Qeios

Inequalities for m-Divisible Distributions

Lev B. Klebanov, ${ }^{a}$ Ashot V. Kakosyan ${ }^{b}$

Abstract

We state some inequalities for m-divisible and infinite divisible characteristic functions. Basing on them we propose corresponding inequalities for their moments of non-integer order. Key words: infinite divisible distributions; characteristic functions; inequalities for characteristic functions.

1 Inequalities for characteristic functions. Estimates from below

Let $f(t)$ be the characteristic function of a distribution on a real line. We say that $f(t)$ is m-divisible (m is positive integer) if $f^{1 / m}(t)$ is a characteristic function as well. The function $f(t)$ is infinitely divisible if it is m-divisible for all positive integers m. Properties of infinitely divisible characteristic functions were well-studied (see, for example, [3]). In particular, any probability distribution with a compact support is not infinitely divisible. However, this is not true for m-divisible distributions. Let us take arbitrary distribution with a compact support. Denote its characteristic function by $g(t)$ and define $f(t)=g^{m}(t)$. Clearly, $f(t)$ is m-divisible characteristic function of a distribution with compact support. Let us start with the case of arbitrary symmetric distribution having compact support.

[^0]Theorem 1.1. Let $g(t)$ be a characteristic function of an even non-degenerate distribution function having its support in interval $[-A, A], A>0$. Then the inequality

$$
\begin{equation*}
\cos (\sigma \cdot t) \leq g(t) \tag{1.1}
\end{equation*}
$$

holds for all $t \in(-4.49 / A, 4.49 / A)$. Here σ is standard deviation of the distribution with characteristic function $g(t)$.

Proof. Denote by $G(x)$ a distribution function corresponding to the characteristic function $g(t)$. We have

$$
\begin{equation*}
g(t)=\int_{-A}^{A} \cos (t x) d G(x)=\int_{0}^{A} \cos (t x) d \tilde{G}(x)=\int_{0}^{A^{2}} \cos (t \sqrt{y}) d H(y) \tag{1.2}
\end{equation*}
$$

where $\tilde{G}(x)=2(G(x)-1 / 2)$ and $H(y)=\tilde{G}(\sqrt{y})$. In view of the fact that $\cos (t)$ is an even function we can consider positive values of t only.

It is not difficult to see that the function $\cos (t \sqrt{y})$ is convex in y for the case when $0 \leq t \sqrt{y} \leq z_{o}$, where z_{o} is the first positive root of the equation $\sin z-z \cos z=0$. Numerical calculations show that $z_{o}>4.49$. For the case of $|t| \leq 4.49 / A$ let us apply Jensen inequality to (1.2). We obtain

$$
g(t)=\int_{0}^{A^{2}} \cos (t \sqrt{y}) d H(y) \geq \cos \left(t \sqrt{\int_{0}^{A^{2}} y d H(y)}\right)=\cos (\sigma t)
$$

The condition of support compactness may be changed by the restriction of absolute fifth-moment existence. Namely, the following result holds.

Theorem 1.2. Let $G(x)$ be a symmetric probability distribution function. Denote by a_{j} its absolute moments and suppose that a_{10} is finite. Denote by $g(t)$ corresponding characteristic function and $\sigma^{2}=a_{2}$. Then we have

$$
\begin{equation*}
\cos (\sigma t) \leq g(t) \tag{1.3}
\end{equation*}
$$

for all $|t| \leq 5\left(a_{4}-\sigma^{4}\right) /\left(\sigma^{10}+2 \sigma^{5} a_{5}+a_{10}\right)^{1 / 2}$.
Proof. Suppose that $g(t)$ is not identical to $\cos (\sigma t)$. Define

$$
\varphi(t)=g(t)-\cos (\sigma t)
$$

It is easy to verify that $\varphi(t)$ and its derivatives at the point $t=0$ satisfy

