram

preservation to preserve the clean documents.

N-gram preservation. As shown in Table 2, we conduct an ablation study on n-gram preservation, we can

see that When poinsoning rate exceeds 20%, the F1 score is higher after applying n-gram preservation in the

clean retrieval stage. However, when poisoning rate at 20%, without n-gram preservation, the K-means

5 20

5

qeios.com doi.org/10.32388/Z4DWHQ 14

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

filtering strategy will randomly remove the group which has higher similarity, but it will lead the bad effect

of decreasing the CRR. The clean documents can thus be filtered by mistake. Therefore, using n-gram

preservation will not only preserve the clean documents but increase the F1 score of detecting the malicious

documents.

Embedding Models. Choosing the right embedding model is crucial for effectively cluster the retrieved

documents. As shown in Table 2, we compare different embedding models: SimCSE[44], Bert[45] and BGE[46],

and the results show that our proposed K-means filtering strategy is robust and effective for all three

embedding models. In addition, we notice that more fine-grained embedding model (e.g. SimCSE) can

achieve better performance and be more robust in different poisoning rates and datasets.

5.2. Runtime Analysis

In Table 3, we present a detailed runtime analysis for various methods across three datasets. The analysis

reveals that TrustRAG spends approximately twice inference time as compared to Vanilla RAG, which is a

reasonable trade-off considering the significant improvements in robustness and reliability offered by

TrustRAG.

5.3. Effectiveness of Perplexity-based Detection

Since attackers will generate unnatural looking patterns to attack LLMs, PPL detection has been suggested as

a defense[47][38] and [14] claim that the distribution of perplexity values differ significantly between clean

and malicious documents and PPL can be an effective defense. We test the effectiveness of PPL defense and

follow the setting in in the work[14]. Text perplexity[37] is used to evaluate the naturalness and quality of text.

As shown in Figure 2(1), the PPL values for clean and adversarial texts overlap significantly. While [14] argue

that these distributions differ substantially, our findings challenge this claim. Although some adversarial

examples exhibit higher PPL values, many fall within the range of clean texts. This overlap highlights the

limitations of relying solely on PPL as a detection metric, as it risks false negatives (misclassifying

adversarial texts as clean) and false positives (flagging clean texts as adversarial).

5.4. Ablation Study

We conducted an ablation study on Llama and analyzed the impact of four key components. The detailed

experiments are in Appendix Table 8.

Impact of K-means Clustering. As shown in Figure 2 (2) and (3), K-means filtering effectively defends

against attacks while maintaining high response accuracy when the poisoning rate exceeds 20%. Even at a

3.1-8B

qeios.com doi.org/10.32388/Z4DWHQ 15

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

poisoning rate of 20% (with only a single poisoned document), it still successfully preserves successfully

preserves the integrity of clean documents.

Impact of Internal Knowledge. Comparing TrustRAG w/ and w/o providing internal knowledge inferred from

the LLM, from Figure 2, we observe notable improvements in both ACC and ASR from utilizing the LLM

internal knowledge. Particularly at the poisoned rate of 20%, internal knowledge effectively addresses

conflicts between malicious and clean documents, contributing significantly to improved robustness.

Impact of Conflict Removal. While K-means clustering and internal knowledge significantly reduce the ASR,

the conflict removal component also plays a crucial role in the defense framework. By leveraging knowledge

consolidation and rationale outputs, TrustRAG further enhances the robustness of RAG systems across all

scenarios under different poison percentage.

Impact of Self-Assessment. The self-assessment mechanism can further enhance the performance of

TrustRAG in all settings, particularly at a poisoned rate of 20%. This suggests that the LLM can effectively

distinguish between inductive or malicious information and the internal and external knowledge.

5.5. Impact of Top-K Context Window

Furthermore, RAG systems may face another two critical types of non-adversarial noise beyond intentional

poisoning attacks: retrieval-based noise from imperfect retrievers returning irrelevant documents, and

corpus-based noise from inherent inaccuracies in the knowledge base itself[16]. To rigorously assess

TrustRAG’s robustness, we conducted extensive experiments on the NQ dataset using Llama under two

key scenarios: (1) a clean setting with context windows ranging from 1 to 20 documents, and (2) a poisoned

setting with 5 malicious documents and varying context windows. The results reveal TrustRAG’s superior

performance in both scenarios. In clean settings, TrustRAG’s accuracy improves steadily with larger context

windows (documents), consistently outperforming vanilla RAG. More importantly, in poisoned

scenarios, TrustRAG maintains approximately accuracy while keeping attack success rates (ASR)

around . This contrasts markedly with vanilla RAG, which achieves only accuracy in relation to

ASR levels of .

