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Abstract 

Instance segmentation, an important image processing operation for automation in agriculture, is used to precisely delineate individual objects of 
interest within images, which provides foundational information for various automated or robotic tasks such as selective harvesting and precision 
pruning. This study compares the one-stage YOLOv8 and the two-stage Mask R-CNN machine learning models for instance segmentation under 
varying orchard conditions across two datasets. Dataset 1, collected in dormant season, includes images of dormant apple trees, which were used 
to train multi-object segmentation models delineating tree branches and trunks. Dataset 2, collected in the early growing season, includes images 
of apple tree canopies with green foliage and immature (green) apples (also called fruitlet), which were used to train single-object segmentation 
models delineating only immature green apples. The results showed that YOLOv8 performed better than Mask R-CNN, achieving good precision 
and near-perfect recall across both datasets at a confidence threshold of 0.5. Specifically, for Dataset 1, YOLOv8 achieved a precision of 0.90 and 
a recall of 0.95 for all classes. In comparison, Mask R-CNN demonstrated a precision of 0.81 and a recall of 0.81 for the same dataset. With Dataset 
2, YOLOv8 achieved a precision of 0.93 and a recall of 0.97. Mask R-CNN, in this single-class scenario, achieved a precision of 0.85 and a recall 
of 0.88. Additionally, the inference times for YOLOv8 were 10.9 ms for multi-class segmentation (Dataset 1) and 7.8 ms for single-class 
segmentation (Dataset 2), compared to 15.6 ms and 12.8 ms achieved by Mask R-CNN's, respectively. These findings show YOLOv8's superior 
accuracy and efficiency in machine learning applications compared to two-stage models, specifically Mast-RCNN, which suggests its suitability in 
developing smart and automated orchard operations, particularly when real-time applications are necessary in such cases as robotic harvesting and 
robotic immature green fruit thinning. 
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1. Introduction 

Instance segmentation is a powerful computer vision technique that combines the benefits of both object detection and 
semantic segmentation [1]. One of the key benefits of instance segmentation in agricultural applications is its ability 
to accurately quantify plant and crop structures [2], which can provide valuable information about plant growth, 
disease identification, and yield estimation, and can provide a foundation for various key areas of research and 
development such as robotic green (immature) fruit thinning [3].  Instance segmentation can provide precise 
measurements of plant features, such as leaf area, stem length, and plant height, with a high level of accuracy and 
efficiency [4], [5]. The traditional methods of instance segmentation in agricultural images were mostly based on 
hand-crafted features and classical image processing techniques such as Watershed Transform [6], Graph-based 
Segmentation [7], Active Contours (or Snakes) [8], [9], level set [10]–[12], Region Growing [10]–[12], Morphological 
Operation [13], [14] and Clustering-based methods [15], [16]. However, these methods require a lot of manual setup 
and refinements, making them time-consuming and less reliable [17]. Additionally, these methods couldn’t easily 
learn from new data, making them less flexible and difficult to adapt to different scenarios. Moreover, these methods 
involved multiple disjointed image processing stages such as noise removal, contrast adjustment, image enhancement, 
refinement and manually defining and/or extracting specific features such as edge, texture, or colors. 
 
Machine Learning (ML) and, more notably, Deep Learning (DL) have revolutionized the domain of instance 
segmentation in image processing including those in agricultural applications, offering more reliable and robust 
techniques compared to the traditional instant segmentation techniques [18]. DL models, particularly convolutional 
neural networks (CNNs), have shown remarkable ability to automatically learn features from vast datasets without the 
necessity for manually extracting features [19]. This self-learning capability makes them adaptive, which is essential 
to develop models generalized across diverse agricultural scenarios and conditions. With these capabilities, 
[20][21][22] have been widely used in recent years to perform various tasks in agricultural productions such as plant 
disease identification [23] and yield prediction [24], [25].  
 
More specifically, DL network architectures, including U-Net [20], Mask R-CNN [21], and YOLO [22], are 
increasingly utilized for a range of applications in agriculture. A key advantage of these DL techniques is their end-
to-end learning approach, which enables direct mapping of raw images to segmentation results, thus enhancing 
consistency and reliability. Furthermore, transfer learning techniques allow for the adaptation of models pre-trained 
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on extensive datasets to specific agricultural tasks, reducing both training times and data requirements. Utilizing these 
features of DL models, various agricultural applications have been investigated including plant disease identification 
[23], yield prediction [24], [25], pest detection [26], [27], soil health assessment [28], crop maturity analysis [29], and 
site-specific weed control application [30]–[32] showcasing their versatility and efficiency in modern agricultural 
practices. 
 
