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This paper introduces  -NeRF, a self-supervised approach that sets a new standard in novel view synthesis (NVS)

and computed tomography (CT) reconstruction by modeling a continuous volumetric radiance �eld enriched

with physics-based attenuation priors. The   -NeRF represents a three-dimensional (3D) volume through a

fully-connected neural network that takes a single continuous four-dimensional (4D) coordinate—spatial

location   and an initialized attenuation value  —and outputs the attenuation coe�cient at that position.

By querying these 4D coordinates along X-ray paths, the classic forward projection technique is applied to

integrate attenuation data across the 3D space. By matching and re�ning pre-initialized attenuation values

derived from traditional reconstruction algorithms like Feldkamp-Davis-Kress algorithm (FDK) or conjugate

gradient least squares (CGLS), the enriched schema delivers superior �delity in both projection synthesis and

image reconstruction, with negligible extra computational overhead. The paper details the optimization of  -

NeRF for accurate NVS and high-quality CT reconstruction from a limited number of projections, setting a new

standard for sparse-view CT applications.

1. Introduction

X-ray imaging, a form of penetrative imaging to capture detailed internal structures, is widely applied across

�elds, such as medicine, industrial inspection, materials science, etc. [1][2]. While high-resolution projections can

produce high-quality CT images, they require extended exposure time, and excessive radiation pose health risks,

particularly in medical applications. Consequently, one of the recent research topics focused on sparse-view and

low-dose techniques to reduce radiation exposure and/or increase temporal resolution while maintaining

diagnostic utility [3][4][5], particularly for the situations where there are no slip-ring in the CT scanner. However, in

cases like 3D cone beam CT (CBCT) reconstruction, sparse-view data often limits resolution and introduces

artifacts compared with full-view data, which highlights the need for advanced computational methods to

accurately synthesize views and generate anatomical structure from a limited number of projections.

CT reconstruction techniques can be categorized into analytical, iterative, and hybrid data-driven approaches.

Analytical methods, such as �ltered backprojection (FBP)[6] and its cone-beam variants[7], are e�ective with dense
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projection data but fall short under sparse-view conditions. Iterative approaches, including methods like

simultaneous algebraic reconstruction technique (SART) family[8][9]  and total variation (TV)-minimization

techniques[10], address some of these limitations by optimizing the reconstruction through iterative updates.

However, these methods require considerable computational resources and are not always practical for real-time

or large-scale applications. Recently, hybrid data-driven approaches that incorporate deep learning have enhanced

the traditional techniques by using neural networks to predict, �ll gaps, and improve denoising for sparse data[11]

[12]. While these models achieve impressive results, they often require extensive labeled datasets for training,

which limits their adaptability and generalizability to di�erent datasets without further �ne-tuning. Given these

limitations, self-supervised methods o�er a promising alternative by reducing reliance on labeled data and

improving adaptability across various reconstruction tasks. Inspired by advancements in 3D reconstruction in

computer vision, recent works[13][14][15][16]  have explored the applications of self-supervised methods for CT

reconstruction, where internal structures are captured through X-ray transmission imaging rather than re�ective

imaging.

In the computer vision �eld, 3D reconstruction typically represents shapes as discrete point clouds or meshes.

Implicit neural representations (INRs) have become popular as they map discrete points to continuous functions,

enabling smoother and more accurate modeling of complex geometries. NeRF[17], a leading model in this space,

leverages INRs for re�ective imaging with camera rays, mapping spatial position and viewing direction in 5D

coordinates to RGB color and volume density, allowing photorealistic novel view synthesis (NVS) through

volumetric rendering. However, NeRF and similar models[18][19][20] are primarily designed for re�ective imaging

and can not be directly applied to X-ray imaging to capture internal structures. Recent INR-based approaches for

CT reconstruction, such as neural attenuation �eld (NAF)[15] and SAX-NeRF[16], adapt NeRF for X-rays by mapping

3D spatial coordinates to attenuation coe�cients. While these adaptations improve reconstruction quality, they

only consider spatial location, and further enhancements to accuracy come with advanced mapping

functions/models which signi�cantly increased computational costs.