5.6. Evaluation in Real-World Adversarial Conditions

To assess TrustRAG’s performance under real-world adversarial conditions, we utilize the RedditQA dataset

from [48], which comprises Reddit posts with real-world factual errors that result in incorrect answers to

corresponding questions. We evaluate our method on this dataset using Llama . The vanilla RAG with the

retrieved documents achieve the response accuracy of with an attack success rate of . In

3.1-8B

5 − 20

80%

1% 10 − 40%

60 − 90%

3.1-8B

27.3% 43.8%

qeios.com doi.org/10.32388/Z4DWHQ 16

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

contrast, TrustRAG achieves a response accuracy of with an attack success rate of ,

demonstrating its robustness in real-world adversarial conditions.

6. Conclusion

RAG systems, despite their potential to enhance language models’ capabilities, remain vulnerable to corpus

poisoning attacks which is a critical security concern that is still insufficiently addressed. In this work, we

introduce TrustRAG, the first RAG defense framework designed to counter attacks involving multiple

maliciously injected documents. TrustRAG employs K-means filtering to reduce the presence of malicious

documents and incorporates both internal and external knowledge sources to resolve conflicts and mitigate

the impact of these attacks. Our comprehensive evaluation across benchmark datasets demonstrates that

TrustRAG outperforms existing defenses, maintaining high accuracy even under aggressive poisoning

scenarios where traditional approaches fail.

Appendix A. Details of Experiments

A.1. NQ results

As shown in Table 4, the experimental results highlight the robustness of various RAG defenses against

corpus poisoning attacks across different poisoning levels, evaluated on three language models:

MistralNemo-12B, Llama3.1-8B, and GPT4o. For the MistralNemo-12B, the TrustRAGstage 2 defense achieved a

notable accuracy of with a minimal ASR of at a poisoning rate, maintaining superior

performance even under extreme adversarial scenarios. Similarly, at a lower poisoning rate of ,

TrustRAGstage 2 continued to lead with accuracy and an ASR of only .

For the Llama3.1-8B, TrustRAGstage 2 showcased impressive resilience, achieving accuracy and an ASR

of just under a poisoning rate. At a moderate poisoning rate of , the accuracy remained high

at with an ASR of , significantly outperforming alternative defenses such as ASTUTE RAG and

RobustRAGKeyword.

The GPT4o model further validated the effectiveness of TrustRAGstage 2, achieving an accuracy of and a

near-zero ASR of at poisoning. Even under a poisoning rate, the method maintained robust

performance with accuracy and an ASR of , demonstrating its ability to consistently suppress

adversarial effects while preserving response reliability across diverse settings and language models. These

results confirm TrustRAG’s state-of-the-art capability in defending against both high and low-intensity

poisoning attacks.