$$
\varphi^{(k)}(0)=0, \quad \text { for } \quad k=0,1,2,3
$$

and $\varphi^{(4)}(0)=a_{4}-a_{2}^{2}>0$. Therefore, $\varphi^{(4)}(t)$ is positive in some neighborhood of the point $t=0$ and, consequently, $\varphi(t)$ is non-negative at least in some neighborhood obtained by means of forth times integration. Our aim now is to estimate the length of the interval for $\varphi^{(4)}(t)$ positiveness. For this consider derivative of $\varphi^{(4)}(t)$ that is $\varphi^{(5)}(t)$. We have

$$
\begin{gathered}
\left|\varphi^{(5)}(t)\right|=\left|\int_{-\infty}^{\infty}\left(\sigma^{5} \sin (\sigma t)-\sin (t x) x^{5}\right) d G(x)\right| \leq \\
\leq\left(\int_{-\infty}^{\infty}\left(\sigma^{5} \sin (\sigma t)-\sin (t x) x^{5}\right)^{2} d G(x)\right)^{1 / 2} \leq\left(\sigma^{10}+2 \sigma^{5} a_{5}+a_{10}\right)^{1 / 2} .
\end{gathered}
$$

In view of the facts that $\varphi^{(4)}(0)=a_{4}-\sigma^{4}>0$ we see that $\varphi^{(4)}(t) \geq 0$ on the interval $\left[0,\left(a_{4}-\sigma^{4}\right) /\left(\sigma^{10}+2 \sigma^{5} a_{5}+a_{10}\right)^{1 / 2}\right]$, and, because of symmetry, on interval $-\left(a_{4}-\sigma^{4}\right) /\left(\sigma^{10}+2 \sigma^{5} a_{5}+a_{10}\right)^{1 / 2},\left(a_{4}-\sigma^{4}\right) /\left(\sigma^{10}+2 \sigma^{5} a_{5}+a_{10}\right)^{1 / 2}$. This guarantees that

$$
\varphi(t) \geq \frac{t^{4}}{24}\left(\left(a_{4}-\sigma^{4}\right)-\left(\sigma^{10}+2 \sigma^{5} a_{5}+a_{10}\right)^{1 / 2} t / 5\right)
$$

From this and the symmetry of $\varphi(t)$ follows the result.
Let us turn to the of m-divisible distribution with compact support.
Theorem 1.3. Let $f(t)$ be a characteristic function of m-divisible symmetric distribution having compact support in $[-A, A], A>0$ and standard deviation σ. Then

$$
\begin{equation*}
\cos ^{m}(\sigma t / \sqrt{m}) \leq f(t) \tag{1.4}
\end{equation*}
$$

for $|t| \leq \min (4.49 m / A, \pi \sqrt{m} /(2 \sigma))$.
Proof. Denote $g(t)=f^{1 / m}(t)$. It is clear that:

1. $g(t)$ is a symmetric characteristic function;
2. $m \sigma^{2}(g)=\sigma^{2}(f)=\sigma^{2}$ (because variance of sum of independent random variables equals to the sum of their variances);
3. distribution with characteristic function g has compact support in $[-A / m, A / m]$ (see, for example, [2], Theorem 3.2.1).

Applying Theorem 1.1 to the function $g(t)$ we find

$$
\cos (\sigma t / \sqrt{m}) \leq g(t)=f^{1 / m}(t)
$$

for $|t| \leq 4.49 m / A$. However, for $|t| \leq \min (4.49 m / A, \pi \sqrt{m} /(2 \sigma))$ the left hand side of previous inequality is non-negative and we come to the conclusions of Theorem 1.3.

Note that $\cos (\sigma t / \sqrt{m})$ is monotone increasing in m for $|t| \leq \pi \sqrt{m} /(2 \sigma)$ and, therefore the estimator (1.5) is more precise than (1.1).

Let us give a little bit different result.
Theorem 1.4. Let $f(t)$ be a characteristic function of m-divisible symmetric distribution having finite tenth moment a_{10}. Then

$$
\begin{equation*}
\cos ^{m}(\sigma t / \sqrt{m}) \leq f(t) \tag{1.5}
\end{equation*}
$$

for $|t| \leq \min (C \sqrt{m}, \pi \sqrt{m} /(2 \sigma))$, where positive C depends on absolute moments $a_{k},(k=1, \ldots, 10)$ only.