To address the limitations of current methods, we present  -NeRF framework (see Figure 1), a self-supervised

approach designed for X-ray-based 3D tomographic reconstruction. We adopt the CBCT geometry as de�ned in

TIGRE[21], making  -NeRF adaptable across a range of CT imaging settings. Our key contributions are as follows:

Rede�ning Input with Attenuation Priors: By examining the inherent properties of CT imaging, we rede�ne the

input for implicit neural representations (INRs) as a 4D coordinate system consisting of spatial location 

 and an initialized attenuation value  . This enables  -NeRF to model a continuous volumetric radiance

�eld, capturing the 3D volume with a fully-connected neural network. By querying these 4D coordinates along

X-ray paths and applying forward projection technique,  -NeRF is compatible with other NeRF-based CT

reconstruction frameworks and achieves enhanced �delity in sparse-view applications.
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E�cient Attenuation Initialization: We introduce interpolation methods—mean, nearest neighbor, and

trilinear—to initialize attenuation values   at a sparse spatial location from its 8 neighboring points on the

grids. We use these techniques to match and initialize attenuation values, which are pre-initialized by the

traditional algorithms such as FDK and CGLS. Also, a lightweight, learnable linear transformation serves as

feature encoding for further re�nement. Together, these techniques enhance projection synthesis and image

reconstruction with minimal computational cost.

Benchmark Validation on X3D Dataset: Extensive evaluations on the X3D dataset, a large-scale benchmark for

X-ray 3D reconstruction, con�rm  -NeRF’s state-of-the-art performance in both NVS and CT reconstruction

across di�erent X-ray applications. This 4D scene representation captures high-resolution geometry and

enables high-�delity anatomical reconstructions, establishing a new benchmark for higher accuracy and

e�ciency in sparse-view CT applications.

In summary,  -NeRF leverages attenuation priors to address the limitations of existing INR-based CT

reconstruction methods, achieving notable improvements in performance and �delity with negligible extra

computational demands. This work sets a new benchmark for low-dose, sparse-view CT imaging, advancing the

�eld toward e�cient, high-quality 3D X-ray reconstructions.

Figure 1. Overview of the  -NeRF framework for CT reconstruction. Discrete X-ray sample points integrate

attenuation priors   with spatial coordinates  . Attenuation values are updated along the X-ray paths by

applying forward projection technique with encoders and the mapping function  .

2. Related Work

2.1. 3D CT Reconstruction

CT reconstruction methods are broadly categorized into analytical, iterative, and hybrid data-driven approaches.

Foundational analytical algorithms, such as �ltered backprojection (FBP)  [6]  and its cone-beam extension,

Feldkamp-Davis-Kress (FDK)  [7], reconstruct attenuation coe�cients from projections by solving the Radon
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transform. Variants with di�erent �lters and Parker weights improve image quality under dense data but produce

artifacts under sparse-view conditions. Iterative algorithms address these limitations by framing reconstruction as

a maximum a posteriori (MAP) problem, solved through iterative optimization. Gradient-based approaches like the

algebraic reconstruction technique (ART) family (SART  [9], SIRT  [8], and OS-SART  [10]) vary in update strategy:

SART and SIRT update the full projection set at once, yielding high quality images with high computational cost,

and OS-SART strikes a balance with e�cient and subset-based updates. Total variation (TV) minimization based

methods (e.g., ASD-POCS  [22], OS-ASD-POCS  [10], and AwASD-POCS  [23]) iteratively re�ne reconstructions to

suppress noise, with variants improving computational e�ciency or edge preservation. Krylov subspace

algorithms (e.g., CGLS [24], LSQR [25]) achieve faster convergence by focusing on the eigenvectors of the residual in

descending order, which allows for increased convergence rates compared to the SART family. While the SART-

based methods are e�ective with high-quality projection data, Krylov subspace algorithms, like CGLS, are well-

suited for handling large datasets or low-quality data, o�ering both speed and robustness, especially in CT

denoising.

Hybrid data-driven approaches combine the traditional methods with deep learning. These methods enhance

reconstruction by using neural networks to 1) predict and �ll gaps in limit-view or sparse-view projections[26][27]

[28], 2) directly infer attenuation coe�cients as denoising tasks from training data[29][30][5], and 3) optimize

di�erentiable processes to accelerate computations[31][32][33]. While these models achieve impressive results and

require minimal data during inference, they depend on extensive, domain-speci�c datasets for training, which

restricts their adaptability to di�erent applications without further �ne-tuning. Consequently, hybrid data-driven

models excel in speci�c contexts but face challenges in generalizability across di�erent CT reconstruction

scenarios. Given these limitations, studying self-supervised methods could provide a promising alternative by

reducing reliance on labeled data and improving adaptability across di�erent reconstruction tasks.

