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Abstract. This paper is concerned a specific category of nonlocal fractional Laplacian
problems that involve nonsmooth potentials. By utilizing an abstract critical point theorem for
nonsmooth functionals and combining it with the analytical framework on fractional Sobolev
spaces developed by Servadei and Valdinoci, we are able to establish the existence of at least
three weak solutions for nonlocal fractional problems. Moreover, this work also generalizes and
improves upon certain results presented in the existing literature.
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1. Introduction

In this paper, we deal with the following nonlocal fractional Laplacian problem:{
− LKu ∈ ε∂F (x, u)− λ∂G(x, u) + ν∂H(x, u) in Ω,

u = 0 in Rn \ Ω,
(1.1)

where Ω is a bounded domain in (Rn, |.|) with a C2-boundary, n > 2s, s ∈ (0, 1), the maps
F,G,H : Ω × R are measurable potential functionals, which are only locally Lipschitz and in
general nonsmooth in the second variable. We denote by the generalized gradient of ∂F (x, u),
∂G(x, u) and ∂H(x, u) to u. Furthermore LK is the nonlocal operator defined as follows:

LKu(x) =

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))K(y)dy, x ∈ Rn,

where K : Rn \ {0} → (0,+∞) is a function which satisfies the following properties:

(K1) γK ∈ L1(Rn), where γ(x) = min{|x|2, 1};

(K2) there exists β > 0 such that K(x) ≥ β|x|−(n+2s);

(K3) K(x) = K(−x), for any x ∈ Rn \ {0}.

A typical example for the Kernel K is given by K(x) = |x|−(n+2s). In this case LK is the
fractional Laplacian operator defined by

−(−∆)su(x) =

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, x ∈ Rn.

♦This research is supported by the Natural Science Foundation of Hunan Province (Grant No. 2023JJ30559),
the Technology Plan Project of Guizhou (Grant No. [2020]1Y004), and the National Natural Science Foundation
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These operators have various applications in different fields, including phase transitions,
thin obstacles, finance, optimization, stratified materials, crystal dislocation, anomalous diffu-
sion, semipermeable membranes, soft thin films, ultra-relativistic limits of quantum mechanics,
multiple scattering, quasi-geostrophic flows, minimal surfaces, water waves, and materials sci-
ence. For a basic introduction to this topic, we recommend referring to the references [1] and
the monograph [2].

It is well-known that many free boundary problems and obstacle problems can be reduced
to partial differential equations with nonsmooth potentials. The field of nonsmooth analysis
is closely related to the development of critical points theory for nondifferentiable functions,
particularly for locally Lipschitz continuous functionals based on Clarke’s generalized gradient
[18]. This theory provides a suitable mathematical framework to extend the classic critical
point theory for C1-functionals in a natural way, and to meet specific needs in applications such
as nonsmooth mechanics and engineering. For a comprehensive understanding of this topic, we
recommend referring to the monographs by [3,4,24] and references such as [8–13], among others.

If F , G and H are differentiable, then problem (1.1) becomes into the following form{
− LKu = f(x, u) in Ω,

u = 0 in Rn \ Ω,
(1.2)

In recent years, there have been many interesting results focusing on problem (1.2) using various
methods. However, in our case, we only assume that the energy functional corresponding to
problem 1.1 is locally Lipschitz instead of differentiable. This assumption poses certain diffi-
culties and prevents us from applying classical variational methods to solve the problem. To
overcome these difficulties, we need to utilize theories for locally Lipschitz functionals to estab-
lish existence results for this case. Fortunately, in [32, Theorem 3.3] (see Theorem 2.1 below),
we have developed a nonsmooth three critical points theory that can be applied to prove that
problem 1.1 has at least three critical points (see Theorem 3.1). One remarkable aspect of our
results is that we do not impose any conditions on the behavior of the nonlinearities at the ori-
gin, which makes our results more interesting compared to most known results in the literature
(e.g., [5–7] et. al.).

