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Abstract

A fundamental conservation and symmetry is proposed, as a unification between General Relativity (GR) and Quantum
Theory (QT). Unification is then demonstrated across multiple applications. First, as applied to cosmological redshift z and
energy density ρ. Then, a local system galaxy rotational curve is examined. Next, as applied to Quantum Mechanics’ "time
problem": Absolute and relative notions of time are shown to be reconcilable, as well as renormalization values between scales.
Finally, as applied to the Cosmological Constant: The discrepancy that exists between the vacuum energy density in GR at
critical density: ρcr = 3H 2/8πG = 1.88(H 2)x10−29g /cm3 [1], and the much greater zero-point energy delta value as calculated
in quantum field theory (QFT) with a Planck scale ultraviolet cutoff: ρhep = M 4c3/h3 = 2.44x1091g /cm3 [2] is resolved to null
orders of magnitude.

1 Introduction

Special relativity (SR) eloquently conforms to M v2

2 (total kinetic energy) in Noether’s theorem as, [3]

Ek = Mc2√
1−v2

c2

,

and energy is thus conserved (time-transitionally invariant). However, in GR, energy evolves as spacetime changes. Einstein has
shown us that when the space through which particles move is dynamic, the total energy of those particles is not conserved.
Moreover, the energy stored in the cosmological constant must expand at a rate of k3, in proportion to the volume of expanding
space. An additional challenge to vacuum energy is the unstable nature of the uneven distribution of matter throughout the
universe. The pervading justification for redshift photon energy loss is the lack of an associated symmetry.
Conservation laws conventionally define invariance with respect to time. For example, the Euler-Lagrange equations (in general
coordinates), [4]

d

d t

(∂L

∂q̇

)
= ∂L

∂q

Then conservation is shown by the first order derivative of some quantity, with respect to time, being equal to zero,

d

d t

( ∂L

∂q̇k

)
= d pk

d t
= 0

However, this article proposes a fundamental conservation of total Hamiltonian energy within the entire scope of cosmology.

2 The Supernova Cosmology Project with Einstein-de Sitter Model

The 1998 supernova data [5] have concluded that the observed magnitude of nearby and distant type LA supernovae, as com-
pared with cosmological predictions of models with zero vacuum energy and mass densities (ranging from the critical density
ρc down to zero), has formally ruled out the Einstein-de Sitter model of closed ordinary matter (i.e. ΩM = 1) at the 7σ to 8σ
confidence level for two different fitting methods. Moreover, the best fit to this divergence implies that, in the present epoch, the
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vacuum energy density ρΛ is larger than the energy density attributable to mass (ρmC 2). Therefore, cosmic expansion is now
accelerating. However, an alternate interpretation of this data is presented, in defiance of a requirement for any dark component
of energy density:

Theorem 1 Time interval ∆t contracts (decreases) inversely proportional to the metric expansion of space ar , independent of
relative motion (Note that this is distinct from γ time dilation).

∆tn

∆t
= ∆ar0

∆arn
= ∆D0

∆Dn

Normalizing ∆tn from D,

∆tn = 1

1+DK

Where∆tn is an interval of time at distance Dn , and K is an undetermined minute constant (≈ 4.000E−24) that becomes significant
in a matter-dominated universe.

Thus, accelerating expansion is alternatively explained as being generally constant, such that ä = 0 (excluding local variation)
with a decrease in time interval ∆tn , which has an equivalent effect as an increase in velocity v . Thus,

Corollary 1.1 Universal expansion, with decreasing time intervals, appears as accelerated expansion.

Note that this offers an alternative to dark components, as functions with decreasing time intervals are equivalent to functions
with an anti-derivative. See figure 1

Figure 1: Velocity ȧ(t ) with decreasing time intervals appears as acceleration ä(t )

Table 1 lists eleven hypothetical sla points as predicted in the Einstein-de Slitter model with uniform time intervals, compared
with contracted time intervals (∆tn , per theorem 1). The scatter plot in figure 2 (with logarithmic horizontal axis) shows three
trend lines with corresponding values of K ≈ (ΩM ,ΩΛ) = (0,1), (0.5,0.5), (1,0). Note: ä(t ) = 0.