2.2. Implicit Neural Representation and Rendering

Learning implicit neural representations (INRs) has become a popular approach in 3D scene reconstruction,

o�ering a way to transform discrete data points into continuous functions for learning-based 3D geometry

modeling[34][35][36]. Neural rendering leverages INRs to map discrete data to coordinate-based continuous

representations, typically using implicit functions parameterized by neural networks[37][38][17]. One prominent

method is the neural radiance �eld (NeRF)[17], a model that has set a standard for high-quality novel view

synthesis.

For re�ective imaging, NeRF models a scene by mapping spatial position   and viewing direction   along

camera rays to RGB color   and volume density  . This allows NeRF to produce high-quality novel views by

integrating color and densities along rays through volumetric rendering[39]. Numerous works have aimed to

improve NeRF’s e�ciency[40][41][42][43], and extend its application scope, such as generative modeling,

(x,y, z) (θ,ϕ)

(r, g, b) (σ)

qeios.com doi.org/10.32388/ZX6D29 4

https://www.qeios.com/
https://doi.org/10.32388/ZX6D29


unbounded scenes, and RGB-D synthesis. More recently, INR-based methods have been explored for CT image

reconstruction[15][44][16], transforming discrete samples into continuous representations of internal structures.

For X-ray imaging, adapting NeRF is necessary to address fundamental di�erences from re�ective imaging. Unlike

visible light, which reveals surface color and re�ectance, X-ray penetrates objects to capture internal structures

through attenuation. Neural attenuation �elds (NAF)[15] modify the NeRF framework for 3D CBCT reconstruction

by mapping spatial positions    directly to attenuation coe�cients  . Follow-up works[45][46][47]

[48]  re�ned this method by introducing advanced modeling functions or complex encoding techniques, such as

Transformer-based network in SAX-NeRF[16]. However, these adaptations often increase computational demands.

To address this issue, we introduce attenuation priors to INR-based CT reconstruction algorithms, achieving

performance improvement with minimal computational overhead.

3. Method

3.1. X-ray Sampling

With appropriate preprocessing steps, the measurement of X-ray attenuation can be approximately modeled by a

linear integral, represented as:

where    represents the attenuation coe�cient at each point    parametrized by    along the path, and  

 and   are the near and far limits to account for the material’s e�ective attenuation coe�cients along the ray

path. To align with the voxel grid of view, the ray is divided into evenly spaced bins within the near and far limits,

with one point uniformly sampled within each bin. Eq. (1) can be discretized as:

where   is number of points sampled along the ray,   denotes the attenuation coe�cient at the each sampled bin

paramterized by  , and    is the sampling interval length. The objective of tomographic reconstruction is to

estimate the distribution of    and produce it as a discrete volume, using X-ray projections captured from 

 di�erent angles.

As shown in Figure 2, we model the CBCT geometry by following the conventional de�nitions and incorporating a

local coordinate system. An X-ray source    rotates around the object along a circular trajectory de�ned by the

rotation angle  . Unlike re�ective imaging setups, the object is centered at the origin    of a world coordinate

system, and the projections are captured on a �at panel detector positioned opposite to the source. The imaging

object is represented as a cube and discretized into voxel units for detailed analysis. This detector records X-ray

projections in its own local coordinate system, i.e. an image coordinate system.
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Figure 2. Geometric con�guration of CBCT and X-ray sampling.

Let    be the set of X-ray projections obtained from    di�erent rotation angles. Each projection 

 records the attenuation of X-rays as they traverse the object. We model an X-ray path as  ,

bounded by the near and far limits    and  . The direction of each ray is encoded by a 3D unit Cartesian vector 

  and X-ray source position    derived from the geometric con�guration between the X-ray source and the

detector. Speci�cally,   and   are calculated based on the rotation angle  , the distance from source to detector (

), and the distance from source to object ( ). At the position of source point 

we de�ne a local coordinate system    along three unit vectors 

 and  . We assume that the detector is perpendicular to  -axis.