Recently, there has been significant attention focused on the study of fractional and nonlocal
operators of elliptic type, both for pure mathematical research and with a view to concrete real-
world applications. In [26], Servadel and Valdinoci proved the following fractional Laplacian
equation: {

(−∆)su = f in Ω,

u = g in Rn \ Ω.
(1.3)

They proved a maximum principle and used it to obtain their regularity results. Autuori and
Pucci [21] discussed the elliptic problems involving the fractional Laplacian in RN and derived
three nontrivial critical values. Cabré and Sire [31] studied problem (1.3) and established nec-
essary conditions on the nonlinearity f to admit certain types of solutions. In [22], Bisci, using
variational methods, established three weak solutions via an abstract result by Ricceri about
non-local equations. However, all of these works are based on the assumption that the potential
functionals are smooth. To the best of our knowledge, there exist no results discussing prob-
lem (1.1) with nonsmooth potentials. For problems with nonsmooth potential functionals, most
results focus on studying the Dirichlet problem involving the p-Laplacian or p(x)-Laplacian d-
ifferential inclusion. For example, there exist some results studying the following problem with
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a nonsmooth potential in Sobolev spaces:{
− div(|∇u|p−2∇u) ∈ ∂F (x, u) for a.e. x ∈ Ω,

u
∣∣
∂Ω

= 0.
(1.4)

Gansiński and Papageorgiou [24], using a variational approach combined with suitable trunca-
tion techniques and the method of upper-lower solutions, proved the existence of at least five
nontrivial smooth solutions for problem (1.4). Iannizzotto and Marano [15], employing varia-
tional methods with truncation techniques, obtained at least three smooth solutions for problem
(1.4) with ∂F (x, u) given by λ∂F (x, u). Besides, Kyritsi and Papageorgiou [30], based on the
nonsmooth critical point theory of Chang [23], derived two strictly positive solutions with p ≥ 2.
In [14], Kristály, employing a nonsmooth Ricceri-type variational principle, proved the existence
of infinitely many, radially symmetric solutions of p-Laplacian differential inclusions in an un-
bounded domain. Results of p(x)-Laplacian differential inclusion can be found in [16,17,19,20].

However, we should mention that the variational method to deal with problem (1.1) is not
often easy to perform. Variational approaches do not work when applied to these classes of
equations due to the presence of the nonlocal term. Fortunately, our approach in this paper is
realizable by checking that the associated energy functional satisfies the assumptions requested
by a very recent and general nonsmooth three critical points theorem derived by Yuan and
Huang [32, Theorem 3.3] (see Theorem 2.1 below) and thanks to a suitable framework developed
in [27]. Furthermore, we observe a remarkable feature of our results: compared to most of the
known results in the classical Laplacian case, no condition on the behavior of the involved
nonlinearities at the origin is assumed. Therefore, our results are more interesting.

The rest of the paper is organized as follows. Section 2 contains the necessary preliminaries.
In Section 3, we prove our main results.

2. Preliminaries

Some basic notations

• ⇀ means weak convergence, → strong convergence.

• C denotes all the embedding constants (the exact value may be different from line to line).

In this section, we briefly recall the definition of the functional space X0, firstly introduced
in [28]. The functional space X denotes the linear of Lebesgue measurable functions from Rn
to R such that the restriction to Ω of any function g in X belongs to L2(Ω) and

((x, y)→ (g(x)− g(y))
√
K(x− y)) ∈ L2((Rn × Rn) \ (CΩ× CΩ),dxdy),

where CΩ = Rn \ Ω. We denote by X0 the following linear subspace of X

X0 = {g ∈ X : g = 0 a.a. in Rn \ Ω}.

Note that X and X0 are non-empty, since C2
0 (Ω) ⊆ X0 by Lemma 11 in [28]. Moreover, the

space X is endowed with the norm defined as

‖g‖X = ‖g‖L2(Ω) +

(∫
Q
|g(x)− g(y)|2K(x− y)dxdy

)1/2

,
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where Q = (Rn×Rn)\O and O = (CΩ)× (CΩ) ⊆ Rn×Rn. It is easy to see that ‖.‖X is a norm
on X (see, for instance [27]). By [27, Lemmas 6 and 7] we can take the function

X0 3 v → ‖v‖X0 =

(∫
Q
|v(x)− v(y)|2K(x− y)dxdy

)1/2

(2.1)

as norm on X0 in the sequel. Also (X0, ‖.‖X0) is a Hilbert space with scalar product

〈u, v〉X0 =

∫
Q

(u(x)− u(y))(v(x)− v(y))K(x− y)dxdy,

see [27, Lemma 7].
Note that in (2.1) (and in the related scalar product) the integral can be extended to all

Rn × Rn, since v ∈ X0 (and so v = 0 a.a. in Rn \ Ω). While for a general kernel K satisfying
conditions from (K1) to (K3) we have that X0 ⊂ Hs(Rn), in the model case K(x) = |x|−(n+2s)

the space X0 consists of all the functions of the usual fractional Sobolev space Hs(Rn) which
vanish a.a. outside Ω (see [29, Lemma 7]).