As mentioned before, instance segmentation techniques have been widely applied to crop disease management [33] . 
Early detection of plant diseases is crucial for maintaining crop yield and quality. Utilizing instance segmentation, 
researchers can quantify symptoms such as leaf spots and discoloration and monitor the progression of these diseases 
over time [34]. This capability is instrumental in developing effective disease management strategies, including 
targeted treatments and breeding for disease-resistant cultivars. Instance segmentation has also been proved pivotal 
for precise crop yield estimation. Accurate yield estimation is essential for growers and breeders to make informed 
decisions about crop management and to select traits for breeding new cultivars. Instance segmentation techniques 
can be used to accurately counting and sizing individual fruits or other canopy objects from images. Such information 
facilitates a precise yield estimation and provides key insights into cultivar characteristics [33]. Past studies have 
demonstrated the effectiveness of these techniques in various relevant applications such as the segmentation of apple 
flowers [34], segmentation and localization of strawberry fruits for harvesting segmentation and counting of 
cranberries, and the segmentation of guava fruits and branches [35]. The data derived from these studies assist in 
optimizing crop management strategies, including optimal application of water and fertilizers, and identifying high-
yielding cultivars [34]  as mentioned before. 
 
In addition, instance segmentation has been applied extensively to develop machine vision systems for agricultural 
robots because it provides capabilities for robots to detect, delineate, and track individual objects of interest in 
agricultural fields using images or videos, such as fruits, branches, flowers, vegetables, and livestock [36]. Detecting 
and tracking plant parameters such as leaves, stem, trunk, branch, flower, and fruit is necessary for a robot to 
automatically perform various tasks such as harvesting, and canopy, and crop-load management operations. In the last 
few years, several studies have implemented the use of deep learning-based instance segmentation techniques for 
developing robotic solutions for various agricultural applications such as tree pruning in dormant season [37] picking 
fruits and vegetables [38]–[40], thinning flowers [41], [42] and fruitlet [43]  and identifying and killing weeds [44], 
[45] among others.  
 
Among the broad applications of deep learning techniques in agriculture, there has been a focus on the use of two 
specific architectures: YOLO (You Only Look Once) and Mask-R-CNN. These models, known for their effectiveness 
in instance segmentation, have been pivotal in advancing tasks such as crop detection, pest and disease management, 
weed identification, tree canopy segmentation, and canopy object (e.g., branch and fruit) detection. These tasks, 
critical in precision and automated agriculture, benefit immensely from the capabilities of these two deep learning 
models. As mentioned before, many recent studies conducted in agricultural applications used Mask-RCNN-based 
[46] instance segmentation for tasks such as crop detection [47], [48], pest and disease detection [49]–[51],  weed 
detection [52], [53], tree canopy segmentation [54], [55], and tree branch detection [54]–[56]. Concurrently, the YOLO 
family of models has been used widely in object detection because of its ability to handle tasks like object detection, 
image classification, and instance segmentation simultaneously with one-stage networks. Unlike Mask R-CNN, a two-
stage model suitable for segmentation tasks [57], YOLO optimizes the overall processing ensuring speed and 
efficiency crucial for real-time applications in agriculture such as robotic pruning [58], thinning [59], and pesticide 
application [60]. Both models are extensively studied, as discussed above and as shown in Table 1, highlighting 23 
publications in the last 3 years focusing specifically on analyzing images of modern apple tree canopies. 
 
Table 1: Highlighting the studies conducted in the last three years on YOLO and Mask RCNN  during different apple 
orchard environments. 

References 
 

Year DL model Objectives 

[61], [62] 2021 YOLO-V4 Apple detection in a complex scene 
[63], [64] 2021 Mask R-CNN Deep learning-based apple detection  
[63], [65] 2021 YOLO-V3 Green fruit detection (apples, mangoes) 
[65], [66] 2021 YOLO-V5 Apple fruitlet detection for fruitlet thinning 
[67] 2022 Mask R-CNN Branch identification and junction points localization in apple trees; 

Trunk identification and segmentation 
[68], [69] 2022 YOLO-V4 Apple detection, counting, and tree trunk tracking in modern orchards 



[70] 2022 YOLO-V4 Immature/mature apple detection on dense-foliage tree architectures 
for early crop-load estimation 

