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Abstract—Change of basis in finite-dimensional vector spaces
has numerous significant applications. This research explores the
algebraic structure of change of basis matrices within a set of
m bases of a finite vector space using category theory. The
investigation reveals a connected groupoid of order m2 whose
morphisms correspond to change of basis matrices. Subgroupoids
within this structure correspond to upper and lower triangular
matrices and matrices with alternating elements of 0. We iden-
tify bases leading to triangular change of basis matrices. For
univariate polynomial families, they occur where the minimum
degree of the polynomials increases, or the maximum degree
decreases. Similarly, we find that alternating bases lead to
alternating change of basis matrices. These bases occur with
basis polynomials that have definite parity such as classical
orthogonal polynomials. A commutative diagram elucidates the
subgroupoids with morphisms corresponding to triangular and
alternating change of basis matrices. This study enhances our
understanding of algebraic properties of change of basis.

I. BACKGROUND AND RELATED WORK

This paper investigates the algebraic structure of changes
of bases of a finite-dimensional vector space. It shows that
this structure is a connected groupoid [1], [2] that has sub-
groupoids. These subgroupoids directly occur for bases formed
from polynomial sequences such as Chebyshev polynomials
and Zernike radial polynomials. The bases defined with these
sequences can have descending maximum degree, ascending
minimum degree, or definite parity.

Change of basis in a finite vector space has numerous sig-
nificant and widespread applications in numerical computing,
statistics, and engineering. These applications include spec-
tral methods for solving differential equations numerically,
e.g., [3]; image, video, and data compression, e.g., [4] and
implementing DCT-II in JPEG compression [5]; in Principal
Component Analysis [6], and computer graphics [7].

For example, in spectral methods, change of basis can result
in better convergence [3], lower computational complexity [8],
and better numerical stability [8]. Much work has been done
on numerical solutions for finding the coefficients in Legendre
expansions, e.g., see the summary in Hale [9]. From equation
(1.2) of Hale and Townsend [9], these coefficients are clegn

where.

pN (x) =

N∑
n=0

clegn Pn(x)

and x ∈ [−1, 1]. The terms Pn(x) on the right side of the
equation denote Legendre polynomials. Floating-point num-
bers represent the coefficients clegn . A linear combination

MSC: Primary 15A03; Secondary 20N02, 33C45

of Chebyshev polynomials of the first kind can also express
pN (x):

pN (x) =

N∑
n=0

cchebn Tn(x)

and x ∈ [−1, 1]. They provide an algorithm for implementing
the transform between the coefficients clegn and cchebn with an
accuracy of fifteen decimal places [9].

These transforms form scaled changes of bases between
Legendre and Chebyshev polynomials of the first kind. For
example, let MTP denote the change of basis matrix from
Pn(x) to Tn(x) where 0 ≤ n ≤ 4,

MTP =



1 0 1
4 0 9

64

0 1 0 3
8 0

0 0 3
4 0 5

16

0 0 0 5
8 0

0 0 0 0 35
64


and MTP



cleg0

cleg1

cleg2

cleg3

cleg4


=



ccheb0

ccheb1

ccheb2

ccheb3

ccheb4


II. BASES

Defining a basis of a finite vector space can involve a change
of basis. For example, consider the basis of the Chebyshev
polynomials of the first kind:

T0(x) =1

T1(x) =x

T2(x) =2x2 − 1

T3(x) =4x3 − 3x

The coordinate vector of T3(x) is (0, 0, 0, 1) with respect
to the basis

{T0(x), T1(x), T2(x), T3(x)}.

It is also (0,−3, 0, 4) with respect to the basis of monomials
{1, x, x2, x3}.

In matrix form, we have a change of basis matrix from
Chebyshev polynomials T up to T3(x) to the monomials M
where the transposes of the coefficient vectors of the domain
basis vectors with respect to {1, x, x2, x3} form its columns.

1 0 −1 0
0 1 0 −3
0 0 2 0
0 0 0 4


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This defines a mapping from the coordinates vectors defined
using the basis {T0(x), . . . , T3(x)} to the coordinate vectors
of the same vector using the basis {1, x, x2, x3}. For example

1 0 −1 0
0 1 0 −3
0 0 2 0
0 0 0 4




2
0

−1
1

 =


3

−3
−2
4


and

T3(x)− T2(x) + 2T0(x) = 4x3 − 2x2 − 3x+ 3

so that (2, 0,−1, 1) is mapped to (3,−3,−2, 4).
Instead of the monomials, we can use the shifted Legendre

polynomials for example to represent the basis of Chebyshev
polynomials of the first kind. The first four shifted Legendre
polynomials represented using monomials give a descending
basis.