Considering a local detector coordinator system    with  -axis parallel to the  -plane and  -axis and  -

axis parallel to  -axis and  ,    is the projection position of the X-ray source. The transformation of the ray

direction within the global coordinate system can be expressed through an a�ne transformation:

where   is ray’s direction for   , and   is the rotation matrix associated with the source rotation angle  

3.2. Attenuation Priors Scene Representation

We follow the conventional idea of NeRF[17], adapting it for X-ray imaging by using attenuation values instead of

color and density. The following pipeline, illustrated in Figure 1, details our approach to integrate attenuation

priors into a neural radiance �eld.
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Attenuation Modeling

We model tomographic images as a continuous 4D attenuation �eld, represented as a function:

where   is a 3D spatial coordinate,   represents an initialized attenuation value, and   denotes the learned

attenuation coe�cient. The neural network, parameterized by  , is optimized to map each 4D input to its

corresponding attenuation value, yielding a continuous representation of the attenuation �eld.

Attenuation Initialization

The initialization of attenuation priors begins with the traditional reconstruction algorithms, such as FDK and

CGLS, to produce initial attenuation estimates,  , for the 3D attenuation map in the global coordinate system.

While these voxel-based initial values provide a structured foundation, further re�nement is needed to achieve a

continuous, high-�delity reconstruction. To this end, we employ three interpolation methods—mean, nearest

neighbor, and trilinear—to smooth and adapt attenuation values at points where X-ray paths intersect the voxel

grid, as shown in Figure 2. The attenuation value at a sampled point is determined using 8 neighboring voxel

vertices via their mean, nearest neighbor, or trilinear interpolation. This initialization pipeline o�ers robust priors

that support accurate projection synthesis and high-quality reconstruction from any view.

Feature Encoding

Previous studies[49][50]  have shown that deep networks tend to favor low-frequency representations, limiting

their ability to capture �ne details in color and geometry. By mapping low-dimensional inputs into a higher-

dimensional space with high-frequency encodings, neural networks better capture these high-frequency

variations. Given that X-ray imaging naturally features homogeneous tissue regions with sharp boundaries at

anatomical transitions, resulting low variation of the image, we adopt a learning-based encoding mechanism to

leverage these properties. For spatial positions, we use a  hash encoder[51]—a sparse, learning-based encoding

method—to e�ciently represent position details. For attenuation values, we apply a lightweight  linear

transformation to re�ne the input for enhanced accuracy in reconstruction.

Model Optimization

The optimization process of   -NeRF involves minimizing the di�erence between the predicted and actual X-ray

projections across the dataset. The network is trained to predict attenuation coe�cients for each 4D input (spatial

position and initial attenuation) by using an objective function based on the mean squared error (MSE) between the

synthesized projections and the ground truth:

: (x,y, z, ) → ρ,FΘ ρ0 (6)

(x,y, z) ρ0 ρ
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ρ
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where   and   are real and synthesized projections from ray   respectively, and   is a batch of rays.   is the

learned hash encoder for spatial location  ,   is the learned linear encoder for initial attenuation  , and   is

the attenuation coe�cients network.   is computed by Eq. (2) where   is estimated by the network   and the

related encoders    and   . This is implemented by the classic forward projection technique that corresponds to the

rendering model in the computer vision �eld. The CT reconstruction process is achieved by feeding the voxel grid

coordinates, sized to the desired dimensions, into the trained neural function    to predict the corresponding

attenuation coe�cients. In our work, we use the MLP model architecture from  [17] as the foundation for our study.

Additionally, we explore a transformer-based model that incorporates X-ray structural awareness  [16]  to further

validate the applicability of our proposed method. The �nal output is represented as a discrete 3D matrix.

4. Experiments and Results

4.1. Experimental Setup

Following novel Nerf-based works  [15][16], we evaluate our method using publicly available human organ CT

datasets, including LIDC-IDRI  [52]  and scienti�c visualization dataset  [53]. Using the open-source tomographic

toolbox TIGRE [21], we simulate 100 projections per case with 3% noise over a 0°–180° range. For the novel view

synthesis (NVS) task, we split these projections evenly, with 50 for training and 50 for testing. For sparse-view CT

reconstruction, the CT volumes are reserved as ground truths for evaluation.