[71] 2022 YOLO-V5 Identification method for the apple growth pattern in the orchard 
[72] 2022 YOLO-V5 Tree trunk and obstacle detection in apple orchards 
[73], [74] 2022 Mask R-CNN Ripe and green apple segmentation in orchards 
[75], [76] 2022 Mask R-CNN Tree and tree crown segmentation in orchards 
[77] 2023 YOLO-V3 Apple fruit quality detection 
[78] 2023 YOLO-V8 Tree trunk and branch detection 
[79] 2023 YOLO-V7 Detection and counting of small target apples 
[59], [74] 2023 Mask R-CNN Green apple segmentation 

 
Building upon this background of widespread application of YOLOv8 and Mask R-CNN models, the primary goal of 
this study is to systematically compare and evaluate the performance of these two models (YOLOv8 and Mask R-
CNN) for instance segmentation tasks in modern, commercial apple orchards. Through this comprehensive 
comparison, this research aims to provide insights into the suitability, efficiency, and potential challenges associated 
with implementing each model in agricultural automation applications. To achieve this goal, the following specific 
objectives will be pursued in this study:  

• To compare the performances of YOLOv8 and Mask R-CNN models in segmenting single-class objects, 
specifically green apples (fruitlets), in images collected from variable orchard environments in the early 
growing season; and 

• To evaluate the capabilities of these two models in segmenting multi-class objects, specifically primary 
branches and tree trunks of apple trees in images collected from a model apple orchard during the dormant 
season. 

2. Background 

2.1 Mask RCNN 
Mask R-CNN is a deep learning model designed for object detection and instance segmentation, renowned for its 

accuracy and efficiency. Its strength lies in its ability to precisely identify and delineate each object in an image, 
making it highly effective for complex image analysis tasks. The model was developed by researchers at Facebook 
AI Research in 2017 and builds on top of the Faster R-CNN object detection model by adding a branch for predicting 
object masks in parallel with the existing branch for bounding box detection [46]. The architecture of Mask R-CNN 
consists of three main components: a backbone network, a region proposal network (RPN), and two parallel branches 
for bounding box detection and mask prediction as shown in Figure 1. The backbone network is typically a 
convolutional neural network (CNN) that extracts features from the input images and is shared by both branches. The 
RPN generates a set of region proposals that are likely to contain objects, based on the feature maps generated by the 
backbone network. The bounding box branch predicts the class label and bounding box coordinates for each region 
proposal, while the mask branch predicts a binary mask for each object instance within the bounding box.  

 
2.2 YOLOv8 
The YOLO (You Only Look Once) family of object detection and instance segmentation models have evolved rapidly 
over the last several years, with each new iteration introducing improvements in accuracy and/or speed. YOLOv8 
(Figure 2), the latest one-stage model, was built on the foundations provided by previous YOLO models, such as 
YOLOv3 and YOLOv5. Compared to two-stage models, YOLOv8 directly predicts bounding boxes and class 
probabilities without the need for a separate region proposal network, streamlining the object detection process. One 
key innovation in YOLOv8 is the adoption of an anchor-free, center-based approach for object detection, which offers 
several advantages over traditional anchor-based methods such as YOLOv5, YOLOv6, and YOLOv7. YOLOv8 
implements Pseudo Ensemble or Pseudo Supervision (PS), a method that involves training multiple models with 
distinct configurations on the same dataset to generate a more diverse set of predictions, improving the accuracy and 
robustness of the final prediction. Additionally, YOLOv8 leverages the Darknet-53 architecture, a 53-layer deep 
convolutional neural network optimized for feature extraction and object detection. One significant architectural 
change in YOLOv8 is the replacement of the C3 module with the C2F module. The C3 module, also known as the 
convolutional module, processes input data through a series of convolutional operations. The C2F module, an 
improved version of the C3 module, enhances accuracy and processing times compared to previous models. 
Furthermore, YOLOv8 substitutes the 6x6 Convolutional (Conv) layer with a 3x3 Conv layer in the model backbone, 



reducing the number of parameters and creating a more compact, computationally efficient network. YOLOv8 also 
employs a decoupled head, which separates the tasks of predicting object presence and classifying object types, 
thereby improving both accuracy and processing speed. This refinement positions YOLOv8 as an effective solution 
for both object detection and instance segmentation in computer vision. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 Figure 1: Mask-R-CNN architecture with; (a) structure diagram, highlighting the backbone network, RPN, bounding box, 
and mask prediction branches; and (b) detailed view of the Region Proposal Network (RPN).  