Proof. Denote $g(t)=f^{1 / m}(t)$. It is clear that:

1. $g(t)$ is a symmetric characteristic function;
2. $m \sigma^{2}(g)=\sigma^{2}(f)=\sigma^{2}$ (because variance of sum of independent random variables equals to the sum of their variances);
3. distribution with characteristic function g has finite absolute moments up to tenth order (see, for example, [2]).

It is not difficult to verify that

$$
\begin{equation*}
a_{k, m} \sim a_{k} / m \quad \text { as } \quad m \rightarrow \infty, \tag{1.6}
\end{equation*}
$$

where $a_{k, m}$ is k th absolute moment of g. To finish the proof it is enough to apply Theorem 1.2 and the relation (1.6).

Consider now the case of infinitely divisible distribution.

Theorem 1.5. Let $f(t)$ be a symmetric infinite divisible characteristic function with finite second moment σ^{2}. Then

$$
\begin{equation*}
\exp \left\{-\sigma^{2} t^{2} / 2\right\} \leq f(t) \tag{1.7}
\end{equation*}
$$

for all $t \in \mathbb{R}^{1}$.
Proof. If $f(t)$ has finite tenth moment it is sufficient pass to limit in (1.5) as $m \rightarrow \infty$. In general case one can approximate f by infinitely divisible characteristic functions with finite tenth moment.

Another proof. Kolmogorov representation formula (see, for example [3]) for $f(t)$ allows us to rewrite (1.7) in the form

$$
\exp \left\{-\sigma^{2} t^{2} / 2\right\} \leq \exp \left\{-\int_{-\infty}^{\infty}(1-\cos (t x)) / x^{2} d K(x)\right\}
$$

or, equivalently,

$$
\begin{equation*}
\int_{-\infty}^{\infty}(1-\cos (t x)) / x^{2} d K(x) \leq \sigma^{2} t^{2} / 2 \tag{1.8}
\end{equation*}
$$

However,

$$
2(1-\cos (t x)) / x^{2} \leq 4 \sin ^{2}\left(\frac{t x}{2}\right) / x^{2} \leq t^{2}
$$

This leads to (1.8) with

$$
\sigma^{2}=\int_{-\infty}^{\infty} d K(x)=-f^{\prime \prime}(0)
$$

From the last proof it follows that if the equality in (1.7) attends in a point $t_{o} \neq 0$ then it holds for all $t \in \mathbb{R}^{1}$.

Theorem 1.5 shows an extreme property of Gaussian distribution among the class of infinite divisible distributions with finite second moment. Another extreme property without any moment conditions was given in [1]. Let us give this result here.

Theorem 1.6. Let $f(t)$ be a symmetric infinite divisible characteristic function. Then

$$
\begin{equation*}
f(t) \geq f^{4}(t / 2) \tag{1.9}
\end{equation*}
$$

for all $t \in R^{1}$. If the equality in (1.9) attends in a point $t_{o} \neq 0$ then it holds for all $t \in \mathbb{R}^{1}$

Proof. From Lévy-Khinchin representation we have

$$
\begin{aligned}
f(t) & =\exp \left\{-\int_{-\infty}^{\infty}(1-\cos (t x)) \frac{1+x^{2}}{x^{2}} d \Theta(x)\right\} \\
f^{4}(t / 2) & =\exp \left\{-4 \int_{-\infty}^{\infty}(1-\cos (t x / 2)) \frac{1+x^{2}}{x^{2}} d \Theta(x)\right\}
\end{aligned}
$$

However,

$$
\begin{gathered}
1-\cos (t x)=2 \sin ^{2}(t x / 2)=8 \sin ^{2}(t x / 4) \cos ^{2}(t x / 4) \leq \\
\leq 8 \sin ^{2}(t x / 4)=4(1-\cos (t x / 2))
\end{gathered}
$$

Let us note that Theorem 1.5 may be obtained from Theorem 1.6. Really, assuming the existence of finite second moment we have

$$
f(t) \geq f^{4}(t / 2) \geq f^{4^{2}}\left(t / 2^{2}\right) \geq \ldots \geq f^{4^{k}}\left(t / 2^{k}\right) \rightarrow \exp \left\{-\sigma^{2} t^{2} / 2\right\}
$$

as $k \rightarrow \infty$. This proves the inequality (1.7).