72.2% 11.9%

64.0% 1.0% 100%

20%

67.0% 11.0%

83.0%

2.0% 100% 40%

83.0% 1.0%

81.0%

1.0% 100% 60%

80.0% 1.0%

qeios.com doi.org/10.32388/Z4DWHQ 17

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

ACC / ASR
ACC / ASR ACC / ASR

ACC / ASR
ACC / ASR ACC

Mistral

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Llama

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

GPT

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Table 4. NQ Result

↑ ↓
↑

↓

↑

↓
↑ ↓

↑

↓

↑

Nemo-12B

10.0/88.0 15.0/84.0 18.0/79.0 34.0/62.0 42.0/51.0 69.0

Keyword

28.0/60.0 30.0/59.0 35.0/54.0 39.0/45.0 54.0/9.0 57.0

ICL 11.0/88.0 21.0/77.0 25.0/70.0 33.0/59.0 48.0/40.0 65.0

44.0/46.0 56.0/32.0 63.0/24.0 65.0/19.0 69.0/10.0 72.0

stage 1 57.0/3.0 51.0/18.0 65.0/2.0 62.0/2.0 46.0/40.0 66.0

stage 2 64.0/1.0 64.0/2.0 63.0/2.0 65.0/1.0 67.0/11.0 69.0

3.1-8B

2.0/98.0 2.0/98.0 3.0/97.0 4.0/93.0 26.0/73.0 71.0

Keyword

11.0/83.0 15.0/75.0 23.0/63.0 37.0/46.0 51.0/27.0 61.0

ICL 27.0/69.0 38.0/56.0 40.0/56.0 51.0/45.0 58.0/37.0 68.0

61.0/29.0 64.0/24.0 68.0/19.0 69.0/18.0 77.0/11.0 75.0

stage 1 67.0/6.0 51.0/19.0 56.0/3.0 62.0/2.0 43.0/50.0 65.0

stage 2 83.0/2.0 85.0/1.0 84.0/1.0 83.0/1.0 82.0/9.0 82.0

4o

20.0/80.0 32.0/69.0 37.0/60.0 49.0/49.0 56.0/39.0 76.0

Keyword

1.0/61.0 8.0/57.0 20.0/58.0 32.0/36.0 39.0/28.0 45.0

ICL 13.0/83.0 21.0/74.0 27.0/65.0 37.0/55.0 53.0/39.0 79.0

76.0/24.0 76.0/21.0 76.0/20.0 78.0/16.0 82.0/6.0 81.0

stage 1 79.0/6.0 65.0/15.0 75.0/3.0 73.0/3.0 57.0/35.0 76.0

stage 2 81.0/1.0 82.0/3.0 80.0/1.0 84.0/1.0 83.0/4.0 84.0

qeios.com doi.org/10.32388/Z4DWHQ 18

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

A.2. MS-MARCO results

The results presented in Table 5 evaluate the robustness of different RAG defenses against corpus poisoning

attacks on the MS-MARCO dataset using three language models: MistralNemo-12B, Llama3.1-8B, and GPT4o.

Across various poisoning rates, TrustRAGstage 2 consistently demonstrates superior performance in

maintaining high accuracy and suppressing ASR.

For the MistralNemo-12B, TrustRAGstage 2 achieves an accuracy of and an ASR of just at a

 poisoning rate. Even as the poisoning rate decreases to , TrustRAGstage 2 maintains robust

performance with accuracy and an ASR of . At the poisoning level, accuracy remains high at

 with a moderate ASR of .

For the Llama3.1-8B, TrustRAGstage 2 delivers excellent robustness under all conditions. At a poisoning

rate, it achieves an accuracy of with a low ASR of . At lower poisoning rates, such as and ,

TrustRAGstage 2 achieves 85.0% and accuracy, respectively, while maintaining ASR levels at or below

.

For the GPT4o model, TrustRAGstage 2 again leads in robustness. At a poisoning rate, it reaches an

impressive accuracy with an ASR of only . Even with lower poisoning rates, such as and ,

the method maintains high accuracy of and , respectively, and keeps ASR at minimal levels (

 and , respectively).

85.0% 4.0%

100% 60%

83.0% 5.0% 20%

84.0% 12.0%

100%

87.0% 5.0% 40% 20%

83.0%

11.0%

100%

90.0% 2.0% 60% 40%

90.0% 87.0%

2.0% 4.0%

qeios.com doi.org/10.32388/Z4DWHQ 19

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

ACC / ASR
ACC / ASR ACC / ASR ACC / ASR

ACC / ASR
ACC

Mistral

Vanilla RAG 6.0 / 93.0 10.0 / 88.0 21.0 / 74.0 33.0 / 62.0 52.0 / 43.0

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Llama

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

GPT

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Table 5. MS-MARCO Result

↑ ↓
↑

↓

↑

↓

↑

↓
↑ ↓

↑

Nemo-12B

82.0

Keyword

37.0/53.0 40.0/50.0 50.0/38.0 62.0/21.0 72.0/9.0 72.0

13.0/84.0 22.0/72.0 31.0/62.0 40.0/54.0 57.0/36.0 83.0

37.0/59.0 43.0/52.0 55.0/41.0 68.0/28.0 77.0/16.0 84.0

stage 1 75.0/6.0 67.0/18.0 75.0/7.0 79.0/7.0 50.0/44.0 79.0

stage 2 85.0/4.0 84.0/6.0 83.0/5.0 82.0/6.0 84.0/12.0 82.0

3.1-8B

3.0/97.0 3.0/96.0 5.0/94.0 7.0/93.0 28.0/70.0 79.0

Keyword

25.0/68.0 28.0/66.0 37.0/54.0 57.0/34.0 67.0/19.0 73.0

44.0/54.0 47.0/51.0 49.0/45.0 60.0/36.0 63.0/33.0 89.0

26.0/73.0 40.0/57.0 50.0/47.0 52.0/44.0 54.0/41.0 83.0

stage 1 77.0/7.0 64.0/18.0 72.0/7.0 78.0/6.0 45.0/47.0 81.0

stage 2 87.0/5.0 84.0/8.0 85.0/7.0 85.0/7.0 83.0/11.0 85.0

4o

29.0/66.0 43.0/49.0 51.0/40.0 59.0/35.0 67.0/24.0 81.0

Keyword

2.0/63.0 17.0/52.0 23.0/48.0 41.0/33.0 50.0/22.0 56.0

15.0/81.0 31.0/64.0 39.0/54.0 47.0/45.0 59.0/35.0 81.0

67.0/24.0 67.0/21.0 72.0/17.0 74.0/16.0 77.0/13.0 85.0

stage 1 88.0/4.0 76.0/11.0 84.0/2.0 84.0/4.0 62.0/24.0 77.0

stage 2 90.0/2.0 90.0/2.0 90.0/5.0 87.0/4.0 86.0/8.0 89.0

qeios.com doi.org/10.32388/Z4DWHQ 20

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

A.3. HotpotQA results

The results in Table 6 evaluate the robustness of various RAG defenses against corpus poisoning attacks on

the HotpotQA dataset using three language models: MistralNemo-12B, Llama3.1-8B, and GPT4o. The defenses

compared include Vanilla RAG, RobustRAGKeyword, InstructRAGICL, ASTUTE RAG, TrustRAGstage 1, and

TrustRAGstage 2. TrustRAGstage 2 consistently exhibits superior performance, maintaining high ACC while

minimizing the ASR under all poisoning levels.