P̃0(x) =1

P̃1(x) =2x− 1

P̃2(x) =6x2 − 6x+ 1

P̃3(x) =20x3 − 30x2 + 12x− 1.

We can express T3(x) uniquely in terms of the shifted
Legendre polynomials by

T3(x) =
1

5
P̃3(x) + P̃2(x) +

3

10
P̃1(x)−

1

2
P̃0(x)

and similarly for all other basis vectors in {T0(x), T1(x), . . .}.
A change of basis matrix maps the coordinate vector of a

vector v defined using the basis of Chebyshev polynomials T
to its coordinate vector when the definition of v uses the basis
of shifted Legendre polynomials. For example, when n = 4,
this matrix has the following form.

1 1
2 − 1

3 − 1
2

0 1
2 1 3

10

0 0 1
3 1

0 0 0 1
5


Generally, defining a set of basis vectors of a vector space

V requires using a known basis of V .

Definition 1. Let V be a vector space of finite dimension with
coefficients over a given field F , and s = {s0, . . . , sn−1} and
v = {v0, . . . , vn−1} be bases of V .

The coordinate vector of a basis vector si with respect to
the basis u has the form (c0, . . . , cn−1) where ci ∈ F and
si =

∑n−1
k=0 ckvk.

For every vector w ∈ V there exists a unique sum w =∑n−1
k=0 akvk where ak ∈ F . The coordinate vector of w with

respect to the basis v has the form (a0, a1, . . . , an).

We note that if s = v in Definition 1, then the coordinate
vectors of s with respect to v are the elements of the stan-
dard basis. Sometimes, e.g. [10, Chapter 6], v is not stated

explicitly and it is assumed to be the standard basis such as
{(−1, 2), (2,−1)} for the vector space R2. However, in this
more abstract context, the basis to which a coordinate vector
refers to is stated explicitly.

Assumption 1. We assume that a basis of the form

{s0, s1, . . . , sn−1}

of a vector space forms an ordered basis [10, §6.2] so that
there is a total ordering < for which s0 < s1 < · · · < sn−1.

A coordinate vector (c0, c1, . . . , cn−1) with respect to this
basis means

(c0, c1, . . . , cn−1) = c0s0 + c1s1 + · · ·+ cn−1sn−1.

We also assume that the standard basis has the ordering
(1, 0, . . . , 0) < (0, 1, . . . , 0) · · · < (0, 0, . . . , 1).

A. Ascending, Descending and Alternating Bases
Definition 2. Let V be a vector space of finite dimension
n > 0 and s = {s0, s1, . . . , sn−1} be a basis of V where
each element of s is a coordinate vector of the form r =
(a0, a1, . . . , an−1) and each coordinate is an element of a
field F . These coordinates implicitly refer to an ordered basis
v = {v0, v1, . . . , vn−1} of V such that

si =

n−1∑
k=0

akvk.

We define min r = min{i | ai ̸= 0} and max r =
max{i | ai ̸= 0}.

The basis s is an ascending basis, if

{min s0,min s1, . . . ,min sn−1} = {0, 1, . . . n− 1}.

The basis s is a descending basis, if

{max s0,max s1, . . . ,max sn−1} = {0, 1, . . . n− 1}.

The basis s is an alternating basis, if for every 0 ≤ i, j ≤
n− 1, si with the form (a0, a1, . . . , an−1), and i and j have
different parity then aj = 0.

Assumption 2. We assume, without loss of generality, that
the ordering of s in Definition 2 is s0 < s1 < · · · < sn−1

so that for each si where 0 ≤ i ≤ n − 1, of the form
(a0, a1, . . . , an−1), aj = 0 where i < j ≤ n− 1.

We now give five examples that use Definition 2.
• An example of a descending basis is Chebyshev polyno-

mials of the first kind of degrees 1, 3 and 5. This basis
is {x, 4x3 − 3x, 16x5 − 20x3 + 5x}.
The basis vectors of this subspace of R[X] have the
following basis of coordinate vectors:
s = {(1, 0, 0), (−3, 4, 0), (5,−20, 16)} with respect to
the basis v = {x, x3, x5}.
The change of basis matrix Mvs is the following upper
triangular matrix. 

