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Abstract. I have written a new proof of Riemann Hypothesis.
MSC Class: 11M26, 11M06.

There is a vivid interest to Riemann Hypothesis, and there are no
reasons to doubt the Riemann Hypothesis: [1, 2].

Guy Robin gives the following definition:

Definition.
A number y is called “colossally abundant” if, for some ε > 0, one has

(1)
σ(z)

z1+ε
≤ σ(y)

y1+ε

for all values of z [4]. σ(z) denotes the sum-of-divisors function [5]. For
example, if z is a prime number, then σ(z) = 1 + z.

Grönwall’s theorem in Ref. [3] is the following.

Theorem 1.
For the Grönwall function G(n) = σ(n)/(n log(log n)), one has

(2) lim supG(n→∞) = exp(γE) ,

where γE = 0.577 . . . is the Euler–Mascheroni constant. The proof is
found in Ref. [3]. I am using Eq. (2) in another shape, namely

(3) G(n→∞) ≤ exp(γE) ,

which reads G(n) ≤ X(n), where X(n) is a function for any n with a
single known property: X(n) = exp(γE) at n → ∞. So, written in a
short form (without the X(n)), I have Eq. (3).

Theorem 2.
There exist infinitely many colossally abundant numbers [6].
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Theorem 3.
The Riemann Hypothesis, if false, implies an infinitude of numbers n
of the type G(n) > exp(γE) [4], page 188.

1. Proof of the Riemann Hypothesis

In this part of the proof, I am demonstrating that for any colossally
abundant numbers A and B, holds

(4) G(n) ≤ max(G(A), G(B)) ,

where n is any number from 6 ≤ A ≤ n ≤ B.
Dr. Robin has claimed [4] that A and B have to be consecutive in

addition to A < B, to get

(5)
σ(n)

n1+d
≤ σ(A)

A1+d
=
σ(B)

B1+d

for some d > 0. But I am not seeing any proof of Eq. (5) in his paper.
After this formula, the proof of Dr. Robin’s Proposition 1 continues
on page 192 without references to consecutivity, and the final result
is in Eq. (4). But let me derive the formula (5) without usage of
consecutivity.

(6)
σ(A)

A1+b
≥ σ(B)

B1+b

for some b > 0 because A is colossally abundant number. On the other
hand,

(7)
σ(B)

B1+d
≥ σ(A)

A1+d

for some d > 0 because B is colossally abundant number.
Then

(8)
σ(A)

A
≥ σ(B)

B
(A/B)b ,

(9)
σ(A)

A
≤ σ(B)

B
(A/B)d .

Holds A < B, then A/B < 1; so, the b and d can be arbitrary
numbers within the ranges b0 ≤ b < ∞, and 0 ≤ d < d0. Here b0 and
d0 are satisfying

(10)
σ(A)

A
=
σ(B)

B
(A/B)b0 ,

(11)
σ(A)

A
=
σ(B)

B
(A/B)d0 .
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Latter two equations imply b0 = d0. Hence, b = d situation will be
exploit in the following. Therefore,

(12)
σ(A)

A1+d
=
σ(B)

B1+d
.

Take a look at Eq. (5). The only chance for inequality to become
violated is that n is a superabundant number. So, in the following part
of the proof I assume that n is a superabundant number. Any colossally
abundant number is superabundant. [7] Then from the definition of a
superabundant number B,

(13)
σ(A)

A
≤ σ(n)

n
≤ σ(B)

B
.

Holds

(14)
σ(A)

A1+x
=
σ(n)

n1+x
,

(15)
σ(B)

B1+y
=
σ(n)

n1+y
.

for some x > 0 and y > 0. Then, from Eqs. (12), (13), (14), and (15),
x ≤ d ≤ y has to hold for Eq. (5) to take place. Let me insert the
σ(n)/n from Eq. (14) into Eq. (15),

(16)
σ(A)

A1+x
nx−y =

σ(B)

B1+y
.

Let me insert the σ(B)/B from Eq. (12) into Eq. (16), I get

(17) nx−y Ad−x = Bd−y .

This can be seen as a function d = d(n), which can vary from d = x
up to d = y. In case d = x, Eq. (17) has n = B as the solution; and
in case d = y, Eq. (17) has n = A as the solution. This coincided with
the domain of n, which was A ≤ n ≤ B.

So, Eq. (5) is proven; and in the following, n is an arbitrary number
again. It means that, it is not necessarily a superabundant number;
and it is not necessarily a colossally abundant number.

Eq. (3) of Theorem 1 implies G(B → ∞) ≤ exp(γE) ≈ 1.78107.
In the following, due to Theorem 2, B will be seen as a very large
colossally abundant number. And, in the following, A = 55440 is
my chosen colossally abundant number [7]. It holds that G(A) =
232128/(55440 log(log 55440)) ≈ 1.75125 < exp(γE). These values of
Grönwall function in the Eq. (4) imply that one has G(n) ≤ exp(γE)
for every value of n within 55440 ≤ n ≤ B. Therefore, Eq. (4) implies
that only a finite amount of numbers are of the type G(n) > exp(γE).
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Notably, such numbers are showing n < A. Finally, Theorem 3 implies
that Riemann Hypothesis cannot be false.
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