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Abstract

The purpose of this note is to present a method for classifying three-dimensional polyhedra in terms of their symmetry

groups. This method is constructive, and it is described in terms of the conjugation classes of crystallographic groups

in E3. For each class of groups Γ the method can generate without duplication all polyhedra in three-dimensional space

on which Γ acts fully-transitively. It was proposed by J. M. Eisenlohr and S. L. Farris for generating every fully transitive

polyhedron in Ed. We also illustrate how the method can be applied in the Euclidean space E3.

1. Introduction

The task of enumerating polyhedra in three-dimensional space according to its symmetry has proven to be difficult. Many

efforts have been made over the last few years to apply different techniques that have been diversifying. In 1977 B.

Grünbaum [1] introduces the following definition of polygon: A finite polygon consists of a set of distinct points {v1, …, vn}

 of Ed called the vertices and a set of line segments [vivi+1] for i = 1, …n − 1 and [vnv1] in Ed called the edges.

Analogously, an infinite polygon can be defined in a similar way with an infinite set of points {…, v−1, v0, v1, v2, …} in such

a way that each compact subset K ⊂ E3 must intersect a finite number of the edges of the polygon (Figure 1).
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Figure 1. Some polygons in E3.

With this definition, B. Grünbaum gives a classification of the regular polygons in E3 by means of the transitive action of

the group of symmetries of the polygon. Each symmetry is a transformation of the space that preserves both the metric

and the polygon itself. According to this, throughout this exposition we will work with the following definition: A geometric

polyhedron is a triplet P = (V, E, F) where V is a set of points in E3 called the vertices, E is a set of segments called the

edges} whose endpoints are elements of V, and F is a set of polygons called the faces whose edges are in E and whose

vertices are in V. Additionally, P must satisfy the following properties:

1. Each edge of one of the faces is an edge of just one other face.

2. Each vertex of one face fi belongs to at least two other faces and all the faces which contain a vertex v form a single

'circuit'; that is, they can be labelled cyclically so that neighbouring faces share an edge.

3. The family of polygons is connected: For any pair of edges e, e ′ there exists a chain e = e0, f1, e1, f2, …, fn, en = e ′ of

edges and faces where each face fi contains ei−1 and ei.

4. Each compact subset of E3 intersects P in a finite number of faces.

Platonic solids are polyhedra having the property of being both convex and regular. The former is a geometrical property

while the latter is related to the combinatorial structure of the polyhedron as detailed below: A polyhedron has vertices,

edges, and faces. Let v be a vertex, e be an edge and f be a face of a polyhedron P. We say that v is incident to e, if v is

one of the endpoints of e. We say that v is incident in f if v is an endpoint of one of the edges in the polygon f. Finally, we

say that e is incident to f if e is one of the edges in f. This can be summarized by saying that the incidence structure of a

polyhedron P is a partial order in which the order relation is precisely the incidence, which we can denote by ≤ . Any

triplet (v, e, f) such that v ≤ e ≤ f is called a flag. A symmetry of the polyhedron P is an isometry of the space that leaves P

 invariant. According to B. Grünbaum [1], a polyhedron P is said to be regular if the group of symmetries of P acts

transitively on the set of flags. The regular polyhedra were classified by B. Grünbaum and A. W. Dress (see [1] and [2]).
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2. Context of the problem

The purpose of this section is to document and put into context the problem of classifying all the fully transitive polyhedra.

A polyhedron P = (V, E, F) is said to be fully transitive if its group of symmetries acts transitively on all three sets: V, E and 

F. Recently several efforts have been made towards the classification of abstract polytopes with a high degree of

symmetry, for example polyhedra whose group of symmetries has two orbits in the set of the flags, see for

example [3] where I. Hubard establishes seven different classes of 2-orbit abstract polytopes according to their incidence

structure and the possible ways of organizing the flags in one or another orbit. She also establishes a classification of

groups that can be automorphisms groups of abstract polytopes with two orbits. Four of these classes correspond to fully

transitive polytopes. In [4] and [5], E. Schulte classifies geometric polyhedra of one of these classes known as chiral

polyhedra. Regular polyhedra are, of course, those that have only one orbit in the set of the flags. There are also more

general approaches to k − orbit polytopes. For these purposes, it has been useful to abstract the combinatorial properties

of geometric polyhedra giving rise to the theory of abstract polytopes. There are differences between this viewpoint and

the geometric one. In this note we will focus on describing the geometric point of view of the following problem:

Classify all geometric fully transitive polyhedra in E3.