Figure 2: YOLOv8 architecture from RangeKing's GitHub repository, showcasing its innovative design for object detection and 
segmentation (https://github.com/RangeKing). 



3. Materials and Methods 

This study consisted of four major steps as outlined in Figure 3a beginning with RGB images acquisition from 
commercial orchards in two distinct seasons (Figure 3b as dormant season and 3c as early growing season). These 
images, captured under varying environmental conditions such as bright and cloudy days, were then manually 
annotated to create the training and testing datasets. The training dataset was subsequently used to train the two deep 
learning models mentioned previously, and their performance in instance segmentation was evaluated using the test 
dataset.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1 Study site and data acquisition 
This study was conducted in a commercial apple orchard (Figures 3b and 3c) owned and operated by Allan Brothers 
Fruit Company, located at Prosser, Washington State, USA. The orchard was planted in 2009 with a Scilate apple 
cultivar with a row spacing of 9.0 ft, and a plant spacing of 3.0 f,  and was trained to a V-trellis architecture. Two sets 
of RGB images were acquired using IntelRealsense 435i (Intel Corporation, California, USA); one in November 2022 
creating dormant season dataset as shown in Figures 3b and 3e, while the other set of images was acquired in June 
2023 (just before manual fruitlet thinning) which provided the dataset for early growing season as illustrated in Figure 
3c and 3f. The Intel RealSense camera was selected for capturing RGB images due to its SDK’s ability to adjust 
parameters and capture high-quality images.  

Figure 3: (a)  Overall workflow diagram used in this research;  (b) An example image of an Apple orchard during the dormant season 
(November 22, 2022); (c) An example image of an apple orchard during early fruit growing season (June 18, 2023); (d) IntelRealsense 
435i camera used to acquire images to train and test the instance segmentation models; (e) Example trunks and branches used to annotate 
the dormant season images; and (f) Example immature green fruits (fruitlets) used to annotate early growing season images.  

(a) 



3.2 Data preparation 
Two kinds of datasets comprising 1,553 RGB images, capturing a variety in orchard lighting conditions were 

prepared for analysis of the deep learning model. Dataset 1 comprised 474 images from the dormant season, which 
were annotated manually to represent multi-class objects: the tree trunk and primary branches growing out from the 
trunks (Figure 4). Altogether, 1,141 annotations for the tree trunk and 2,369 annotations for the tree branches were 
generated manually by creating the polygon over desired objects in these images using the image labeling software 
Labelbox. Likewise, the dataset comprised 1,079 images from the green fruit growing season in which 5,921 
annotations of immature green apples were generated. During the image preprocessing stage using the label box 
software, all these annotations were formatted in accordance with the COCO dataset specification, which meets the 
requirement of both the YOLOv8 and Mask RCNN model for image segmentation. Furthermore, to facilitate model 
training and validation, both datasets were resized to 640 x 640 pixels, and both datasets were divided randomly into 
training, validation, and test subsets, following an 8:1:1 distribution ratio for each object class.  
 
3.3 Deep Learning Model Implementation  
Both the YOLOv8 and Mask R-CNN models were trained on a workstation with an Intel Xeon® W-2155 CPU @ 
3.30 GHz x20 processor, NVIDIA TITAN Xp Collector's Edition/PCIe/SSE2 graphics card, 31.1 GiB memory, and 
Ubuntu 16.04 LTS 64-bit operating system. The backend framework for the model implementation was Pytorch, 
operating on a Linux system. To optimize performance, the learning rate used was 0.001, the batch size used was 32, 
and the dropout rate used was 0.5 to mitigate overfitting. The training was conducted over 1,000 iterations. The model 
training was stopping before reaching 1000 epochs, if the model performance did not improve for 20 consecutive 
epochs over the validation dataset, which was useful to minimize model overfitting to the training dataset and 
improving generality. Images were resized to dimensions of 640x640 pixels and batched into groups of 16 images. 
An initial learning rate of 0.01 was used in training both models, whereas the momentum and weight decay used were 
0.937 and 0.0005 respectively for the two models. These parameter settings were chosen to optimize the speed of the 
training process while minimizing the chances of overfitting the model to the training dataset. During the initial three 
epochs, a warm-up phase was employed, using a momentum of 0.8 and a bias learning rate of 0.1, to stabilize the 
model's optimization and mitigate the risk of being stuck at a poor local minimum. 
 