Here Hs(Rn) denotes the fractional Sobolev space endowed with the norm (the so-called
Gagliardo norm)

‖g‖Hs(Rn) = ‖g‖L2(Rn) +

(∫
Rn×Rn

|g(x)− g(y)|2

|x− y|n+2s
dxdy

)1/2

.

Recall the embedding properties of X0 into the usual Lebesgue spaces (see [27, Lemma 8]).
The embedding j : X0 ↪→ Lq(Rn) is continuous for any q ∈ [1, 2∗], while it is compact when
q ∈ [1, 2∗), where 2∗ = 2n

n−2s denotes the fractional critical Sobolev exponent. Hence, for any
q ∈ [1, 2∗] there exists a positive constant cq such that

‖v‖Lq(Rn) ≤ cq‖v‖X0 for any v ∈ X0.

In what follows, let λ1 be the 1-th eigenvalue of the operator −LK with homogenous Dirichlet
boundary data, namely the 1-th eigenvalue of the problem{

− LKu = λu in Ω,

u = 0 in Rn \ Ω.
(2.2)

Note that, as in the classical Laplacian case, the set of the eigenvalues of problem (2.2) consists
of a sequence {λk}k∈N with

0 < λ1 < λ2 ≤ . . . ≤ λk ≤ λk+1 ≤ . . . (2.3)

and
λk → +∞ as k →∞. (2.4)

Definition 2.1 A function I: X → R is locally Lipschitz if for every u ∈ X there exist a
neighborhood U of u and L > 0 such that for every ν, η∈ U

|I(ν)− I(η)| ≤ L‖ν − η‖.
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Definition 2.2 Let I : X → R be a locally Lipschitz function, u, ν ∈ X : the generalized
derivative of I in u along the direction ν,

I0(u; ν) = lim sup
η→u,τ→0+

I(η + τν)− I(η)

τ
.

It is easy to see that the function ν 7→ I0(u; ν) is sublinear, continuous and so is the support
function of a nonempty, convex and w∗− compact set ∂I(u) ⊂ X∗, defined by

∂I(u) = {u∗ ∈ X∗ : 〈u∗, ν〉X ≤ I0(u; ν) for all v ∈ X}.

If I ∈ C1(X), then
∂I(u) = {I ′(u)}.

Clearly, these definitions extend those of the Gâteaux directional derivative and gradient.

A point u ∈ X is a critical point of I, if 0 ∈ ∂I(u). It is easy to see that, if u ∈ X is a local
minimum of I, then 0 ∈ ∂I(u). For more details we refer the reader to Clarke [18].

Definition 2.3 We say that u ∈ X is a solution of problem (1.1) if there exist ξ(x, u) ∈ ∂F (x, u),
ζ(x, u) ∈ ∂G(x, u) and η(x, u) ∈ ∂H(x, u) for a.a. x ∈ Ω such that for all v ∈ X we have∫

Q
(u(x)− u(y))(v(x)− v(y))K(x− y)dxdy

= ε

∫
Ω
ξ(x, u)v(x)dx− λ

∫
Ω
ζ(x, u)v(x)dx+ ν

∫
Ω
η(x, u)v(x)dx.