In 1988 Steven Lee Farris published his paper entitled Completely Classifying all vertex-transitive and edge-transitive

polyhedra [6] in which he establishes the necessary conditions for fully transitive polyhedra and describes a method for

generating them. These ideas are developed in his dissertation Fully transitive polyhedra [7] under the supervision of B.

Grünbaum, carrying out his method for the case of finite polyhedra. In 1990, John Merrick Eisenlohr obtained his PhD with

his dissertation Fully-transitive polyhedra with crystallographic symmetry groups [8] in which he applies Farris' ideas by

means of an algorithm that generates all fully transitive polyhedra in any dimension d ≥ 2. He also carries out the method

for the case of planar infinite polyhedra. J. M. Eisenlohr establishes the terminology for the algorithm in which

crystallographic groups play a central role and whose classification is a problem related to H. Poincaré's ideas about

regular divisions of space, see for example [9] and [10]. He also mentions the topological context of the problem by

studying the genus of the surface defined by the different polyhedra generated by the algorithm. In the next section, we

will describe the algorithm.

3. Brief description of the algorithm

The main problem is: Construct and classify all fully transitive polyhedra in E3. For this, we will briefly discuss how

crystallographic groups are defined. Let E(3) be the group of isometries of E3. The set of 3-dimensional crystallographic

subgroups, denoted by C3 consists of the discrete subgroups of E(3), i.e. subgroups that act discretely on E3. Equivalently

we can say that a group Γ ≤ E(3) is a crystallographic group if E3/Γ is compact (a good reference is [11]). Bieberbach's

Theorem (see Theorem 7.5.3 in [11]) states that for each dimension there are only a finite number of isomorphism classes

of crystallographic groups. It is well known that there are 17 different isomorphism classes of crystallographic groups in

the plane. It is also known that there are 219 isomorphism classes in C3. A description of crystallography can be found in
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chapter 4 of the book [12]. The Eisenlohr - Farris algorithm starts by selecting a crystallographic group Γ in order to

generate all possible fully transitive geometric polyhedra with symmetry group Γ and roughly consists of the following

steps:

1. Characterize those vertex sets that are transitive, that is, that are obtained as the orbit of a point p under the action of

a crystallographic group.

2. For each vertex set V, list all graphs having vertices in V that could serve as the 1-skeleton of a fully transitive

polyhedron.

3. For each of these graphs, determine the different ways to fill in the faces to construct a fully transitive polyhedron.

Throughout this exposition p, u, v, w will represent points of E3, Γ ∈ C3 represents a crystallographic group of E3, Γ(p) is

the orbit of p under the action of Γ. Let V be the set Γ(p) which is a discrete set of points of E3 on which Γ acts transitively.

We will say that V is a crystallographic set of points. Moreover, every discrete set of points of E3 on which Γ acts

transitively can be obtained in this way (see [8]). Let e be the line segment with endpoints v1, v2 ∈ V. We construct a

graph E from Γ(e), the orbit of e under the action of Γ. In this way, E is a fully transitive graph and furthermore, every fully

transitive graph can be constructed as the orbit of such an edge. Finally, we will take a polygon f with vertices and edges

in E and we will consider the orbit Γ(f) under the action of Γ. In this way we obtain a fully transitive family F of polygons

that induces a fully transitive polyhedron [8]. Moreover, any fully transitive polyhedron can be constructed in this way

(details can be found in [8]).

4. Regular divisions of space and crystallographic sets of points

In [10], H. Poincaré studies the regular divisions of space into an infinity of regions R0, R1, …, Ri, … such that each region 

Ri can be obtained from the region R0 by a transformation resulting from a composition of reflections. The classification of

the crystallographic groups is related precisely to this idea: Each group Γ ∈ C3 consists of isometries. The Euclidean

normalizer of Γ, NE(Γ) is the subgroup {κ ∈ E(3):κΓκ−1 = Γ}. We can define a Γ −  region as the set RΓ = E3/NE(Γ). In this

way, the space can be covered with an infinite number of regions obtained from RΓ by a set of generators for Γ.