Figure 4: Workflow diagram showing the two types of datasets used in the study; Dataset 1 included the dormant season 
apple trees with multi-class objects (Trunk and branch) and Dataset 2 included growing season apple tree canopies with 
immature green fruits. 



During the training process, various augmentation techniques were applied to enhance model robustness and 
generalization such as hue augmentation (0.015), saturation augmentation (0.7), value augmentation (0.4), translation 
adjustments (0.1), scaling variations (0.5), and a 50% probability for left-right flips. Additionally, a mosaic 
augmentation was applied with a probability of 1.0. After the model training was completed, the model outputs were 
converted to TorchScript format to simplify further processing to evaluate the performances of both YOLOv8 and 
Mask R-CNN models in terms of precision, recall, mean average precision (mAP), and area under curve (AUC) as 
discussed below. 
 
3.4 Performance Evaluation  
To evaluate the instance segmentation capabilities of the Mask R-CNN and YOLOv8 models, five distinct metrics 
were used: Precision, Recall, mean Average Precision (AP) at 0.5 intersection over union (mAP@0.5 IOU), Area 
Under the receiver operating characteristic Curve (AUC), and Inference speed. Precision is defined as the proportion 
of correctly identified positive instances to the total predicted positive instances, as depicted by equation 1. Similarly, 
recall, depicted by equation 2, quantified the proportion of correctly identified positive instances out of all actual 
instances of the target objects. Furthermore, the mean average precision (mAP), represented as the average of the AP 
across k categories (equation 4), was crucial in evaluating the model's precision at a threshold of 50% overlap between 
predicted and true object boundaries/bounding boxes. The area under the curve (AUC), defined by equation 5, assessed 
the model's classification efficacy across all possible thresholds. The model’s efficiency in processing and delivering 
predictions was measured by the inference speed and was inversely related to the time taken per image analysis. 
These metrics are calculated as follows: 
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Equation 5 

 
where TP, FP, and FN represent true positive, false positive, and false negative object instances respectively. Variable 
'k' represents the total number of object classes, and (AP)i refers to the average precision calculated for the ith class 
among these k classes. AP is the area under the precision-recall curve for a given class. TPR represents the true positive 
rate, FPR is the false positive rate, and t indicates the time taken for the model to infer results for a given (single) 
image. 

4. Results and Discussion 

4.1 Single-class Object Segmentation of Immature Green Apples (Fruitlets) 
For single-class segmentation for immature green fruits, the Precision-Confidence curves depicted in Figure 5, 
revealed that the YOLOv8 model achieved a maximum precision of 1.00 when the confidence threshold was 0.929 
(Figure 5a). Correspondingly, Recall-Confidence curves for the respective models are presented in Figure 6, which 



showed that YOLOv8's recall reached 0.97 at the minimum confidence threshold of 0.000. This high recall rate, or 
sensitivity, indicates the model's ability to correctly identify a high percentage of actual objects, which showed models 
effectiveness in segmenting green fruits even at the lowest confidence levels. Additionally, YOLOv8 outperformed 
Mask R-CNN in terms of mean average precision (mAP), achieving 0.939 at a 0.5 IoU threshold for green fruits and 
overall categories, compared to mAP of 0.902 achieved with Mask R-CNN (Figure 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)  
 Figure 5: Precision-Confidence curve for single class segmentation of immature green apples (fruitlets) using; (a) YOLOv8; and (b) 
Mask R-CNN. 

(b) 

Figure 6: Recall-Confidence curve for single class segmentation of green apple fruits using; (a) YOLOv8; and (b) Mask R-CNN
  

(a) 
(b) 

  

 

Figure 7: Precision-Recall curve for single class segmentation of green apple fruits at mAP@0.5; (a) YOLOv8; and (b) 
Mask R-CNN 



 

Figure 8: Example images showing the performance of two methods in segmenting immature green fruit in orchard condition; (a) Original images;  (b) 
Instance segmentation results of YOLOv8; and (c) Instance segmentation results of Mask R-CNN. It is noted that some problematic regions in the canopy 
images (yellow circles) were incorrectly segmented as green fruit by Mask R-CNN but were correctly left as background by YOLOv8.  