Proposition 2.1( [18]) Let h : X → R be locally Lipschitz function. Then

(i) (−h)◦(u; z) = h◦(u;−z) for all u, z ∈ X;

(ii) h◦(u; z) = max{〈u∗, z〉X : u∗ ∈ ∂h(u)} ≤ L‖z‖ with L as in Definition 2.1, for all u, z ∈ X;

(iii) Let j : X → R be a continuously differentiable function. Then ∂j(u) = {j′(u)}, j◦(u; z)
coincides with 〈j′(u), z〉X and (h+ j)◦(u; z) = h◦(u; z) + 〈j′(u), z〉X for all u, z ∈ X;

(iv) (Lebourg’s mean value theorem) Let u and v be two points in X. Then, there exists a
point ω in the open segment between u and v, and u∗ω ∈ ∂h(ω) such that

h(u)− h(v) = 〈u∗ω, u− v〉X ;

(v) Let Y be a Banach space and j : Y → X a continuously differentiable function. Then h◦ j
is locally Lipschitz and

∂(h ◦ j)(u) ⊆ ∂h(j(y)) ◦ j′(y) for all y ∈ Y ;

(vi) If h1, h2 : X → R are locally Lipschitz, then

∂(h1 + h2)(u) ⊆ ∂h1(u) + ∂h2(u);
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(vii) ∂h(u) is convex and weakly∗ compact and the set-valued mapping ∂h : X → 2X
∗

is weakly∗

upper semicontinuous;

(viii) ∂(λh)(u) = λ∂h(u) for every λ ∈ R.

Let I, Ψ, Φ : X → R be three given functions, for each µ > 0 and r ∈] infX Φ, supX Φ[, we
set

h1(µI + Ψ,Φ, r) = inf
u∈Φ−1(]−∞,r[)

µI(u) + Ψ(u)− infu∈Φ−1(]−∞,r])(µI + Ψ)

r − Φ(u)

and

h2(µI + Ψ,Φ, r) = sup
u∈Φ−1(]r,+∞[)

µI(u) + Ψ(u)− infu∈Φ−1(]−∞,r])(µI + Ψ)

r − Φ(u)
.

When Ψ + Φ is bounded below, for each r ∈] infX Φ, supX Φ[ such that

inf
u∈Φ−1(]−∞,r])

I(u) < inf
u∈Φ−1(r)

I(u).

Set

h3(I,Ψ,Φ, r) = inf

{
Ψ(u)− γ + r

ηr − I(u)
: u ∈ X,Φ(u) < r, I(u) < ηr

}
,

where
γ = inf

u∈X
(Ψ(u) + Φ(u))

and
ηr = inf

u∈Φ−1(r)
I(u).

With the above notations, our abstract tool for proving the main result of our paper is [32,
Theorem 3.3] and we recall here for the readers’ convenience.

Theorem 2.1 Let (X, ‖ · ‖) be a reflexive Banach space, I ∈ C1(X,R) a sequentially weakly
lower semicontinuous function, bounded on any bounded subset of X, such that I ′ is of type
(S)+. Ψ and Φ : X → R are two locally Lipschitz functions with compact gradient. Assume also
that the function Ψ + λΦ is bounded below for all λ > 0 and that

lim inf
‖u‖→+∞

Ψ(u)

I(u)
= −∞. (2.5)

Then, for each r > supN Φ, where N is the set of all global minima of I, for each µ >
max{0, h3(I,Ψ,Φ, r)} and each compact interval [a, b] ⊂]0, h2(µI+ Ψ,Φ, r)[, there exists a num-
ber ρ > 0 with the following property: for every λ ∈ [a, b] and every locally Lipschitz function
H : X → R with compact gradient, there exists δ > 0 such that, for each ν ∈ [0, δ], the function
µI(u) + Ψ(u) + λΦ(u) + νH(u) has at least three critical points in X whose norms are less than
ρ.
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3. The main results

Firstly, we define I(u),Ψ(u),Φ(u), H̃(u) : X0 7→ R by

I(u) =
‖u‖2X0

2
, Ψ(u) = −F (u), F (u) =

∫
Ω
F (x, u)dx,

Φ(u) =

∫
Ω
G(x, u)dx, H̃(u) =

∫
Ω
H(x, u)dx

for all u ∈ X. It is easy to see that the functional I is a continuously Gâteaux differentiable
whose Gâteaux derivative at the point u ∈ X0 is the functional I ′(u) ∈ X∗0 given by

〈I ′(u), v〉 =

∫
Q

(u(x)− u(y))(v(x)− v(y))K(x− y)dxdy

for all v ∈ X0. For each r ∈] infX Φ, supX Φ[, set

h∗3(I,Ψ,Φ, r) = inf

{
Ψ(u)− γ̂ + r

η̂r − I(u)
: u ∈ X,Φ(u) < r, I(u) < η̂r

}
,

where

γ̂ =

∫
Ω

inf
u∈R

(G(x, u)− F (x, u))dx,

and
η̂r = inf

u∈Φ−1(r)
I(u).