Table 1: Predicted Einstein-de Slitter model with uniform time intervals, compared with contracted time intervals. In successive columns:
[mb ] (magnitude brightness), z (Redshift), ∆tn [Ka = 0], ∆tn [Kb =2.000 x 10−24], ∆tn [Kc =4.000 x 10−24]

mb z ∆tn [Ka ] ∆tn [Kb ] ∆tn [Kc ]
14 0.010 1.000 0.998 0.997
15 0.016 1.000 0.996 0.995
16 0.025 1.000 0.994 0.993
17 0.040 1.000 0.990 0.988
18 0.063 1.000 0.985 0.982
19 0.100 1.000 0.976 0.971
20 0.158 1.000 0.963 0.955
21 0.250 1.000 0.942 0.931
22 0.396 1.000 0.911 0.895
23 0.628 1.000 0.866 0.843
24 0.996 1.000 0.803 0.772
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Figure 2: Hypothetical sla points as predicted in the Einstein-de Slitter model with uniform time intervals, compared with contracted time
intervals

3 Energy Density Increases with∆tn

Corollary 1.2 Per theorem 1, velocity ∆d
∆tn

increases with distance ar . With this proportionate increase in velocity, energy density
ρ proportionally increases, due to increased velocities in particle kinetic and internal energies (compression, energy of nuclear
binding, etc.). To the observer at ar0, energy at arn [mpc] density measures ρn with greater energy per unit of time.

∆ρn

∆ρ
= ∆tn

∆t

Conservation of Energy Density Over Flat Space

Einstein had contemplated that his original static model of GR was unstable, and might require the cosmological constant to
offset gravity from collapsing. However, this alternate model is inherently more stable:

Corollary 1.3 For galactic scales, at distance arn , the average force of energy density ρ, approaching from below arn , is counter-
balanced by the average force of increasing energy density ρn approaching from above arn ,

lim
r→−rn

∂ρ

∂(ar )
= lim

r→+rn

∂ρn

∂(ar )

Thus, a fundamental conservation and coordinate symmetry of energy density, with respect to spacetime, is established. See
figure 3,

Galaxy Rotation Curve with Increased Density

The discrepancies between theoretical and observed galaxy rotation curves involve both density and velocity. Conventionally,
the dependence of circular velocity Vci r c on radial distance R assumes M , m and velocity to be fixed over large scales in Kepler’s
law, [6]

T 2 = 4π2r 3

GM
⇒ T 2 ∝ r 3

Moreover, gravitational lensing demonstrates the existence of a much greater Mass (density) than the sum of the stars within the
galaxy. However, this alternate model specifically addresses these two issues and provides an explanation,

Corollary 1.4 Per theorem 1 and corollary 1.2, velocity ∆d
∆tn

and density ρn are measured with increased magnitude per distance
arn . This directly extends to energy density within galaxies and the effects on rotational velocity, such that: As R increases, cen-
tripetal force is perfectly balanced by increases in v ( ∆d

∆tn
) and, subsequently, ρn ,

v2

r
= G

r 2 M = G

r 2

∫
ρnd t

Note: total mass M inside the circle of the radius r can be obtained by doing an integration of mass density in a volume. M =∫
ρnd t Note:
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Figure 3: Fundamental conservation and coordinate symmetry of energy density, with respect to spacetime

Figure 4: Flat galaxy rotation curve explained with fundamental conservation

• ρ = ρR and ρM (Dark components are excluded from this model, with the intent of presenting an alternative).

• Along with time dilation γ, time contraction ∆tn is a distinct and necessary factor in deriving proper time

• Ω= 1 (flat space)

• The expanding universe is homogeneous, isotropic, and asymptotically flat.

4 Quantum Mechanics Time Problem

The logical contrapositive of theorem 1 is that the unit of time increases in microspace:

Theorem 2 As scales approach Planck length, time intervals dilate (independent of their relative motion in SR) to a range, rep-
resented as an integral from −tn past to +tn future. Subsequently, corresponding values of position, energy, density, and charge
become superimposed within this dilated range.
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Figure 5 shows how both GR and QM are unified by this single basic premise. The entire range of scales, from 1026 to 10−35,
is illustrated with corresponding time units contracting in macrospace and expanding in microspace. Notice how a familiar
projectile in classic-space appears normally orthogonal to the observer, yet a rotating body in macrospace appears skewed along
the line of sight, as well as accelerated, as a result of decreased units of time. Also notice that a particle in macrospace appears
to be in a wider range of positions, as a result of increased units of time (similar to a photograph with a delayed shutter).