1 −3 5

0 4 −20

0 0 16


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• A set of coordinate vectors of the standard basis for R4

is the same as the standard basis for R4. This basis is
both an ascending and descending basis.

• An example of an ascending basis is the set of Zernike
Radial polynomials

{R3
9(x), R

5
9(x), R

7
9(x), R

9
9(x)}.

For example,

R5
9(x) = 36x9 − 56x7 + 21x5.

The basis s of coordinate vectors with respect to the basis
v = {x3, x5, x7, x9} is

s = {(−20, 105,−168, 84), (0, 21,−56, 36),

(0, 0,−8, 9), (0, 0, 0, 1)}.

The change of basis matrix Mvs is the following lower
triangular matrix.

−20 0 0 0

105 21 0 0

−168 −56 −8 0

84 36 9 1



• An example of basis in R8 that is neither an ascending nor
descending basis is given by the Haar function wavelet
matrix [4]:

W8 =



1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1


From the first two columns of W8 the coordinate vectors
(1, 1, 1, 1, 1, 1, 1, 1) and (1, 1, 1, 1,−1,−1,−1,−1) that
are defined with respect to the standard basis both have
non-zero coordinates in the first and eighth dimensions.

• The basis {T0(x), . . . , T3(x)} with respect to the basis
{1, x, x2, x3} is an alternating basis. Its coordinate vec-
tors are

{(1, 0, 0, 0), (0, 1, 0, 0), (−1, 0, 2, 0), (0,−3, 0, 4)}.

The basis vector s3 has coordinate vector (0,−3, 0, 4)
and a0 and a2 have even indices, so that a0 = 0 and
a2 = 0.

B. Change of Basis
Let V be a vector space that has bases s and t. The change of

basis matrix Mts defines a linear transformation that maps the
coordinates bs of a vector with respect to s to its coordinates
at with respect to t. It satisfies the following equation.

Mtsbs = at (1)

The subscripts are simple types [11], i.e., ts is the type of
a function whose domain has elements of type s and whose
range has elements of type t.

We define a change of basis matrix as follows. It is
equivalent to other definitions, e.g., [10, §6.3].

Definition 3. Let V be a vector space that has bases s =
{s0, s1, . . . , sn−1} and t = {t0, t1, . . . , tn−1}. The change of
basis matrix Mts is the n × n matrix whose ith column is
equal to sTi , the transpose of the coordinate vector si with
respect to t of the basis vectors in s where 0 ≤ i ≤ n− 1.

The following lemma is a property of change of basis
matrices, e.g., [10, Theorem 6.12 (c)].

Lemma 1. For every change of basis matrix Mts, its inverse
M−1

ts exists and M−1
ts = Mst.

Definition 4. Two change of basis matrices Mts and Mvu are
equal if and only if they have the same elements, t = v and
s = u.

Lemma 2. Every change of basis matrix is unique.

Proof. Suppose Mts equals a change of basis matrix and
that there exists another change of basis matrix Nts that has
the same dimensions as Mts. The matrix M−1

ts exists from
Lemma 1, and Nts is its right inverse. We have Mts =
Mts(MstNts) so that Mts = Nts by using the associativity
of matrix multiplication, so that Mts is unique.

III. CHANGE OF BASIS GROUPOID

We use category theory, e.g., [12], to analyse the algebraic
structure of change of basis and show that it is a groupoid [1],
[2]. Bases of a vector space are the objects of a groupoid and
change of basis matrices are its morphisms.

Definition 5. The category CB its set of objects obj CB is
a finite set of bases that span the same vector space. The
identifier of a basis in obj CB is its type identifier.

The morphisms hom CB correspond to change of basis
matrices. For every s, t ∈ obj CB there is a morphism
s → t ∈ hom CB that corresponds to the change of basis
matrix Mts.

We show that CB is a groupoid.

Theorem 1. Given a vector space V with a set S of m bases
of V . The set of change of basis matrices Mts where s, t ∈ S
is a connected groupoid CB of order m2.

Proof. From Definition 5, CB has a finite set of objects
obj CB, and for every pair s, t ∈ obj CB, there is a unique
morphism s → t ∈ hom CB that corresponds to Mts. The
existence of this morphism follows from Definition 3 of a
change of basis matrix. Its uniqueness follows from Lemma 2.

For every object s ∈ obj CB, there is an identity morphism
s → s. This morphism corresponds to the identity change of
basis matrix Mss.