Figure 9: Figure illustrating wrong detection during the growing season orchard condition, yellow region includes the focus area (a) Original image 1; 
(b) YOLOv8 identification and segmentation; (c) Mask R-CNN failed to identify; (d) Original image2; (e) YOLOv8 segmentations; and (f) Mask-RCNN 
segmentation where it identified leaf section as a greenfruit 



The performance differences between YOLOv8 and Mask R-CNN generally reflected the distinct nature of their 
architectures and the way they process images. YOLOv8, being a one-stage detector, is designed for speed and 
accuracy, making it capable of excluding similar non-target areas, as observed in the segmentation tasks (Figure 8b). 
Its direct approach to object detection avoids the region proposal step, leading to fewer false positives in areas of the 
canopy that resembled the target fruit in color. Mask R-CNN, on the other hand, uses a two-stage process, which 
involved generating region proposals before classifying and segmenting objects. This can sometimes result in the 
inclusion of non-target areas, such as leaves and stems being misclassified as fruits (Figure 8c). Moreover, its 
performance appears to be more sensitive to lighting variations, which can lead to errors in object identification under 
the extreme sides of lighting situation such as bright, direct sun-light and dark shadows (Figure 9c). Despite these 
differences, there are specific situations where Mask R-CNN could still be the preferred choice. Its two-stage process, 
particularly the region proposal step, can be advantageous in complex segmentation tasks where precision is critical, 
and objects are densely packed or partially obscured. In the past, green fruit segmentation has been investigated using 
various approaches. Wei et al.'s D2D framework [80], GHFormer's focus on night-time detection [81], Liu et al.'s 
FCOS model for obscured fruits [82], Jia et al.'s ResNet-based FoveaMask [83], and Sun et al.'s combination of 
GrabCut and Ncut algorithms [84] each offered solutions to specific segmentation challenges such as lower accuracy 
and higher computation cost. Some studies also explored semi-automated models [85]. However, the performance of 
the YOLOv8 model in this study exceeded those of the reviewed past studies. Likewise, the performance of the Mask 
R-CNN model in segmenting immature green fruits, while not as high as YOLOv8's, still surpassed many recent 
approaches [70], [77], [81], [82], [85], [86].  
 
4.2 Multi-class Object Segmentation in Images of Dormant Apple Trees 
Similar to single class object segmentation discussed above, YOLOv8 performed better than Mask R-CNN in 
segmenting dormant apple tree images into multiple object classes (trunks and branches). YOLOv8 achieved a 
precision of 1.00 at a confidence threshold of 0.906, as shown in Figure 10. Similarly, Figure 11 shows that the recall 
for YOLOv8 reached 0.95 at the minimal confidence threshold, indicating a high degree of accuracy in segmenting 
these complex structures of dormant tree canopies. Mask R-CNN reached a precision of 1.00 at a lower confidence 
threshold of 0.813, suggesting a strong ability to correctly detecting target objects at this level of confidence (Figure 
10b). Additionally, the recall of Mask R-CNN, as depicted in Figure 11, achieved 0.837 at the lowest confidence 
threshold, indicating slightly higher rate of false negatives compared to YOLOv8.  Similarly, precision-recall curve 
(Figure 12a) showed that YOLOv8 achieved a mean average precision (mAP) of 0.845 over all object classes at an 
intersection over union (IoU) of 0.5, which for the trunk and branch classes were 0.971 and 0.719, respectively. Mask 
R-CNN achieved relatively lower performance in multi-class segmentation tasks as well. As seen in Figure 12b 
(precision-recall curve) the model achieved an all-class mAP of 0.748 at an IoU of 0.5, with individual mAP of 0.828 
for trunk segmentation and 0.673 for branch segmentation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
Figure 10: Precision-Confidence curve for multi-class segmentation of Trunk and Branch ; (a) YoloV8 , (b) Mask R-CNN 