For the MistralNemo-12B model, TrustRAGstage 2 achieves an impressive accuracy and ASR at a

 poisoning rate, significantly outperforming other defenses. Even as the poisoning rate decreases to

, TrustRAGstage 2 maintains a high accuracy of with a reduced ASR of , showcasing its

robustness under various poisoning intensities.

For the Llama3.1-8B, TrustRAGstage 2 demonstrates strong resilience with accuracy and ASR at a

 poisoning rate. As the poisoning rate decreases to , accuracy improves to , with the ASR

remaining low at , underscoring its reliability and effectiveness in defending against adversarial attacks.

For the GPT4o, TrustRAGstage 2 achieves exceptional performance, reaching accuracy and ASR at

a poisoning rate. At lower poisoning levels, such as , it achieves a remarkable accuracy and

an ASR of only , demonstrating state-of-the-art robustness and adaptability across all attack levels.

75.0% 4.0%

100%

40% 78.0% 3.0%

67.0% 4.0%

100% 20% 70.0%

4.0%

82.0% 5.0%

100% 20% 84.0%

1.0%

qeios.com doi.org/10.32388/Z4DWHQ 21

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

Mistral

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Llama

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

GPT

Vanilla RAG

RobustRAG

InstructRAG

ASTUTE RAG

TrustRAG

TrustRAG

Table 6. HotpotQA Result

↑

↓

↑

↓

↑

↓

↑

↓

↑

↓

↑

Nemo-12B

1.0/97.0 6.0/93.0 9.0/90.0 18.0/78.0 28.0/68.0 78.0

Keyword

26.0/70.0 28.0/68.0 33.0/59.0 41.0/43.0 51.0/27.0 54.0

ICL 9.0/89.0 11.0/87.0 14.0/81.0 24.0/68.0 36.0/59.0 73.0

30.0/61.0 37.0/54.0 52.0/38.0 57.0/31.0 60.0/24.0 76.0

stage 1 69.0/8.0 68.0/12.0 76.0/6.0 77.0/5.0 38.0/54.0 74.0

stage 2 75.0/4.0 79.0/4.0 79.0/4.0 78.0/3.0 74.0/13.0 78.0

3.1-8B

1.0/99.0 2.0/97.0 6.0/94.0 5.0/94.0 27.0/81.0 71.0

Keyword

8.0/89.0 10.0/87.0 19.0/76.0 33.0/57.0 40.0/50.0 54.0

ICL 26.0/73.0 40.0/57.0 50.0/47.0 52.0/44.0 54.0/41.0 83.0

48.0/41.0 53.0/38.0 59.0/30.0 59.0/31.0 65.0/16.0 65.0

stage 1 54.0/6.0 61.0/12.0 72.0/3.0 66.0/2.0 43.0/47.0 70.0

stage 2 67.0/4.0 71.0/4.0 70.0/7.0 69.0/5.0 66.0/18.0 74.0

4o

8.0/92.0 33.0/67.0 31.0/69.0 48.0/52.0 52.0/48.0 82.0

Keyword

5.0/76.0 18.0/74.0 20.0/61.0 41.0/43.0 51.0/27.0 54.0

ICL 1.0/98.0 9.0/90.0 19.0/79.0 27.0/71.0 33.0/63.0 86.0

66.0/35.0 67.0/33.0 74.0/25.0 76.0/24.0 78.0/22.0 80.0

stage 1 82.0/5.0 77.0/12.0 85.0/5.0 81.0/10.0 54.0/46.0 76.0

stage 2 81.0/3.0 84.0/1.0 81.0/3.0 81.0/4.0 84.0/6.0 84.0

qeios.com doi.org/10.32388/Z4DWHQ 22

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Appendix B. Scaling Law for TrustRAG

Table 7 demonstrates the scaling behavior across four Llama model sizes (1B, 3B, 8B, and 70B) on three

datasets (NQ, HotpotQA, and MS-MARCO) under varying poisoning ratios. For example, on the NQ dataset,

the Llama3.2-1B model achieves an ACC of around when subjected to poisoned documents,

whereas the larger Llama3.1-8B sustains an ACC of approximately under the same extreme poisoning

condition, coupled with a notably low attack success rate (ASR) of . A similar trend is observed in

HotpotQA: the smallest model registers an ACC of only 41.0 with an ASR of at poisoning, yet the

Llama3.3-70B model attains an ACC of while limiting ASR to . The MS-MARCO results further

reinforce this pattern, as the 70B variant retains close to ACC even under high-poison scenarios.