For every triple of objects s, t, u ∈ obj CB there is a
function ◦ such that (s → t) ◦ (t → u) → (s → u). This cor-
responds to change of basis matrix product MutMts = Mus
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so that ◦ is an associative function. The function ◦ has the
polymorphic type γα(γβ)(βα).

For every pair of objects s, t ∈ obj CB there is an inverse
function that maps the morphism s → t to t → s. The
inverse function corresponds to matrix inversion which, from
Lemma 1, is always defined .

Composition satisfies the properties of a groupoid. For every
s → t ∈ hom CB,

• (s → s) ◦ (s → t) = (s → t)
• (s → t) ◦ (t → t) = (s → t)
• (s → t) ◦ (t → s) = (s → s)
• (t → s) ◦ (s → t) = (t → t).
The groupoid has the connected or transitive property,

because for any two bases in s, t ∈ obj CB, there exists a
morphism s → t ∈ hom CB.

The set obj CB contains m bases, so that there are m2

permutations of them taken two at a time with repetitions,
which is the order of the groupoid.

A. Example

Suppose CB is a particular groupoid for which obj CB
comprises three bases: monomials M ; Legendre polynomials
P expressed in terms of monomials; and Chebyshev polyno-
mials of the first kind T expressed in terms of monomials.
All basis vectors have even degree from 0 to 6. The change
of basis matrix

MTP =



1 1
4

9
64

25
256

0 3
4

5
16

105
512

0 0 35
64

63
256

0 0 0 231
512


This gives 

1 1
4

9
64

25
256

0 3
4

5
16

105
512

0 0 35
64

63
256

0 0 0 231
512





0

1

0

2


=



57
128

297
256

63
128

231
256


In terms of polynomials, we have 2P6(x) + P2(x)

=
231

256
T6(x) +

63

128
T4(x) +

297

256
T2(x) +

57

128
T0(x)

=
1

8
(231x6 − 315x4 + 117x2 − 9).

From Boyd [13], the matrix

MPT =



1 − 1
3 − 1

15 − 1
35

0 4
3 − 16

21 − 4
21

0 0 64
35 − 384

385

0 0 0 512
231



which is the inverse of MTP . The matrix

MMP =



1 − 1
2

3
8 − 5

16

0 3
2 − 15

4
105
16

0 0 35
8 − 315

16

0 0 0 231
16


These matrices correspond to morphisms in hom CB. From

them we can find the other six groupoid morphisms, i.e., M →
P , M → T , T → M , M → M , P → P and T → T . The
three identity matrices have different types: MM , PP and
TT .

IV. SUBGROUPOIDS

The change of basis matrices that correspond to the mor-
phisms of a subgroupoid can share a property such as being
upper triangular matrices, or matrices whose alternate elements
are zero. Matrix multiplication and inversion preserve these
properties of the matrices.

Triangular change of basis matrices can occur when the
vector space is R[X] and the bases are families of orthogonal
polynomials such the Chebyshev polynomials and Zernike
radial polynomials.

In general, other properties of square matrices are also
preserved under matrix multiplication and inversion, e.g., or-
thogonality and unitriangularity. However, they do not seem to
be as relevant to the change of basis groupoid as triangularity
and alternation.

We use the following definition of subgroupoid.

Definition 6. Let G be a groupoid with a set E of elements
and an operation ◦. A subgroupoid H of G is a groupoid that
has a set E′ ⊆ E and the same operation ◦ as G.

A. Triangular Subgroupoids

There are proper change of basis subgroupoids whose mor-
phisms correspond to triangular change of basis matrices. For
example, the groupoid for change of basis between Chebyshev
polynomials of the second kind (U ), Legendre polynomials
(L) and Bernstein polynomials (B) up to degree n > 0
contains two subgroupoids whose morphisms correspond to
triangular change of basis matrices: one with the elements
MUL,MLU ,MLL,MUU ; and the other with the element
MBB .

These subgroupoids of a change of matrix groupoids occur
when the bases of the groupoid are ascending or descending
bases. Firstly, we need a lemma about the preservation of
triangularity.

Lemma 3. Matrix multiplication, and matrix inversion when
it is defined preserve the property of matrices being lower or
upper triangular ones.

Proof. Let matrices M and N be both lower or upper trian-
gular n × n matrices. The dot product of the ith row of M
with the jth column of N where 0 ≤ i, j ≤ n−1 is 0 if i < j
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when they are both lower triangular matrices. It is 0 if i > j
when they are both upper triangular matrices.