The  -NeRF framework is implemented in PyTorch and trained on an NVIDIA RTX 3090 GPU. We optimize the

model using the Adam optimizer   for at most 3,000 iterations, with an inital learning rate of

0.001, reduced to 0.0001 halfway through training. For e�cient processing, we use a batch size of 1,024 rays, with

each ray sampled at 192 points to adequately represent the attenuation �eld across the CT volume. After training,

we quantitatively evaluate the reconstruction by computing both peak signal-to-noise ratio (PSNR) and structural

similarity index (SSIM) metrics. PSNR (in dB) provides a statistical measure of artifact suppression performance,

while SSIM assesses perceptual di�erences between two images. Higher PSNR and SSIM values indicate more

accurate reconstructions.

4.2. Main Results

We include comparisons with the conventional CT reconstruction algorithms, including FDK (physics-based), AS-

POCS (iterative), and CGLS (Krylov subspace), as well as the state-of-the-art NeRF-based methods, named NAF

and SAX-NeRF. We deploy the  -NeRF framework to NeRF-based models by utilizing their neural networks as the

mapping function  , naming the enhanced models  -NAF and  -SAX-NeRF. These new models integrate

attenuation priors, the nearest neighbor interpolation method, and the two proposed feature encoders,

demonstrating the e�ectiveness and adaptability of our approach. Unless otherwise noted, this con�guration is

I(r) (r)Î r R Φ

(x,y, z) Ψ ρ0 A

(r)Î ρj A

Φ Ψ
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used throughout the experiments. A detailed analysis of these design choices is provided in  4.3, with additional

quantitative and qualitative results available in the supplementary materials.

3D CT Reconstruction

Table 1 and Figure 3 provide quantitative and visual comparisons of 3D CT reconstruction across baseline and  -

NeRF-enhanced models. The  -based models consistently outperform their counterparts across all cases.

Speci�cally, SSIM values improve from 0.93 to 0.95 in foot reconstructions when comparing NAF and  -NAF, also

it surpasses SAX-NeRF-based models while maintaining a negligible computational cost, which will be discussed

in Sec. 4.3. In chest scans,  -NAF achieves a PSNR of 35.07 dB, compared to 34.46 dB with SAX-NeRF, underscoring

the positive impact of leveraging attenuation priors. These results validate that  -NeRF e�ectively reduces

artifacts and yields more precise reconstructions, especially in sparse-view conditions, emphasizing the bene�ts

of re�ned attenuation initialization.

  FDK ASD-POCS CGLS NAF -NAF SAX-NeRF -SAX-NeRF

Jaw 28.57/0.7816 33.23/0.9322 28.80/0.8536 34.08/0.9345 35.23/0.9512 35.30/0.9503 35.25/0.9522

Foot 24.53/0.5999 29.98/0.9208 25.39/0.7901 31.76/0.9341 32.84/0.9506 32.25/0.9403 32.72/0.9481

Chest 22.89/0.7861 31.13/0.9422 24.44/0.7721 32.65/0.9609 35.07/0.9733 34.46/0.9725 34.81/0.9747

Aneurism 28.07/0.7295 34.71/0.9858 30.08/0.9272 38.02/0.9883 39.43/0.9928 41.46/0.9956 41.41/0.9966

Bonsai 24.53/0.7275 32.71/0.9529 26.27/0.8200 34.07/0.9606 34.79/0.9705 36.11/0.9751 36.85/0.9798

Table 1. Quantitative comparison of CT reconstruction from di�erent methods in terms of PSNR/SSIM, where bold

fonts indicate the best results.
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Figure 3. Visualization of some representative CT reconstruction results for Jaw, Foot, Chest, Aneurism, and Bonsai

(from top to bottom). Zoomed region-of-interests are also provided.
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Novel View Synthesis

In Table 2, quantitative evaluation results of novel view synthesis (NVS) show that  -NAF and  -SAX-NeRF

provide substantial improvements over approaches adopting only spatial location as inputs, and promising the

e�ectiveness of attenuation priors mechanism. For instance,  -SAX-NeRF achieves a PSNR of 47.66 dB and an

SSIM of 0.9996 on chest views, compared to SAX-NeRF’s 47.41 dB and 0.9994, respectively.   Figure 4 visually

demonstrates the sharper anatomical details rendered by  -based models, e�ectively capturing �ne structures.

This performance, combined with supplementary results, highlights the capability of  -NeRF in delivering visually

accurate and consistent NVS results across various anatomical regions.