Overall, these findings highlight a robust scaling law: larger models provide both higher accuracy and

greater resilience against poisoning attacks, offering stronger capacity to detect and disregard malicious

documents without compromising retrieval or generation quality.

55.0% 100%

83.0%

2.0%

13.0% 100%

81.0% 1.0%

90.0%

qeios.com doi.org/10.32388/Z4DWHQ 23

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

NQ

Llama

Llama

Llama

Llama

HotpotQA

Llama

Llama

Llama

Llama

MS-

MARCO

Llama

Llama

Llama

Llama

Table 7. Scaling-up Llama to larger models. We evaluate the performance of Llama across three datasets with

different model sizes. We observe that Llama scales well with the model size, achieving better performance with

larger models.

Appendix C. Ablation Studies

Table 8 presents the results of the ablation study for the Llama3.1-8B model across three datasets (NQ,

HotpotQA, and MS-MARCO). Notably, TrustRAG with all components consistently achieved the best

performance in most scenarios. Each component serves a distinct role; for instance, by comparing TrustRAG

 and TrustRAG , we observe that the first stage of the model effectively reduces the

↑

↓

↑

↓

↑

↓

↑

↓

↑

↓

↑

3.2-1B 55.0/1.0 60.0/6.0 56.0/4.0 58.0/4.0 59.0/8.0 60.0

3.2-3B 76.0/4.0 75.0/6.0 75.0/2.0 78.0/1.0 78.0/13.0 77.0

3.1-8B 83.0/2.0 85.0/1.0 84.0/1.0 83.0/1.0 82.0/9.0 82.0

3.3-70B

78.0/0.0 80.0/3.0 78.0/1.0 79.0/1.0 78.0/5.0 76.0

3.2-1B 41.0/13.0 48.0/15.0 53.0/10.0 53.0/10.0 46.0/23.0 58.0

3.2-3B 57.0/5.0 57.0/8.0 67.0/5.0 60.0/6.0 54.0/28.0 66.0

3.1-8B 67.0/4.0 71.0/4.0 70.0/7.0 69.0/5.0 66.0/18.0 74.0

3.3-70B

81.0/1.0 74.0/8.0 78.0/2.0 79.0/4.0 70.0/15.0 77.0

3.2-1B 50.0/23.0 54.0/21.0 56.0/21.0 54.0/21.0 51.0/26.0 50.0

3.2-3B 71.0/12.0 71.0/12.0 74.0/12.0 76.0/11.0 73.0/20.0 78.0

3.1-8B 87.0/5.0 84.0/8.0 85.0/7.0 85.0/7.0 83.0/11.0 85.0

3.3-70B

89.0/4.0 87.0/3.0 86.0/4.0 88.0/4.0 87.0/9.0 87.0

w/o K-Means w/o Conflict Removal

qeios.com doi.org/10.32388/Z4DWHQ 24

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

number of malicious texts in the retrieved documents, significantly lowering ASR values. Meanwhile, the

Internal Knowledge and Self Assessment components, particularly under a poisoning rate, enhance the

model’s robustness by consolidating external information into a reliable final answer. Without Internal

Knowledge, the performance of the Llama3.1-8B model declines sharply at a poisoning rate across all

three datasets. When relying solely on external information, the model often struggles to generate correct

answers, as the consolidated information may still contain malicious or misleading texts. By incorporating

Internal Knowledge, the model is better equipped to select documents that align with its internal

understanding, thereby improving certainty and resistance to attacks. Furthermore, the addition of Self

Assessment allows the model to discard unreliable or untrustworthy documents, further reducing ASR values

and improving overall performance. With all the components combined, our TrustRAG can filter malicious

content from externally retrieved documents, consolidate both internal and external information, and

provide accurate and trustworthy answers.