Similarly, we can show that if M and MN are both lower or
upper triangular matrices, then so is N , respectively. It follows
that matrix inversion, when it is defined, preserves upper or
lower triangularity.

Theorem 2. Let V be a vector space of finite dimension n > 0
with bases s and t that are defined with respect to a basis v
of V .

• Mst is a lower triangular matrix if and only if s and t
are ascending bases with respect to v.

• Mst is an upper triangular matrix if and only if s and t
are descending bases with respect to v.

Proof. We show this for ascending bases. The case for de-
scending ones is similar. Suppose that s and t are ascending
bases with respect to v. From Definition 2, the basis s is an
ordered set of coordinate vectors with respect to v.

From Definition 3, there is a change of basis matrix Mvs

whose columns are the respective transposed coordinate vec-
tors in s. From Definition 2, Mvs is a lower triangular matrix.
In an analogous way, we can form the lower triangular change
of basis matrix Mvt.

From Lemma 1, Msv = M−1
vs . Therefore, we have from

Lemma 3 that Msv is a lower triangular matrix, and so is
MsvMvt. From Theorem 1, we have Mst = MsvMvt.

In the converse direction, if Mst is a lower triangular matrix
then s and t can be defined with respect to a basis v of V . From
Theorem 1 it is the product Mst = MsvMvt. from Lemma 3,
we have Msv and Mvt are also lower triangular matrices, and
Mvs is a lower triangular matrix. It follows that the bases s and
t are ascending bases with respect to v from Definition 2.

An example of Theorem 2 is the change of basis matrix
from Bernstein to Zernike radial polynomials in the vector
space with basis {x3, x4, x5, x6} over R.

The set of coordinate vectors of the basis s of Bernstein
polynomials {b3,6(x), b4,6(x), b5,6(x), b6,6(x)} with respect to
v = {x3, x4, x5, x6} is

{(20,−60, 60,−20), (0, 15,−30, 15), (0, 0, 6,−6),

(0, 0, 0, 1)}.

The set of coordinate vectors of the basis t of Zernike
radial polynomials {r35(x), r46(x), r55(x), r66(x)} with respect
to {x3, x4, x5, x6} is

{(−4, 0, 5, 0), (0,−5, 0, 6), (0, 0, 1, 0), (0, 0, 0, 1}.

These are ascending bases and their change of basis matrices
Mvs and Mvt are lower triangular matrices.

The change of basis matrix M−1
vt Mvs = Mts is

−4 0 0 0
0 −5 0 0
5 0 1 0
0 6 0 1


−1 

20 0 0 0
−60 15 0 0
60 −30 6 0

−20 15 −6 1

 =


−5 0 0 0
12 −3 0 0
85 −30 6 0

−92 33 −6 1


From the first column, we have

b3,6(x) = −92r66(x) + 85r55(x) + 12r46(x)− 5r35(x).

Theorem 3. Let V be a vector space with a set S of m bases
of V that are either all ascending bases or all descending
bases with respect to a basis v of V . It is not necessary that
v ∈ S. There is a unique change of basis groupoid LTr or UTr
that is a connected groupoid of order m2, whose objects are
S and whose morphisms all correspond to lower triangular
matrices, or to upper triangular matrices, respectively.

Proof. It follows from Theorem 1 that LTr or UTr is a
connected groupoid of order m2. The morphisms of LTr
or UTr all correspond to lower or upper triangular matrices
depending on whether S is a set of ascending or descending
bases with respect to v, respectively, from Theorem 2.

Matrix multiplication and inversion preserve lower or upper
triangularity of matrices from Lemma 3.

The product of a lower triangular matrix with an upper
triangular matrix is not triangular in general. As an example,
the change of basis matrix from monomials to Bernstein
polynomials is a lower triangular matrix, and that from shifted
Legendre polynomials to monomials is an upper triangular but
their product is not triangular. When n = 5, their product is
the change of basis matrix from shifted Legendre polynomials
to Bernstein polynomials, e.g., [14]:


1 0 0 0 0
1 1

4 0 0 0
1 1

2
1
6 0 0

1 3
4

1
2

1
4 0

1 1 1 1 1




1 −1 1 −1 1
0 2 −6 12 −20
0 0 6 −30 90
0 0 0 20 −140
0 0 0 0 70

 =


1 −1 1 −1 1
1 − 1

2 − 1
2 2 −4

1 0 −1 0 6
1 1

2 − 1
2 −2 −4

1 1 1 1 1



B. Alternating Subgroupoids

These subgroupoids occur, for example, when the vector
space is R[X] and the bases are polynomials that have definite
parity. An example from §1, is the change of basis matrix from
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Chebyshev polynomials T up to T3(x) to the monomials M
which is the upper triangular alternating matrix

1 0 −1 0
0 1 0 −3
0 0 2 0
0 0 0 4


Definition 7. A n × n matrix M is an alternating matrix if
for every element mi,j of M , if i and j have unequal parities
then mi,j = 0 where 0 ≤ i, j ≤ n− 1.