  NAF -NAF SAX-NeRF -SAX-NeRF

Jaw 40.10/0.9988 43.18/0.9991 42.89/0.9991 43.37/0.9991

Foot 38.13/0.9924 46.47/0.9994 46.64/0.9994 47.56/0.9994

Chest 42.26/0.9993 47.62/0.9996 47.41/0.9994 47.66/0.9996

Aneurism 41.03/0.9991 46.84/0.9996 52.90/0.9998 53.78/0.9998

Bonsai 49.12/0.9990 51.64/0.9992 52.29/0.9995 53.44/0.9995

Table 2. Quantitative comparison of novel view synthesis from di�erent methods in terms of PSNR/SSIM, where bold

fonts indicate the best results.
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Figure 4. Visualization of some representative novel view results for Jaw. Foot, Chest, Aneurism, and Bonsai (from

top to bottom).

4.3. Ablation Study

Attenuation Initialization Analysis: FDK is our primary choice for initialization in the pipeline due to its ability to

retain crucial attenuation information, providing a solid baseline for the  -based models. We evaluate three

traditional initialization algorithms—FDK, ASD-POCS, and CGLS—to estimate initial attenuation coe�cients for

the  -NeRF models. As shown in Table 3, FDK consistently achieves high SSIM and PSNR scores, con�rming its

e�ectiveness for initializing attenuation values. FDK, being a physics-based algorithm, preserves more attenuation

details, whereas iterative methods with TV-regularization, such as ASD-POCS and CGLS, may result in overly
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smooth reconstructions, potentially losing physical details. For these reasons, we primarily use FDK for

initialization in our main experiments.

-NAF FDK ASD-POCS CGLS

Jaw 35.23/0.9512 34.48/0.9420 34.87/0.9466

Foot 32.84/0.9506 32.84/0.9507 32.20/0.9408

Chest 35.07/0.9733 33.39/0.9689 33.13/0.9654

Aneurism 41.46/0.9956 41.52/0.9973 39.43/0.9928

Bonsai 36.11/0.9751 35.31/0.9656 34.23/0.9627

Table 3. Ablation study results of attenuation initialization algorithms in terms of PSNR/SSIM, where  bold fonts

indicate the best results.

Model Complexity Analysis

Table 4 compares the computational cost and parameter size for baseline models (NAF and SAX-NeRF) against

their  -based counterparts ( -NAF and  -SAX-NeRF). The  -based models introduce minimal increases in

computational cost, with only 0.19 giga multiply-add operations per second (GMACs) increase. Parameter counts

remain nearly identical across versions, with a negligible increase of less than 0.1%. Combined the results in Tables

1 and  2, one can see that our  -based models achieve higher performance with minimal increase in computational

cost.

  NAF -NAF SAX-NeRF -SAX-NeRF

GMACs 0.7559 0.9463 12.6273 12.8177

Params (M) 14.2667 14.2677 14.3252 14.3262

Table 4. Comparison analysis of GMACs and parameters for di�erent models.

Convergence Analysis

Figure 5 shows the loss over training steps for four models: NAF,  -NAF, SAX-NeRF, and  -SAX-NeRF. The vertical

axis represents the loss in log scale, and the horizontal axis indicates the training steps up to 70,000. The inset
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zooms highlight the behavior of each model. Models that incorporate attenuation priors ( -NAF and  -SAX-NeRF)

exhibit faster convergence and maintain lower loss values throughout the training compared to the counterparts

without these priors (NAF and SAX-NeRF). This suggests that leveraging attenuation priors accelerates the

convergence process, allowing the models to reach a stable and lower loss more quickly than those without the

priors.

Figure 5. Model convergence with respect to training steps.

5. Conclusion

This work introduces  -NeRF, a self-supervised neural framework designed for high-�delity 3D CT reconstruction

from sparse-view X-ray data. By leveraging attenuation priors with a continuous 4D representation,  -NeRF

advances the performance of CT imaging while reducing reliance on dense data or supervised learning. Key

contributions include a novel input schema that integrates initialized attenuation priors, e�ective feature encoding

methods, and robust interpolation techniques. Evaluations on the X3D dataset validate  -NeRF’s state-of-the-art

performance in novel view synthesis and CT reconstruction. This framework not only sets a new benchmark in

e�ciency and accuracy for sparse-view CT applications but also o�ers potential for adaptation across a range of

Nerf-based methods on CT reconstruction, contributing to advancements in medical and industrial CT imaging.
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Supplementary Material

6. Attenuation Initialization Analysis

We present additional experiments to extend the analysis of attenuation initialization strategies discussed in Sec.