(b) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example images demonstrating comparative successes and failures of these models (YOLOv8 and Mask R-CNN) in 
segmenting trunks and branches are depicted in Figures 13 and 14. As shown before with mAP and other measures, 
trunks were segmented with higher accuracy by YOLOv8 compared to Mask R-CNN, which are indicated by sample 
cases shown in shown in Figure 13b and 13c respectively. Specifically, the branch highlighted within the yellow dotted 
rectangle (Figure 13 a, b and c) was successfully detected by YOLOv8 but not by Mask R-CNN, showing YOLOv8’s 
better performance in low light conditions compared to Mask R-CNN. The example in Figure 13 shows that YOLOv8 
was more effective in segmenting trunks. Similarly, Figure 14 presented examples of successful and failed 
segmentations in both trunk and branches, which showed that YOLOv8 was more precise (less false detection) than 
Mask R-CNN, particularly in area with challenging lighting and complex backgrounds (e.g., a rectangular box in 
Figure 14b). Comparatively, Mask R-CNN exhibited lower performance under these conditions, with the limitations 
being more apparent in poorely lit areas with complex backgrounds (e.g., Figure 14c). The segmentation of the branch 
within the yellow rectangle (Figure 14d) also highlighted YOLOv8's ability to detect features despite variable lighting 
conditions created by shadows and hue variations, an area where Mask R-CNN was less robust in segmenting desired 
objects (Figure 14e). 
 
A number of recent studies focused on the segmentation of tree trunks and branches, employing various deep learning 
approaches. For example, [87], [88] used deep learning for automatic branch detection in jujube trees and [89] used 
Regions-Convolutional Neural Networks (R-CNN) models alongside depth features for branch detection in fruiting 
wall apple trees. Segmenting plant canopy parts in dormant grapevines has also been studied widely using different 

Figure 12: Precision-Recall curve for multi-class segmentation of trunks and branches of dormant apple trees at mAP@0.5; (a) with YOLOv8; and (b) 
with Mask R-CNN. 

(a) (b) 

Figure 11: Recall-confidence curve for multi-class segmentation of trunks and branches achieved with; (a) YOLOv8; and (b) Mask R-CNN. 

(a) (b) 



deep learning techniques (e.g., [90].[100]). Other models like ViNet [91] have emerged, providing deep learning 
solutions for estimating grapevine structures. Further advancements include the application of deep learning and 
geometric constraints for obscured branch segmentation and three-dimensional reconstruction [92], as well as the use 
of space colonization algorithms for dormant pruning in jujubee plants [88]. A deep learning-based sensing system 
(called SPGnet) for jujubee plant by Baojian et al.  [87], Zhang et al.’s branch detection in apple trees using R-CNN  
[93], and Lin et al.’s tiny Mask R-CNN for guava branch reconstruction [94] are  other recent studies in this field. 
Additionally, Aguiar et al. [95] explored trunk segmentation using a semantic segmentation-based deep learning 
approach with a Single Shot Multibox Detector (SSD). In comparison with the performance measures reported by 
these latest, innovative  methodologies available in the literature, YOLOv8 model presented in this study performed 
better in segmenting tree trunks in terms of both precision (0.95),  recall (0.97) and mAP@0.5(0.74). Furthermore, 
while the Mask R-CNN model achieved relatively lower performance relative to YOLOv8, its performance was 
comparable or better with many recent studies on trunk and branch detection including [89]–[92], [96], [97]. 
 

Computational speed is one of the major performance major of these models, particularly when they are used for real-
time field applications such as robotic pruning or thinning. The inference times (processing time per image during 
testing) required for segmenting green fruit and multi-class objects (trunks and branches) with YOLOv8 and Mask R-
CNN models are presented in Table 2. It was found  that YOLOv8 took only 7.8 ms to complete single-class 
segmentation and 10.9 ms for multi-class segmentation per test image usingIntel Xeon® W-2155 CPU @ 3.30 GHz 
x20 processor, NVDIA TITAN Xp Collector's edition/PCIe/SSE2 graphics card, 31.1 gigabyte memory, and Ubuntu 
16.04 LTS 64-bit operating system. These inference times correspond to inference speeds of approximately 128 FPS 
and 92 FPS, respectively for single and multi-class segmentations. Comparatively, the inference times for Mask R-
CNN was higher at 12.8 ms for single class segmentation, which translates to an inference speed of approximately 78 
FPS. For multi-class segmentation, the inference time increased to 15.6 ms for Mask R-CNN, or roughly 64 FPS. This 
difference in processing time showed suitability of the YOLOv8 for both single and multi-object instance 
segmentation for real-time applications, particularly in agricultural settings where computational resources may be 
scarce. 

Figure 13: Example results for multiclass segmentation of trunks (yellow circle) and branches (yellow rectangle) in dormant season 
orchard images; (a) Original images ; (b) YOLOv8 segmentation results; and (c) Mask R-CNN segmentation results. This example showed 
slightly weaker segmentation performance of Mask R-CNN, qualitatively, compared to YOLOv8. 