20%

20%

qeios.com doi.org/10.32388/Z4DWHQ 25

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

NQ

Vanilla RAG

TrustRAG

TrustRAG

TrustRAG

TrustRAG

TrustRAG

HotpotQA

Vanilla RAG

TrustRAG

TrustRAG

TrustRAG

TrustRAG

TrustRAG

MS-

MARCO

Vanilla RAG

TrustRAG

TrustRAG

TrustRAG

TrustRAG

↑

↓

↑

↓

↑

↓

↑

↓

↑

↓

↑

2.0/98.0 2.0/98.0 3.0/97.0 4.0/93.0 26.0/73.0 71.0

w/o K-Means 55.0/39.0 55.0/41.0 58.0/36.0 63.0/28.0 69.0/18.0 81.0

w/o Conflict Removal

67.0/6.0 51.0/19.0 56.0/3.0 62.0/2.0 43.0/50.0 65.0

w/o Internal Knowledge

75.0/3.0 67.0/11.0 65.0/4.0 67.0/3.0 50.0/34.0 64.0

w/o Self Assessment

78.0/2.0 75.0/7.0 80.0/2.0 80.0/2.0 69.0/21.0 78.0

83.0/2.0 85.0/1.0 84.0/1.0 83.0/1.0 82.0/9.0 82.0

1.0/99.0 2.0/97.0 6.0/94.0 5.0/94.0 27.0/81.0 71.0

w/o K-Means 41.0/56.0 42.0/57.0 49.0/48.0 53.0/44.0 61.0/34.0 73.0

w/o Conflict Removal

54.0/6.0 61.0/12.0 72.0/3.0 66.0/2.0 43.0/47.0 81.0

w/o Internal Knowledge

69.0/6.0 61.0/10.0 67.0/6.0 72.0/8.0 51.0/32.0 67.0

w/o Self Assessment

64.0/5.0 59.0/8.0 65.0/6.0 67.0/5.0 55.0/32.0 65.0

67.0/4.0 71.0/4.0 70.0/7.0 69.0/5.0 66.0/18.0 74.0

3.0/97.0 3.0/96.0 5.0/94.0 7.0/93.0 28.0/70.0 79.0

w/o K-Means 51.0/47.0 53.0/44.0 53.0/42.0 64.0/32.0 83.0/11.0 86.0

w/o Conflict Removal

77.0/7.0 64.0/18.0 72.0/7.0 78.0/6.0 45.0/47.0 70.0

w/o Internal Knowledge

80.0/6.0 75.0/13.0 73.0/10.0 69.0/12.0 54.0/35.0 75.0

w/o Self Assessment

86.0/4.0 78.0/12.0 80.0/8.0 86.0/5.0 74.0/19.0 86.0

qeios.com doi.org/10.32388/Z4DWHQ 26

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Dataset Defense

Poison-

(100%)

Poison-

(80%)

Poison-

(60%)

Poison-

(40%)

Poison-

(20%)

Poison-

(0%)

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

/ ASR

ACC

TrustRAG

Table 8. Ablaiton Studies

Appendix D. Prompt Template for TrustRAG

D.1. Prompt for Internal Knowledge Generation

Figure 5. The embedding distribution of retrieved documents.

↑

↓

↑

↓

↑

↓

↑

↓

↑

↓

↑

87.0/5.0 84.0/8.0 85.0/7.0 85.0/7.0 83.0/11.0 85.0

qeios.com doi.org/10.32388/Z4DWHQ 27

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

D.2. Prompt for Knowledge Consolidation

D.3. Prompt for Final Answer

Footnotes

1 https://github.com/InternLM/lmdeploy.

References

1. a, bChen J, Lin H, Han X, Sun L (2024). "Benchmarking large language models in retrieval-augmented generat

ion". Proceedings of the AAAI Conference on Artificial Intelligence. 38: 17754–17762.

2. ^Gao Y, Xiong Y, Gao X, Jia K, Pan J, Bi Y, Dai Y, Sun J, Wang H (2023). "Retrieval-augmented generation for la

rge language models: A survey". arXiv preprint arXiv:2312.10997.

3. a, bLewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, Küttler H, Lewis M, Yih W-t, Rocktäschel T, et al.

Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processi

ng Systems. 33:9459-9474, 2020.

qeios.com doi.org/10.32388/Z4DWHQ 28

https://github.com/InternLM/lmdeploy
https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

4. a, bAchiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, Almeida D, Altenschmidt J, Altman S, Anadkat

S, et al. (2023). "Gpt-4 technical report". arXiv preprint arXiv:2303.08774. Available from: https://arxiv.org/ab

s/2303.08774.

5. ^Microsoft (2024). "Bing Chat". Available from: https://www.microsoft.com/en-us/edge/features/bing-chat.

6. ^AI Perplexity (2024). "Perplexity AI". Available from: https://www.perplexity.ai/.

7. ^Google (2024). "Generative AI in Search: Let Google do the searching for you". https://blog.google/products/s

earch/generative-ai-google-search-may-2024/.

8. a, bBBC (2024). "Glue pizza and eat rocks: Google AI search errors go viral". https://www.bbc.co.uk/news/articl

es/cd11gzejgz4o.

9. a, brocky (2024). "A retrieval corruption attack". Available from: https://x.com/r_cky0/status/1859656430888

026524?s=46&t=p9-0aPCrd_0h9-yuSXpN8g.