Figure 5: Gr and QM are unified

This assertion also challenges the use of mass in DeBroglie’s λ by substituting a unit of length (scale), such as re (electron
radius) or r0 (atomic radius), instead of mass:

Hydrogen atom wave function (for plane wave): [7]

Ψk⃗ (⃗r ) = e i k⃗ ·⃗r (1)

Using p =ħk for momentum, the dominate wave function Psik⃗0
includes wave vector k⃗0 :

k0 = 2π

λ0
=⇒ λ∝−d (2)

thus,

Corollary 2.1 wavelength is inversely proportional to distance,

λ∝−d

Extending this relationship to superposition,

Corollary 2.2 From classic space, the observer notices an expanded range (superposition) of time, position, momentum, and en-
ergy { t, x, p, e }. Essentially, observing an integral of past, present, and future in a single instant, (conceptually, like a time-lapse
image), appearing as a semi-dense solid.

So a particular orbit might appear as a torus. If the "range" is subatomic (< the orbit diameter) a projectile might appear as a
partial torus. See figure 6
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Figure 6: Orbitals with gaps

5 Cosmological ConstantΛ (ρcos) in GR

Per theorem 1, accelerating expansion is shown to be an illusion (ä = 0). See figure 1. The rate of convergence corresponds to
∆tn . Thus canceling the need for addingΛ to Einstein’s field equations. We are left with the original form of: [8]

Rµν− 1

2
Rguν = 8×πG

c4 Tµν (3)

6 Vacuum Energy Density (ρhep) in QM

Theorem 2 ("As scales approach Planck length, time intervals dilate to a range, represented as an integral from -tn past to +tn

future. As well as corresponding values of position, energy, density, and charge become superimposed within this range".), and
corollary 2.1 ("wavelength is inversely proportional to distance") provides a reasonable alternative to the unreasonable sum of
vacuum energy (even within a restricted cutoff of photon energy being equal to Planck energy):

Corollary 2.3 As measured from the classic scale, the Casimir force (U) between plates a distance x micrometers apart represents a
much greater range (n) of expanded time interval, along with associated values of position, energy, momentum, and charge. This
range (n) increases as x decreases.

Ur ang e =
∫ tn

−tn

∫ qn

−qn

U

λ
d t

Where (q) is general positional coordinates. Thus, the assumed force measured in a unit of volume is instead a much greater
integral over, both time (-tn past to +tn future) and position (-qn to qn). Note that as λ decreases U increases (See figure 7,
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Figure 7: Casimir force energy U represents an integral (range) of both time and position

7 Supportive Evidence

Apparent Deviation From Kepler’s Orbital Laws

Theorem 1, is supported by the following correlation study: "On Possible Systematic Redshifts Across the Disks of Galaxies"
[9]. This study shows a deviation from Kepler’s orbital laws, specifically on the subject of increased velocity on the far sides of
multiple galaxies. Although not conclusive, it does justify the consideration of this article.

Note that multiple galaxy surveys with increased velocities across their minor axis. Thus, velocity within the same body
appears to increase per distance. "Velocity observations in 25 galaxies have been examined for possible systematic redshifts
across their disks: a possible origin for the redshifts could be the radiation fields. Velocities increase towards the far sides in
most cases. This is so for the ionized gas, for neutral hydrogen, and in some cases for the stars. The effect is seen as velocity
gradients along the minor axes, as well as in velocity fields of neutral hydrogen in other parts of the galaxies. Deviation of the
kinematic major axis from the optical axis is found for 10 galaxies, and, in 9 of these, the largest velocities occur on the far side. In
the central regions of four galaxies are found large velocity gradients in the same direction. While expanding motions provide an
explanation for some of these features, it remains difficult to thereby explain all the peculiarities found. The faintness of the data
available in this preliminary study should be noticed. Observations specially programmed for this subject would be necessary."

Figure 8 shows ’table 1’, on page 258 which lists 25 galaxies, correlation coefficients, and relevant columns (including sources
of data):

Prediction as Supportive Evidence

One prediction of decreasing time intervals would be: Galaxies with a negative z value (approaching instead of receding, in
our local group) would also correlate with distance, such that the furthest galaxies would appear to approach with the fastest
velocity.

8 Conclusions

In order to define the fundamental conservation and symmetry of spacetime, within the broad scope of cosmology, it is neces-
sary to consider some independent parameters representing constant energy. Once this conservation is established, a simple
and parsimonious resolution to applications in General Relativity, Quantum Mechanics, and the Cosmological constant be-
comes both plausible and reasonable.
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Figure 8: two vectors, observed at d = 1mpc, with different radial velocities
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