For each ε ∈
]
0, 1

max{0,h∗3(I,Ψ,Φ,r)}
[
, let

h∗2(I + Ψ,Φ, r) = sup
u∈Φ−1(]r,+∞[)

I(u) + εΨ(u)− infΦ−1(]−∞,r])(I + εΨ)

r − Φ(u)
.

In order to discuss problem (1.1), we need the following hypotheses:

(F1) for all u ∈ R, Ω 3 x 7→ F (x, u) is measurable;

(F2) for a.a. x ∈ Ω, R 3 u 7→ F (x, u) is locally Lipschitz;

(F3) |ξ| ≤ k1(1 + |u|q1−1) for a.a. x ∈ Ω and every u ∈ R, ξ(x, u) ∈ ∂F (x, u) (k1 > 0, q1 ∈
(2, 2∗));

(F4)

lim
|u|→+∞

infx∈Ω F (x, u)

u2
= +∞ and lim

|u|→+∞

supx∈Ω F (x, u)

|u|α
< +∞,

where α ∈ (2, 2∗);

(G1) for all u ∈ R, Ω 3 x 7→ G(x, u) is measurable;

(G2) for a.a. x ∈ Ω, R 3 u 7→ G(x, u) is locally Lipschitz;

(G3) |ζ| ≤ k2(1 + |u|q2−1) for a.a. x ∈ Ω and every u ∈ R, ζ(x, u) ∈ ∂G(x, u) (k2 > 0, q2 ∈
(2, 2∗));
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(G4)

lim
|u|→+∞

infx∈ΩG(x, u)

|u|α
= +∞,

where α ∈ (2, 2∗);

(H1) for all u ∈ R, Ω 3 x 7→ H(x, u) is measurable;

(H2) for a.a. x ∈ Ω, R 3 u 7→ H(x, u) is locally Lipschitz;

(H3) |η| ≤ k3(1 + |u|q3−1) for a.a. x ∈ Ω and every u ∈ R, η(x, u) ∈ ∂H(x, u) (k3 > 0, q3 ∈
(2, 2∗)).

Remark 3.1 It is easy to see that there exist lots of functions which satisfy hypotheses (F1)-
(F4), (G1)-(G4) and (H1)-(H4). For example, for simplicity, we drop the x-dependence.

F (u) =

{
|u|, |u| < 1,

|u|2+a1 , |u| ≥ 1,
G(u) =

{
|u|, |u| < 1,

|u|α+a2 , |u| ≥ 1,
and H(u) = |u|,

where 0 < a1 < α− 2, 0 < a2 < 2∗ − α.

Lemma 3.1 If hypotheses (K1)− (K3) hold, then

(i) I ′ : X0 → X∗0 is a continuous, bounded and strictly monotone operator;

(ii) I ′ is a mapping of type (S+), i.e., if un ⇀ u in X0 and limn→+∞〈I ′(un)−I ′(u), un−u〉 ≤ 0,
then un → u in X0.

Proof. (i) By virtue of the properties of (K1) − (K3), it is obvious that I ′ is continuous and
bounded. Note that

〈I ′(u), u〉 =

∫
Q
|u(x)− u(y)|2K(x− y)dxdy,

〈I ′(u), v〉 = 〈I ′(v), u〉 =

∫
Q

(u(x)− u(y))(v(x)− v(y))K(x− y)dxdy,

〈I ′(v), v〉 =

∫
Q
|v(x)− v(y)|2K(x− y)dxdy,

then, we have

〈I ′(u)− I ′(v), u− v〉
= 〈I ′(u), u〉 − 〈I ′(u), v〉 − 〈I ′(v), u〉+ 〈I ′(v), v〉

=

∫
Q

[(u(x)− u(y))2 − 2(u(x)− u(y))(v(x)− v(y)) + (v(x)− v(y))2]K(x, y)dxdy

=

∫
Q

[(u(x)− u(y))− (v(x)− v(y))]2K(x, y)dxdy ≥ 0,

(3.1)

i.e., I ′ is monotone. In fact I ′ is strictly monotone. Indeed, if 〈I ′(u)− I ′(v), u− v〉 = 0, then we
have ∫

Q
[(u(x)− u(y))− (v(x)− v(y))]2K(x, y)dxdy = 0,
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so u ≡ v. Therefore, 〈I ′(u)−I ′(v), u−v〉 > 0 if u 6= v. This means that I ′ is a strictly monotone
operator in X.