10. a, b, cGreshake K, Abdelnabi S, Mishra S, Endres C, Holz T, Fritz M. "Not what you've signed up for: Compromisi

ng real-world llm-integrated applications with indirect prompt injection". Proceedings of the 16th ACM Works

hop on Artificial Intelligence and Security. 2023:79-90.

11. a, b, c, dZhong Z, Huang Z, Wettig A, Chen D (2023). "Poisoning retrieval corpora by injecting adversarial passa

ges". arXiv preprint arXiv:2310.19156.

12. a, b, c, dTan Z, Zhao C, Moraffah R, Li Y, Wang S, Li J, Chen T, Liu H (2024). "Glue pizza and eat rocks"--Exploit

ing vulnerabilities in retrieval-augmented generative models. arXiv preprint arXiv:2406.19417.

13. a, b, c, d, e, f, gZou W, Geng R, Wang B, Jia J (2024). "Poisonedrag: Knowledge corruption attacks to retrieval-au

gmented generation of large language models". arXiv preprint arXiv:2402.07867.

14. a, b, c, d, e, fShafran A, Schuster R, Shmatikov V (2024). "Machine Against the RAG: Jamming Retrieval-Augme

nted Generation with Blocker Documents". arXiv preprint arXiv:2406.05870.

15. a, bXiang C, Wu T, Zhong Z, Wagner D, Chen D, Mittal P (2024). "Certifiably Robust RAG against Retrieval Corr

uption". arXiv preprint arXiv:2405.15556.

16. a, bWei Z, Chen WL, Meng Y (2024). "InstructRAG: Instructing Retrieval-Augmented Generation with Explicit D

enoising". arXiv preprint arXiv:2406.13629.

17. a, b, c, d, eWang F, Wan X, Sun R, Chen J, Arık SÖ (2024). "Astute rag: Overcoming imperfect retrieval augmenta

tion and knowledge conflicts for large language models". arXiv preprint arXiv:2410.07176.

18. a, bLin C-Y (2004). "ROUGE: A Package for Automatic Evaluation of Summaries." In: Text Summarization Bran

ches Out. Barcelona, Spain: Association for Computational Linguistics; p. 74-81. Available from: https://aclanth

ology.org/W04-1013.

qeios.com doi.org/10.32388/Z4DWHQ 29

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

19. a, bSun Z, Wang X, Tay Y, Yang Y, Zhou D (2022). "Recitation-augmented language models". arXiv preprint ar

Xiv:2210.01296.

20. a, bYu W, Iter D, Wang S, Xu Y, Ju M, Sanyal S, Zhu C, Zeng M, Jiang M (2022). "Generate rather than retrieve: L

arge language models are strong context generators". arXiv preprint arXiv:2209.10063.

21. ^Touvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, Bashlykov N, Batra S, Bhargava P, Bhosale S, et

al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288. 2023.

22. ^Mistral-Nemo (2024). "Mistral-Nemo-Instruct-2407". Available from: https://huggingface.co/mistralai/Mis

tral-Nemo-Instruct-2407.

23. ^Zhou Y, Liu Y, Li X, Jin J, Qian H, Liu Z, Li C, Dou Z, Ho T-Y, Yu PS (2024). "Trustworthiness in retrieval-augm

ented generation systems: A survey". arXiv preprint arXiv:2409.10102.

24. ^Guu K, Lee K, Tung Z, Pasupat P, Chang M. "Retrieval augmented language model pre-training." In: Internati

onal conference on machine learning. PMLR; 2020. p. 3929-3938.

25. ^Izacard G, Lewis P, Lomeli M, Hosseini L, Petroni F, Schick T, Dwivedi-Yu J, Joulin A, Riedel S, Grave E (2023).

"Atlas: Few-shot learning with retrieval augmented language models". Journal of Machine Learning Research.

24 (251): 1--43.

26. ^Zheng HS, Mishra S, Chen X, Cheng HT, Chi EH, Le QV, Zhou D (2023). "Take a step back: Evoking reasoning v

ia abstraction in large language models". arXiv preprint arXiv:2310.06117.

27. ^Dai Z, Zhao VY, Ma J, Luan Y, Ni J, Lu J, Bakalov A, Guu K, Hall KB, Chang MW (2022). "Promptagator: Few-s

hot dense retrieval from 8 examples". arXiv preprint arXiv:2209.11755.

28. ^Glass M, Rossiello G, Chowdhury MF, Naik AR, Cai P, Gliozzo A (2022). "Re2G: Retrieve, rerank, generate". ar

Xiv preprint arXiv:2207.06300. Available from: https://arxiv.org/abs/2207.06300.

29. ^Chen H, Pasunuru R, Weston J, Celikyilmaz A (2023). "Walking down the memory maze: Beyond context limit

through interactive reading". arXiv preprint arXiv:2310.05029.