 

 

Figure 14: Figures illustrating multiclass segmentation (a) Original Image1 ; (b) YOLOv8 segmentation (c) Mask R-CNN 
segmentation; (d) Original image 2; (e) Yolov8 segmentation (f) Mask R-CNN segmentation. 

Figure 15: Area under curve (AUC) for the segmentation results of both datasets : (a) Immature green fruit (Apple)  dataset; (b) Dormant season 
orchard dataset 



Table 2: Summary of the performance metrics of YOLOv8 and Mask R-CNN models including precision, recall,  
mAP@0.5, inference times, and FPS for single and multi-class object segmentation tasks in this study.  

Model Precision Recall mAP@0.5 Inference 
Time (ms) 

Frames Per 
Second (FPS) 

YOLOv8 (Single-class) 92.9 97 0.902 7.8 128.21 

Mask R-CNN (Single-class) 84.7 88 0.85 12.8 78.13 

YOLOv8 (Multi-class) 90.6 95 0.74 10.9 91.74 

Mask R-CNN (Multi-class) 81.3 83.7 0.700 15.6 64.10 

 
 
According to a most recent study on comparative study of immature green apple detection using machine learning and 
deep learning models[98], Fully Convolutional One-Stage (FCOS) with a ResNet101 RFPN backbone achieved a 
precision of 81.2%. SSD, utilizing VGG16, had a precision of 69%, while YOLOv3 with Darknet-53 reached 71.3%. 
Faster-RCNN and RetinaNet, both employing ResNet101-FPN, achieved precisions of 72.1% and 76.6%, 
respectively. Lastly, CenterNet, using the Hourglass-104 backbone, recorded a precision of 71.2%. Compared to this 
result, the precision recorded by both Yolov8 and Mask RCNN (92.9 and 84.7) in this study is higher.  Likewise, other 
recent studies conducted to detect and segment branch in apple trees such as Unet++[99] with an accuracy of 72%. 
Furthermore, studies[100], [101]  also aimed at similar segmentation tasks, yet their outcomes fall short of the results 
obtained in our study, where YOLOv8 and Mask R-CNN demonstrated higher precision rates of 90.6% and 81.3% 
respectively for branch and trunk segmentation. 

5. Conclusion 

In recent years, there has been increased research, development and adoption of sensing, precision, automation and 
robotics technologies in agricultural operations, driven by the need to minimize farming inputs including labor and 
increasing crop yield and quality. This study, through a comprehensive experiment in commercial orchards, provided 
comparative performance measures of two latest, and most widely used machine learning or deep-learning models 
(YOLOv8 and Mask R-CNN) for instance segmentation as it relates to their applicability to various crop monitoring 
and automated canopy and crop-load management tasks (e.g., automated pruning and immature green fruit thinning). 
Based on the results found, the following specific conclusions could be made.  
 

1. Both YOLOv8 and Mask R-CNN models can provide practically application segmentation results for apple 
tree canopy images acquired in dormant and early growing seasons with YOLOv8 achieving slightly better 
performance particularly under similar color feature (between objects and background) and varying light 
intensity. For single class immature green fruit segmentation, YOLOv8 achieved a high precision of 0.92 and 
recall of 0.97, which was slightly lower for Mask R-CNN (0.84 and 0.88 respectively). Similarly, for multi-
class trunk and branch detection, YOLOv8 demonstrated superior precision and recall metrics (0.90 and 0.95) 
contrasting with the slightly lower performance of Mask R-CNN (0.81 and 0.83) in these parameters. 
 

2. YOLOv8, with its faster inference rate of 128.21 FPS for single-class and 91.74 FPS for multi-class 
segmentation, demonstrates superior suitability for time-sensitive agricultural tasks like automated pruning, 
particularly in low-light conditions. Conversely, Mask R-CNN's slower inference speed, at 78.13 FPS for 
single-class and 64.10 FPS for multi-class scenarios, suggests potential constraints in applications requiring 
rapid response times. 

 
These findings showed that the two models evaluated in this study could be an effective and efficient tool for 
developing various precision and automated agricultural tools, with potential applications extending to various crops 
beyond apples, which will play a crucial role in enhancing crop management and improving crop yield and quality 
through machine learning. Particularly, YOLOv8 showed good adaptability across different orchard conditions, which 
is a critical benefit in advancing robust machine learning-based solutions for future innovations in smart farming. The 
incorporation of machine learning is a key to meet global agricultural sustainability and food security needs. 
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