Conversely, each regular division of the space defines a crystallographic group in C3.

J. M. Eisenlohr defines an equivalence relation by the Euclidean similarity in C3 and also proves that for our purposes it is

sufficient to consider one group for each similarity class. By defining G3 as the set containing one representative element

of each similarity class of C3 we can reduce the number of groups to be considered. If P is a fully transitive polyhedron in 

E3, then there exists some group Γ ∈ G3, a base point u ∈ RΓ and some polygon f with vertices in V = Γ(u) such that P is

similar to the orbit Γ(f). If we consider the set O = {(Γ, u):Γ ∈ G3, u ∈ RΓ} then a polyhedron is said to be generated by 

(Γ, u) ∈ O if it is the orbit of a polygon with vertices in Γ(u). If P1 and P2 are polyhedra generated by (Γ1, u1) and (Γ2, u2)

 respectively and they happen to be similar polyhedra then one of the Pj has symmetry group larger than Γj. With this, we

are ruling out possible repetitions. The elements of O can be organized into cosymmetry classes, a concept introduced by

S. A. Robertson, S. Carter and H. R. Morton in [13] that allows us to work by choosing one representative element 
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(Γ, u) ∈ O for each cosymmetry class since any two points in the same cosymmetry class will generate polyhedra with

the same symmetry type (see [8]).

Let us suppose for now that Γ is the group defined by the honey-pie slice RΓ ⊂ E3 bounded by the planes H0, …, H4. The

planes H0 and H4 are horizontal planes and the planes H1, H2 and H3 are vertical planes with angles 

π
6 ,

π
2  and 

π
3  as

shown in Figure 2. Clearly RΓ defines a regular division of the space and therefore the group Γ generated by the

reflections γi through the planes Hi is an element of G3. Our base point will be u = H0 ∩ H1 ∩ H2 as shown in Figure 2.

If we restrict the action of Γ to the plane H0 we obtain a crystallographic set in the plane consisting of three lattice subsets,

which can be easily identified in Figure 3. In general, the subgroup Λ ⊂ Γ consisting of all translations in Γ partitions the

set Γ(u) = V into lattice classes V = ⋃k
i=1Vi, where v, v ′ ∈ Vi if and only if the translation by the vector v − v ′ is an element

of Γ.

By extending the action of the group to the whole space we will obtain several copies of this set in parallel planes

generating a crystallographic set V = Γ(u) ∈ E3 with the same lattice classes.

Figure 2. A Γ − region.
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Figure 3. Lattice subsets on the crystallographic set V.

5. Edge sets and vertex figures

Now we will choose a base edge with one of its endpoints being the base point v and the other one being any other point 

v. Eisenlohr establishes that the structure of the set Qv of edges emanating from u obtained from the edge [uv] by letting

act the stabilizer Γu = {σ ∈ Γ:σ(u) = u} depends only on the lattice class in which the chosen vertex v is located (see [8],

Proposition 1). We will call such a set Qv the star of v. We will apply this idea to the set V = Γ(u) of our previous example.

In the plane H0 we can identify the following points: v = γ2γ3(u), w = γ3(v), x = γ1(w) and y = γ1(v). If we choose the edge 

[uv] and by letting the stabilizer Γu act on it, we obtain the following star Qv consisting of four edges emanating from u: 

[uv], [uw], [ux] and [uy] (Figure 4).

From this star, we can now determine the possible vertex figures. The vertex figure of a polyhedron P at a vertex u of P is

the polygon [v1…vq] where v1, …, vq are the vertices of P adjacent to u, and each consecutive pair vk, vk+1, 1 ≤ k ≤ q − 1,

and vq, v1 belong to the same face. In this case, we can produce three classes of vertex figures (Figure 5).
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Figure 4. The star of v based at u.

Figure 5. Three possible vertex-figures.