(ii) From (i), if un ⇀ u and limn→+∞〈I ′(u) − I ′(v), u − v〉 ≤ 0, then limn→+∞〈I ′(u) −
I ′(v), u − v〉 = 0. According to (3.1), un → u in Ω, so we obtain a subsequence (which we still
denoted by un) satisfying un → u a.a. x ∈ Ω. From Fadou’s lemma, we have

limn→+∞

∫
Q
|un(x)− un(y)|2K(x, y)dxdy ≥

∫
Q
|u(x)− u(y)|2K(x, y)dxdy. (3.2)

By un ⇀ u we derive

lim
n→+∞

〈I ′(un), un − u〉 = lim
n→+∞

〈I ′(un)− I ′(u), un − u〉 = 0. (3.3)

On the other hand, we also have

〈I ′(un), un − u〉

=

∫
Q

[(un(x)− un(y))− (u(x)− u(y))](un(x)− un(y))K(x− y)dxdy

=

∫
Q

[(un(x)− un(y))2 − (un(x)− un(y))(u(x)− u(y))]K(x− y)dxdy

≥
∫
Q

K(x− y)

2
[|un(x)− un(y)|2 − |u(x)− u(y)|2]dxdy.

(3.4)

In view of (3.2), (3.3) and (3.4), we have

lim
n→+∞

∫
Q
K(x− y)|un(x)− un(y)|2dxdy =

∫
Q
K(x− y)|u(x)− u(y)|2dxdy.

Therefore, un → u in X0, i.e., I ′ is of type (S+). �

The next Lemma displays some properties of F (u).

Lemma 3.2 If hypotheses (F1) − (F3) hold, then F : X → R is a locally Lipschitz function
with compact gradient.

Proof. Firstly we show that F is locally Lipschitz. Let u, v ∈ X0. According to the Lebourg’s
mean value theorem, we have

|F (u)−F (v)| ≤
∫

Ω
|F (x, u(x))− F (x, v(x))|dx

≤
∫

Ω
k1(1 + |u(x)|q1−1 + 1 + |v(x)|q1−1)|u(x)− v(x)|dx

≤ k1C‖u− v‖L2(Ω) + k1(‖u‖q1−1
Lq1 (Ω) + ‖v‖q1−1

Lq1 (Ω))‖u− v‖Lq1 (Ω)

≤ k1C‖u− v‖X0 + k1C(‖u‖q1−1
X0

+ ‖v‖q1−1
X0

)‖u− v‖X0 .

Then it is easy to see that F is locally Lipschitz.
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Next, we prove that ∂F is compact. Choosing u ∈ X0, u∗ ∈ ∂F (u) we obtain that for every
v ∈ X0

〈u∗, v〉 ≤ F ◦(u; v) (3.5)

and F ◦(u; ·) : Lr(Ω)→ R is a subadditive function (see Proposition 2.1). Furthermore, u∗ ∈ X∗0
is continuous also with respect to the topology induced on X0 by the norm ‖ · ‖Lr(Ω). Indeed,
setting L > 0 a Lipschitz constant for F in a neighborhood of u, for all z ∈ X0 we derive from
Proposition 2.1 (ii)

〈u∗, z〉 ≤ L‖z‖Lr(Ω), 〈u∗,−z〉 ≤ L‖ − z‖Lr(Ω).

So
〈u∗, z〉 ≤ L‖z‖Lr(Ω).