If the morphisms of a change of basis groupoid correspond
to alternating matrices, then the groupoid operation preserves
this property.

Lemma 4. Let Alt be a change of basis groupoid. If Mut and
Mts are alternating matrices that correspond to morphisms of
Alt, then Mus is an alternating matrix and corresponds to the
morphism s → u of Alt. The inverse of Mut is an alternating
matrix and corresponds to the morphism of u → t of Alt.

Proof. This follows directly from Definition 7, and the obser-
vation that the dot product of the ith row of Mut with the jth

column of Mts is 0 when i and j have unequal parities where
0 ≤ i, j ≤ n− 1.

In a similar way to the proof of Theorem 2, we can show
the following.

Theorem 4. Let V be a vector space of finite dimension n > 0
with bases s and t that are defined with respect to a basis v
of V .

Mst is an alternating matrix if and only if s and t are
alternating bases with respect to v.

Definition 8. A change of basis groupoid is an alternating
groupoid if and only if all its objects are alternating matrices.

It follows immediately from Lemma 4 that an alternating
groupoid is well defined. Triangularity and alternation are
independent properties of change of basis matrices.

An example of an upper triangular change of basis ma-
trix without alternation occurs for the Laguerre polynomi-
als. They form a descending basis and do not have defi-
nite parity. For example, the change of basis matrix from
{L0(x), L1(x), L2(x), L3(x), L4(x)} to {1, x, x2, x3, x4}:



1 1 1 1 1

0 −1 −2 −3 −4

0 0 1
2

3
2 3

0 0 0 − 1
6 − 2

3

0 0 0 0 1
24



We could use Bernstein polynomials to give a similar
example of a non-alternating matrix. It would be a lower

triangular matrix because these polynomials form an ascending
basis with respect to the monomials.

V. SUMMARY WITH CATEGORIES

Change of basis in finite vector spaces has significant
and widespread applications. In this context, we explore the
algebraic structure of change of basis.

Theorem 1 states that in general, the change of basis
matrices of a set of m bases of a finite vector space forms
a connected groupoid of order m2. Its objects are bases of a
vector space and its morphisms correspond to change of basis
matrices that represent typed linear transformations between
the bases. The groupoid function corresponds to composition
of changes of basis found by matrix multiplication of change
of basis matrices.

Lemma 5. Give a category CB, it has full subcategories
• LTr where obj LTr are ascending bases and hom LTr

correspond to lower triangular matrices
• UTr where obj UTr are descending bases and hom UTr

correspond to upper triangular matrices
• Alt where obj Alt are alternating bases and hom Alt

correspond to alternating matrices
• LAlt where obj LAlt are ascending alternating bases

and hom LAlt correspond to lower triangular alternating
matrices

• UAlt where obj UAlt are descending alternating bases
and hom UAlt correspond to upper triangular alternating
matrices

The subcategory relations are given in the following com-
mutative diagram.

LTr CB UTr

LAlt Alt UAlt

Fig. 1. Triangularity and alternation commute.

Proof. The objects of the categories are supersets of the
objects of their subcategories. Change of basis matrices be-
tween ascending bases and descending bases have lower and
upper triangular change of basis matrices from Theorem 2.
Morphism inversion and composition preserve upper and lower
triangularity from Theorem 3. They preserve alternation from
Lemma 4.

Let G be any category and H be a subcategory of G in
Figure 1. The category H is a full subcategory of G because
we can verify that obj G ⊇ obj H, every morphism in hom H
is a morphism in hom G, and every identity in H occurs in
G.

Lemma 5 shows that there exist subgroupoids of the change
of basis groupoid, that stem from the properties of triangularity
and alternation. These properties occur in the change of basis
matrices that correspond to the morphisms of the groupoid,
and the groupoid function preserves them. Triangularity and
alternation occur independently and Figure 1 is commutative.
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