4.3 of the main paper. These experiments focus on two key aspects: the role of pre-initialization algorithms and the

impact of di�erent interpolation methods. By providing further insights into these components with both

quantitative results and qualitative visualizations, we aim to highlight their impacts on the overall CT

reconstruction quality and validate the robustness of leveraging attenuation priors.

Pre-initialization Algorithms Analysis

The �rst part of this analysis, as demonstrated in Table 5 and Figure 6, evaluates the performance of di�erent pre-

initialization algorithms—FDK, CGLS, and ASD-POCS—using the nearest interpolation method. The �ndings

reveal that FDK consistently provides superior initialization for both  -NAF and  -SAX-NeRF models, achieving

the best balance between detail preservation and reconstruction quality. While the ASD-POCS excels in some

speci�c scenarios, its smoothing tendency often reduces �ne detail accuracy, making FDK the preferred choice for

reliable initialization.

match mode -NAF -SAX-NeRF

= Nearest FDK CGL SD-POCS FDK CGLS ASD-POCS

Jaw 35.23/0.9512 34.87/0.9466 34.48/0.9420 35.25/0.9522 35.20/0.9509 34.93/0.9468

Foot 32.84/0.9506 32.20/0.9408 32.84/0.9507 32.72/0.9481 32.23/0.9411 32.29/0.9422

Chest 35.07/0.9733 33.13/0.9654 33.39/0.9689 34.81/0.9747 34.76/0.9746 34.82/0.9747

Aneurism 39.43/0.9928 39.43/0.9928 41.52/0.9973 41.41/0.9966 41.35/0.9960 41.00/0.9958

Bonsai 34.79/0.9705 34.23/0.9627 35.31/0.9656 36.85/0.9798 36.70/0.9780 36.79/0.9771

Table 5. Quantitative comparison of CT reconstruction results with di�erent pre-initialization algorithms using the

nearest interpolation method in terms of PSNR/SSIM, where bold fonts indicate the best results.
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Figure 6. Visualization of representative results from di�erent pre-initalization algorithms for Jaw, Foot, Chest,

Aneurism, and Bonsai (from top to bottom). Zoomed region-of-interests are also provided.

Interpolation Methods Analysis

The second part of this analysis, shown in Table 6 and Figure 7, investigates the impact of interpolation methods—

Nearest, Mean, and Trilinear—on reconstruction performance when using FDK as the pre-initialization algorithm.
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These experiments evaluate  -NAF and  -SAX-NeRF models across the same �ve cases. Nearest interpolation

generally demonstrates better performance due to its ability to preserve sharp boundaries, particularly in simpler

cases like Foot and Chest. Trilinear interpolation, however, provides competitive or superior results in more

complex scenarios such as Aneurism and Bonsai, bene�ting from smoother transitions across voxel grids. This

analysis underscores the adaptability of interpolation techniques and their critical role in optimizing

reconstruction outcomes.

image_init -NAF -SAX-NeRF

= FDK Nearest Mean Trilinear Nearest Mean Trilinear

Jaw 35.23/0.9512 34.53/0.9421 34.85/0.9460 35.25/0.9522 34.95/0.9477 34.89/0.9468

Foot 32.84/0.9506 32.40/0.9488 32.56/0.9498 32.72/0.9481 32.53/0.9480 32.73/0.9507

Chest 35.07/0.9733 32.59/0.9605 33.49/0.9644 34.81/0.9747 34.71/0.9741 34.80/0.9749

Aneurism 39.43/0.9928 36.98/0.9899 38.59/0.9909 41.41/0.9966 40.67/0.9956 42.05/0.9962

Bonsai 34.79/0.9705 35.06/0.9710 35.05/0.9720 36.85/0.9798 36.55/0.9782 36.95/0.9805

Table 6. Quantitative comparison of representative results with di�erent interpolation methods using the FDK pre-

initialization algorithm in terms of PSNR/SSIM, where bold fonts indicate the best results.
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Figure 7. Visualization of representative resutls from di�erent interpretation methods for Jaw, Foot, Chest,

Aneurism, and Bonsai (from top to bottom). Zoomed region-of-interests are also provided.
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