S. L. Farris defines a face angle of a polyhedron P as the planar angle a between two consecutive edges of a face f of P,

with 0 ≤ a ≤ π. Two angles a1 and a2 are called equivalent if there is a symmetry of P which maps a1 to a2. The

equivalence classes are called angle classes. Farris' work establishes the necessary conditions for the different angle

classes of a fully transitive polyhedron:

Theorem 1. (Farris) Let P be any vertex-transitive and edge-transitive polyhedron, and let v be any vertex of P. Then one

of the following statements is true:
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1.  P has exactly one angle class.

2.  P has exactly two angle classes, and a circuit of angles at v is α, β, α, β, …, β.

3.  P has exactly three angle classes, and a circuit of angles at v is α, β1, α, β2, …, β2

Theorem 2. (Farris) Let P be a fully-transitive polyhedron, and let f be any face of P. One of the following is true:

1.  P has exactly one angle class.

2.  P has exactly two angle classes, and a circuit of angles of f is α, β, α, β, …, β if f is finite, and α, β, α, β, … if f is infinite.

3.  P has exactly three angle classes, and a circuit of angles of f is α, β1, α, β2, …, β2 if f is finite, and α, β1, α, β2, … if f is

infinite

Lemma 1. (Eisenlohr) Suppose we have fixed a vertex set V, an edge set E and a vertex figure Σ. Then if there are two or

three angle classes in Σ, then there is at most one fully-transitive polyhedron with vertex set V, edge set E and vertex

figure Σ.

With this information (see [7] and [8]) we can determine the possible ways to fill in the faces for each of these vertex

figures. This is done by J. M. Eisenlohr in his dissertation, for in this case we have obtained plane vertex figures and

therefore we will obtain one of the fully transitive polyhedra in the plane. In the following section, we give an example that

illustrates how the algorithm can be applied in three-dimensional space.

6. An example in three-dimensional space

Let us consider the planes γ4(H0) and γ0γ4(H0) parallel to H0. In each of these planes is located a copy of the

crystallographic set we have analysed in the preceding paragraphs, so that for each vertex in that set there is a copy at

the corresponding level. We will mark with sub-index index 1 the corresponding images of the points of H0 ∩ V that are in

the plane γ4(H0) and with 2 those in the plane γ0γ4(H0). Let the stabilizer Γu act on the edge uv1 in order to obtain the star 

Qv1
 as shown in Figure 6.
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Figure 6. The star of v1 based at u.
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Figure 7. An example of vertex-figure.

Now, by using Theorem 1 and Theorem 2 we can determine the different vertex figures for this star. Let's consider for

example Figure 7.

In this case, we have three angle classes defined by α = ∠x1ux2, β1 = ∠x1uy2 and β2 = ∠y1uv2 so, by Lemma 1 there is

only one way to fill in the faces. In order to define a face f we use the proof of Lemma 1 (Lemma 2.9 in [8]): Since the

vertex figure is specified whenever we have chosen the first 2 edges defining certain angle, there are two choices for the

next edge, but by means of Theorem 2 (Theorem 2.5 of [6] we must choose the next edge so that the face angles

alternate between the alpha and the beta angles, and since the angles alternate in the vertex figure, by applying Theorem

1 (Theorem 2.4 of [6]) there is only one choice. With these ideas in mind it is not too difficult to see that f is a zig-zag spiral

described as follows: Let x be any vertex of the crystallographic set V located at, say, H0. Let's imagine we describe a

downward spiral from x. The first direction will be [xy] in a back-and-forth way: [xy] and [yx] descending two levels. Then

the next direction will be ][xu] and [ux] descending two levels. Then [xz] and [zx], [xw]. [wx] and again [xy], [yx] and so on

(Figure 8).

Figure 8. Zig-zag spiral as a face.
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In view of Eisenlohr and Farris's results, this polygon defines a hexagonal zig-zag spiralhedron S1, a polyhedron whose

group of symmetries is hexagonal, according to Eisenlohr's terminology. Furthermore:

Proposition 1. This hexagonal zig-zag spiralhedron S1 is a fully transitive polyhedron.

_________
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