30. ^Kim J, Nam J, Mo S, Park J, Lee S-W, Seo M, Ha J-W, Shin J (2024). "SuRe: Summarizing Retrievals using Ans

wer Candidates for Open-domain QA of LLMs". arXiv preprint arXiv:2404.13081.

31. ^Chen Z, Xiang Z, Xiao C, Song D, Li B (2024). "Agentpoison: Red-teaming llm agents via poisoning memory o

r knowledge bases". arXiv preprint arXiv:2407.12784.

32. ^RoyChowdhury A, Luo M, Sahu P, Banerjee S, Tiwari M (2024). "Confusedpilot: Confused deputy risks in rag-

based llms". arXiv preprint arXiv:2408.04870.

33. ^Chen Z, Liu J, Liu H, Cheng Q, Zhang F, Lu W, Liu X (2024). "Black-Box Opinion Manipulation Attacks to Retri

eval-Augmented Generation of Large Language Models". arXiv preprint arXiv:2407.13757.

qeios.com doi.org/10.32388/Z4DWHQ 30

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

34. ^Xue J, Zheng M, Hu Y, Liu F, Chen X, Lou Q (2024). "BadRAG: Identifying Vulnerabilities in Retrieval Augment

ed Generation of Large Language Models". arXiv preprint arXiv:2406.00083.

35. ^Cheng P, Ding Y, Ju T, Wu Z, Du W, Yi P, Zhang Z, Liu G (2024). "TrojanRAG: Retrieval-Augmented Generatio

n Can Be Backdoor Driver in Large Language Models". arXiv preprint arXiv:2405.13401.

36. ^Long Q, Deng Y, Gan L, Wang W, Pan SJ (2024). "Backdoor attacks on dense passage retrievers for disseminati

ng misinformation". arXiv preprint arXiv:2402.13532.

37. a, bJelinek F. Interpolated estimation of Markov source parameters from sparse data. In: Proc. Workshop on Pat

tern Recognition in Practice, 1980, 1980.

38. a, bJain N, Schwarzschild A, Wen Y, Somepalli G, Kirchenbauer J, Chiang P-y, Goldblum M, Saha A, Geiping J, G

oldstein T. "Baseline defenses for adversarial attacks against aligned language models". arXiv preprint arXiv:2

309.00614. 2023.

39. ^Ebrahimi J, Rao A, Lowd D, Dou D (2017). "Hotflip: White-box adversarial examples for text classification". ar

Xiv preprint arXiv:1712.06751.

40. a, bBai Y, Kadavath S, Kundu S, Askell A, Kernion J, Jones A, Chen A, Goldie A, Mirhoseini A, McKinnon C, et al.

(2022). "Constitutional ai: Harmlessness from ai feedback". arXiv preprint arXiv:2212.08073.

41. a, bKwiatkowski T, Palomaki J, Redfield O, Collins M, Parikh A, Alberti C, Epstein D, Polosukhin I, Devlin J, Lee

K, et al. Natural questions: a benchmark for question answering research. Transactions of the Association for C

omputational Linguistics. 7: 453–466, 2019.

42. a, bYang Z, Qi P, Zhang S, Bengio Y, Cohen WW, Salakhutdinov R, Manning CD (2018). "HotpotQA: A dataset for

diverse, explainable multi-hop question answering". arXiv preprint arXiv:1809.09600.

43. a, bBajaj P, Campos D, Craswell N, Deng L, Gao J, Liu X, Majumder R, McNamara A, Mitra B, Nguyen T, et al. A

human generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268. 2018.

44. ^Gao T, Yao X, Chen D (2021). "Simcse: Simple contrastive learning of sentence embeddings". arXiv preprint ar

Xiv:2104.08821. Available from: https://arxiv.org/abs/2104.08821.

45. ^Devlin J (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding". arXiv pr

eprint arXiv:1810.04805.

46. ^Chen J, Xiao S, Zhang P, Luo K, Lian D, Liu Z. BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi

-Granularity Text Embeddings Through Self-Knowledge Distillation. 2024. Available from: arXiv:2402.03216.

47. ^Alon G, Kamfonas M (2023). "Detecting language model attacks with perplexity". arXiv preprint arXiv:2308.1

4132. Available from: https://arxiv.org/abs/2308.14132.

48. ^Huang Y, Chen S, Cai H, Dhingra B (2024). "Enhancing Large Language Models' Situated Faithfulness to Exte

rnal Contexts". arXiv preprint arXiv:2410.14675.

qeios.com doi.org/10.32388/Z4DWHQ 31

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/Z4DWHQ 32

https://www.qeios.com/
https://doi.org/10.32388/Z4DWHQ