2 Inequalities for characteristic functions. Estimates from above

Our aim here is to proof the following result.
Theorem 2.1. Let $g(t)$ be a characteristic function of an even non-degenerate function having its support in interval $[-A, A], A>0$. Then the inequality

$$
\begin{equation*}
g(t) \leq \cos \left(a_{1 / \gamma}^{\gamma} \cdot t\right) \tag{2.10}
\end{equation*}
$$

holds for all $t \in\left(-\pi /\left(2 A^{\gamma}\right), \pi /\left(2 A^{\gamma}\right)\right)$. Here $a_{1 / \gamma}$ is absolute moment of the order $1 / \gamma$ of the distribution with characteristic function $g(t)$, and $\gamma>1$.
Proof. Denote by $G(x)$ probability distribution function corresponding to characteristic function $g(t)$. Set $\tilde{G}(x)=2(G(x k)-1 / 2), H(y)=\tilde{G}\left(y^{\gamma}\right)$. We have

$$
\begin{aligned}
g(t)= & \int_{-A}^{A} \cos (t x) d G(x)=\int_{0}^{A} \cos (t x) d \tilde{G}(x)= \\
& =\int_{0}^{A} \cos \left(t y^{\gamma}\right) d H(y) \leq \cos \left(a_{1 / \gamma}^{\gamma} \cdot t\right)
\end{aligned}
$$

for all $|t| \leq \pi /\left(2 A^{\gamma}\right)$. Here we used the fact that the function $\cos \left(t y^{\gamma}\right)$ is concave in y if $0 \leq y|t| \leq \pi / 2$ and applied Jensen inequality.

3 Inequalities for some moments of infinitely divisible distributions

Let us give some inequalities comparing the moments of infinitely divisible distributions with corresponding characteristics of Gaussian distribution.

Theorem 3.1. Let X be a random variable having symmetric infinitely divisible distribution with finite second moment. Suppose that $0<r<2$. Then

$$
\begin{equation*}
\mathbb{E}|X|^{r} \leq \mathbb{E}|Y|^{r}=\frac{2^{r / 2} \sigma^{r} \Gamma((1+r) / 2)}{\sqrt{\pi}} \tag{3.1}
\end{equation*}
$$

where random variable Y has symmetric Gaussian distribution with the same second moment σ^{2} as X. The equality in (3.1) attends if and only if X has Gaussian distribution.

Proof. Recall that if Z is a random variable with characteristic function $h(t)$ then

$$
\mathbb{E}|Z|^{r}=C_{r} \int_{0}^{\infty} \frac{1-\operatorname{Re}(h(t))}{t^{r+1}} d t
$$

where C_{r} depends on r only $(0<r<2)$. From (1.7) it follows that

$$
1-\exp \left\{-\sigma^{2} t^{2} / 2\right\} \geq 1-f(t)
$$

and

$$
C_{r} \int_{0}^{\infty} \frac{1-\exp \left(-\sigma^{2} t^{2} / 2\right)}{t^{r+1}} d t \geq C_{r} \int_{0}^{\infty} \frac{1-f(t)}{t^{r+1}} d t
$$

References

[1] A.V. Kakosyan, L.B. Klebanov, S.T. Rachev (1988) Qualitative Criteria of Convergence of Probability Measures, Ayastan, Yerevan (in Russian).
[2] Ju.V. Linnik, I.V. Ostrovskii (1972) Decomposition of Random Variables and Vectors, Nauka (in Russian). English Translation, American Mathematical Society, Providence, Rhode Island, 1977.
[3] E. Lukacs (1970) Characteristic Functions, Griffin, London.

[^0]: ${ }^{a}$ Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic
 ${ }^{b}$ Yerevan State University, Yerevan, Armenia