Hence, by Hahn-Banach Theorem, u∗ can be extended to an element of the dual Lr(Ω) (com-
plying with (3.5)) for all v ∈ Lr(Ω), this means that we can represent u∗ as an element of Lr

′
(Ω)

and write for every v ∈ Lr(Ω)

〈u∗, v〉 =

∫
Ω
u∗(x)v(x)dx. (3.6)

Set {un} be a sequence in X0 such that ‖un‖ ≤M for all n ∈ N (M > 0) and take ξn ∈ ∂F (un)
for all n ∈ N. It follows from (F3) and (3.6) that

〈ξn, v〉 =

∫
Ω
ξnv(x)dx

≤
∫

Ω
|ξn||v(x)|dx

≤
∫

Ω
k1(1 + |un(x)|q1−1)|v(x)|dx

≤ k1C(1 + ‖un‖q1−1
0 )‖v‖X0

≤ k1C(1 +M q1−1)‖v‖X0

for all n ∈ N, u ∈ X0. So
‖ξn‖X∗0 ≤ k1C(1 +M q1−1),

i.e., the sequence {ξn} is bounded. Hence, passing to a subsequence, we have ξn ⇀ ξ ∈ X∗0 . We
will prove that {ξn} ⊂ X∗0 has a strong convergence. We proceed by contradiction. Assume that
there exists some ε > 0 such that

‖ξn − ξ‖X∗0 > ε

for all n ∈ N and hence for all n ∈ N there exists vn ∈ B(0, 1) such that

〈ξn − ξ, vn〉 > ε. (3.7)

Recall that {vn} is a bounded sequence and passing to a subsequence, one has

vn ⇀ v ∈ X0, ‖vn − v‖L2(Ω) → 0, ‖vn − v‖Lq1 (Ω) → 0.

Hence, for n large enough, we have

|〈ξn − ξ, v〉| <
ε

4
, |〈ξ, vn − v〉| <

ε

4
,

‖vn − v‖L2(Ω) <
ε

4k1C
, ‖vn − v‖Lq1 (Ω) <

ε

4k1M q−1
.
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Then,
〈ξn − ξ, vn〉 = 〈ξn − ξ, v〉+ 〈ξn, vn − v〉 − 〈ξ, vn − v〉

≤ ε

2
+

∫
Ω
|ξn||vn(x)− v(x)|dx

≤ ε

2
+ k1

∫
Ω

(1 + |un|q1−1)|vn(x)− v(x)|dx

≤ ε

2
+ k1C‖vn − v‖L2(Ω) + k1‖un‖q1−1

Lq1−1‖vn − v‖Lq1 (Ω)

≤ ε

2
+ k1C‖vn − v‖L2(Ω) + k1M

q1−1‖vn − v‖Lq1 (Ω)

≤ ε,

which contradicts to (3.7). �

Similar, we have the following properties of the functions Φ(u) and H̃(u).

Lemma 3.3 If (G1)− (G3) and (H1)− (H3) hold, then Φ(u), H̃(u) : X0 → R are locally Lips-
chitz functionals with compact gradient.

With the above lemmas, our main result reads as follows.

Theorem 3.1 Let s ∈ (0, 1), n > 2s. If hypotheses (K1) − (K3), (F1) − (F4), (G1) − (G4)
and (H1) − (H3) hold, then for all r > 0, ε ∈

]
0, 1

max{0,h∗3(I,Ψ,Φ,r)}
[

and all compact interval

[a, b] ⊂]0, h∗2(I + Ψ,Φ, r)[, there exist numbers ρ > 0 and δ > 0 such that for all λ ∈ [a, b] and
all ν ∈ [0, δ], problem (1.1) has at least three weak solutions whose norms in X are less than ρ.

Proof. We will employ Theorem 2.1 to prove it. Observe that X0 is a reflexive Banach space.
I ∈ C1(X0,R) is continuous and convex, and hence weakly l.s.c. and obviously bounded on
any bounded subset of X0. From Lemma 3.1, I ′ is of type (S+). Moreover, it follows from
Lemmas 3.2 and 3.3 that Φ, Ψ and H̃ are locally Lipschitz functionals with compact gradient.
Hence we only need to prove that the functional Ψ + λΦ is bounded below for all λ > 0 and
lim inf‖u‖→+∞

Ψ(u)
I(u) = −∞. Firstly, we prove that Ψ + λΦ is bounded below for all λ > 0. From

hypotheses (F3) and (F4) there exists c1 > 0 such that

F (x, u) ≤ c1(1 + |u|α). (3.8)

Moreover, from (G3) and (G4), we also have that for all c2 > 0 there exists a constant c3 > 0
such that

G(x, u) ≥ c2|u|α − c3 (3.9)

for a.a. x ∈ Ω. By virtue of (3.7) and (3.8), for each λ > 0, choosing c2 >
c1
λ we derive that

Ψ + λΦ =

∫
Ω

[λG(x, u)− F (x, u)]dx

≥
∫

Ω
[λ(c2|u|α − c3)− c1(1 + |u|α)]dx

11



=

∫
Ω

[(λc2 − c1)|u|α − λc3 − c1]dx

≥ −(λc3 + c1)|Ω|,
which means that Ψ + λΦ is bounded below.

Next, we prove that

lim inf
‖u‖→+∞

Ψ(u)

I(u)
= −∞. (3.10)

From [25, Proposition 9 and Appendix A] we have the following characterization of the following
eigenvalue λ1:

λ1 = min
u∈X0\{0X0

}

∫
R2n |u(x)− u(y)|2K(x− y)dxdy∫

Ω u(x)2dxdx
. (3.11)

Furthermore, the first eigenfunction u1 ∈ X0 is nonnegative in Ω (see [25, Proposition 9 and
Appendix A], or [26, Corollary 8]). It follows from (3.11) that

‖u‖2X0
= λ

∫
Ω
u1(x)2dx.

In order to prove (3.10) it is enough to show that

lim
k→+∞

Ψ(ku1)

‖ku1‖2X0

= −∞. (3.12)

For this purpose, fix two positive numbers M1, M2 with 0 < 2M1 < M2. Note that

lim
|u|→+∞

infx∈Ω F (x, u)

u2
= +∞,

there exists large constant m1 > 0 when |u| > m1, we have

F (x, u) ≥ λ1M2u
2

for a.a. x ∈ Ω. For each k ∈ N, put

Ωk =

{
x ∈ Ω : u1(x) ≥ m1

k

}
.

It is obvious that for every k ∈ N, one has Ωk ⊆ Ωk+1, the sequence

{∫
Ωk
u1(x)2dx

}
is non-

decreasing, i.e., ∫
Ωk

u1(x)2dx ≤
∫

Ωk+1

u1(x)2dx

for every k ∈ N and
∫

Ωk
u1(x)2dx→

∫
Ω u1(x)2dx. Based on this point, set k̂ ∈ N such that∫

Ωk

u1(x)2dx >
2M1

M2

∫
Ω
u1(x)2dx.

By virtue of hypotheses (F1)− (F3), there exists a constant c4 > 0 such that

sup
Ω×[0,m1]

|F (x, u)| < c4.
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For all k ∈ N satisfying

k > max

{
k̂,

( |Ω| supΩ×[0,m1] |F (x, u)|
M‖u1‖2X0

)}
,

we have
F (ku1)

‖ku1‖2X0

=

∫
Ωk
F (x, ku1(x))dx

k2‖u1‖2X0

+

∫
Ω\Ωk

F (x, ku1(x))dx

k2‖u1‖2X0

≥
λ1M2

∫
Ωk
u1(x)2dx

‖u1‖2X0

+

∫
Ω\Ωk

F (x, ku1(x))dx

k2‖u1‖2X0

>
2λ1M1

∫
Ωk
u1(x)2dx

‖u1‖2X0

−
|Ω| sup(x,u)∈[0,m1] |F (x, u)|

k2‖u1‖2X0

> 2M1 −M1 = M1 → +∞ (as M1 → +∞),

i.e.,

lim
k→+∞

Ψ(ku1)

‖ku1‖2 X0

= −∞.

Hence, the proof is completed. �
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[24] L. Gasiński, N. Papageorgiou, Nodal and multiple constant sign solutions for resonant p−Laplacian equations
with a nonsmooth potential, Nonlinear Anal. 71 (2009) 5747-5772.

[25] R. Servadei, E. Valdinoci, Variational methors for non-local operators of elliptic type, Discrete Contin. Dyn.
Syst. 33(5) (2013) 2105-2137.

[26] R. Servadei, E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58
(2014) 133-154.

[27] R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389
(2012) 887-898.

[28] R. Servadei, E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by nonlocal
operators, Rev. Mat. Iberoam. 29, No. 3 (2013) 1091-1126.
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[32] Z. Yuan, L. Huang, Non-smooth extension of a three critical points theorem by Ricceri with an application
to p(x)-Laplacian differential inclusions, Electron. J. Differential Equations, 2015, No. 232 (2015) 1-16.

14


	. Introduction
	. Preliminaries
	. The main results 

